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Appendix Part I 
 

Vectors and Matrices 
 
In this first part of the appendix, we provide a brief survey, “sketchy” overview of essential 
matrix and linear algebra that is useful for understanding parts of the book at a more technical 
level, what some would also call a “deeper” level. We proceed quickly in demonstrating these 
operations using R software. Once the student overcomes the initial learning curve (it can be 
quite steep at times) for performing such operations in R, she will experience a tremendous 
wealth of computing power at her hands, unlike what could ever be experienced using 
packages such as SPSS. Working with R, the user becomes the body of knowledge, the 
“stimuli,” for which the computer is the response. The user can input even a single request and 
immediately receive a response. This is a very powerful way to learn univariate and multivariate 
analysis along with its numerous matrix operations and computations.    
 
The contents of this appendix are by no means designated to be formal, thorough, or even 
“complete” in any sense whatsoever. The area of linear algebra is one of the pillars of modern 
mathematics and has a life of its own. Our overview is merely a shorthand collection of notes 
on select topics in matrix operations useful for understanding statistical methods in their 
broadest generality. There exist a plethora of excellent texts on the mathematics of matrix 
algebra, and the reader is strongly encouraged to consult such texts to accompany his or her 
study of this book and multivariate analysis more generally if a more technical (again, some 
would say “deeper”) understanding of statistical methods is desired. One of the most readable 
sources is that of Searle (1982). Gill (2006) also contains chapters devoted to essentials of linear 
algebra and matrices. Carroll and Green (1997) provide a good overview of the mathematics of 
multivariate analysis. Strang (1993), Anton and Rorres (2000), and Harville (1997) are matrix 
texts for the mathematical sciences, the latter on the technical side. Roman (2008) is an 
advanced text, but also features a review of much of the “basics” of the area.        
 
 
A.1. Matrices 
 
A matrix is simply an ordered array of numbers, square or rectangular, denoted by n  rows and 
m  columns. For instance, the following matrix A  is a 3-row by 2-column matrix (i.e., it is of 
order 3 x 2):  

11 12

21 22

31 32

a a

a a

a a

 
 

=
 
  

A  

 

The contents of the matrix consist of elements 11a , 12a , 21a , and so on. A matrix is square if the 

number of n  rows equals the number of m  columns. For example, the matrix B  is a square 
matrix: 
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11 12

21 22

b b

b b

 
=  
 

B  

 
A.2. Building Matrices in R 
 
We can generate a matrix in R in many different ways. As an example, suppose we wished to 
produce a matrix containing a sequence of numbers from 1 to 8 and having four rows and two 
columns. We say that the dimension of the matrix is 4 x 2. We can use the function matrix to 
create the matrix. Let us call this matrix S:  
 
> S <- matrix(1:8, 4, 2) 

> S 

     [,1] [,2] 

[1,]    1    5 

[2,]    2    6 

[3,]    3    7 

[4,]    4    8 

 
where S is the name we are giving to our matrix, 1:8  designates the matrix to have entries 1-8, 
and 4,2 designates the matrix to have four rows and two columns.  
 
We could expand on the above code and generate a wide variety of matrices of various 
dimensions. We could also change the contents of the matrix. For instance, suppose that 
instead of inputting entries from 1 to 8, we chose instead to input entries from 20 to 27. We 
would have:  
 
> S <- matrix(20:27, 4, 2) 

> S 

     [,1] [,2] 

[1,]   20   24 

[2,]   21   25 

[3,]   22   26 

[4,]   23   27 

 
Suppose we now wanted to add two new elements to the matrix, elements 28 and 29. To 
accommodate these new elements, we need to expand on the number of rows in the matrix. 
Instead of having four rows, we now have five rows:  
 
> S <- matrix(20:29, 5, 2) 

> S 

     [,1] [,2] 

[1,]   20   25 

[2,]   21   26 

[3,]   22   27 

[4,]   23   28 

[5,]   24   29 

 
where (20:29, 5, 2) requests to build a 5 x 2 matrix with entries 20 to 29. Notice that if we 
specified a range of entries the dimension of the matrix could not handle neatly, R will still 
compute a matrix, but will either shrink or expand the entries smaller or greater than the range 
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20-29 as needed. For instance, suppose we again requested entries 20-29, but instead a 2 x 2 
matrix: 
 
> S <- matrix(20:29, 2, 2) 

> S 

     [,1] [,2] 

[1,]   20   22 

[2,]   21   23  

 
Notice that because we asked for a 2 x 2 matrix, R simply generated the first four entries in the 
range of 20-29. On the other hand, if we requested a “too large” of a matrix given the range, R 
will simply start repeating values. For example, suppose we specified the same range of 20-29, 
but asked for a 10 x 5 matrix:  
 
> S <- matrix(20:29, 10, 5) 

> S 

      [,1] [,2] [,3] [,4] [,5] 

 [1,]   20   20   20   20   20 

 [2,]   21   21   21   21   21 

 [3,]   22   22   22   22   22 

 [4,]   23   23   23   23   23 

 [5,]   24   24   24   24   24 

 [6,]   25   25   25   25   25 

 [7,]   26   26   26   26   26 

 [8,]   27   27   27   27   27 

 [9,]   28   28   28   28   28 

[10,]   29   29   29   29   29  

 
Notice that R accommodated the 10 x 5 matrix by replicating values.  
 

 
A.3. Dimension of a Matrix 
 
Recall the dimension of a matrix is defined by the number of rows and columns in the matrix. 
For instance, consider the matrix S just computed. Matrix S has 10 rows and 5 columns. We can 
easily verify the dimension of a matrix by requesting dim:  
 
> dim(S) 

[1] 10 5 

 

where “10” is the number of rows and “5” is the number of columns. Two matrices are 
considered equal only if they are of the same dimension and have the same elements in the 
same places (i.e., the corresponding elements must be the same). For example, matrices A  
and B  are equal, whereas each is unequal to matrix C :   
 

2 7

4 9

 
=  
 

A      
2 7

4 9

 
=  
 

B      
4 9

2 7

 
=  
 

C  
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A.4. Constructing a Covariance or Correlation Matrix 
 
Though there are many ways to build matrices in R, we demonstrate a simple way of producing 
a matrix that is used in the book. Consider the following correlation matrix (lower triangular 
shown only):   
 
1.00000 

.343      1.00000 

.505       .203   1.00000 

.308       .400    .398  1.00000 

.693       .187    .303   .205   1.00000 

.208       .108    .277   .487    .200  1.00000 

.400       .386    .286   .385    .311   .432  1.00000 

.455       .385    .167   .465    .485   .310   .365 1.00000 

 
We could generate the above matrix as a text file and read it directly from that file using a 
function such as read.table, but we could also quite easily build the matrix in R. We build the 
matrix by first “concatenating” the row vectors. By defining each row as r1, r2, r3, etc., and by 
specifying c to concatenate each vector, we build the vectors for the matrix:  
 
> r1 <- c(1.000, 0.343, 0.505, 0.308, 0.693, 0.208, 0.400, 0.455) 

> r2 <- c(0.343, 1.000, 0.203, 0.400, 0.187, 0.108, 0.386, 0.385) 

> r3 <- c(0.505, 0.203, 1.000, 0.398, 0.303, 0.277, 0.286, 0.167) 

> r4 <- c(0.308, 0.400, 0.398, 1.000, 0.205, 0.487, 0.385, 0.465) 

> r5 <- c(0.693, 0.187, 0.303, 0.205, 1.000, 0.200, 0.311, 0.485) 

> r6 <- c(0.208, 0.108, 0.277, 0.487, 0.200, 1.000, 0.432, 0.310) 

> r7 <- c(0.400, 0.386, 0.286, 0.385, 0.311, 0.432, 1.000, 0.365) 

> r8 <- c(0.455, 0.385, 0.167, 0.465, 0.485, 0.310, 0.365, 1.000) 

 
Recall that since in a correlation or covariance matrix the lower triangular of the matrix is 
identical to the upper triangular, it was a simple matter to insert the correct off-diagonal 
correlations in producing the above vectors (i.e., notice that the upper triangular part of the 
matrix mirrors that of the lower). We then use the rbind function (i.e., “bind the rows 
together”) to join the rows 1, 2, 3, etc. of the above vectors, identifying the new matrix as 
cormatrix:   
 
> cormatrix <- rbind(r1, r2, r3, r4, r5, r6, r7, r8) 

 
To verify that we built the matrix correctly, we request it by its name:  
 
 > cormatrix 
    [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8] 

c1 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 

c2 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 

c3 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 

c4 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 

c5 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 

c6 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 

c7 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 

c8 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 

 
We can see that the generated cormatrix was correctly built, and is now ready for analyses 
that require a correlation matrix as input. Cormatrix is featured in Chapters 13 and 14.    
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A.5. Building the Matrix by Concatenating Columns Instead of Rows 
 
We could have just as easily built cormatrix by concatenating columns instead of rows. To 
proceed this way, we build each vector by their respective columns. To make things easier, we 
name each column vector 1, 2, 3, etc., by c1, c2, c3, and so on for columns 1, 2, 3 . . .  instead of 
r1, r2, r3, which recall was used to designate rows:    
 
> c1 <- c(1.000, 0.343, 0.505, 0.308, 0.693, 0.208, 0.400, 0.455) 

> c2 <- c(0.343, 1.000, 0.203, 0.400, 0.187, 0.108, 0.386, 0.385) 

> c3 <- c(0.505, 0.203, 1.000, 0.398, 0.303, 0.277, 0.286, 0.167) 

> c4 <- c(0.308, 0.400, 0.398, 1.000, 0.205, 0.487, 0.385, 0.465) 

> c5 <- c(0.693, 0.187, 0.303, 0.205, 1.000, 0.200, 0.311, 0.485) 

> c6 <- c(0.208, 0.108, 0.277, 0.487, 0.200, 1.000, 0.432, 0.310) 

> c7 <- c(0.400, 0.386, 0.286, 0.385, 0.311, 0.432, 1.000, 0.365) 

> c8 <- c(0.455, 0.385, 0.167, 0.465, 0.485, 0.310, 0.365, 1.000) 

 
We then use the cbind function instead of the rbind function to join the column vectors, 
assigning the matrix once again the name cormatrix: 
   
> cormatrix <- cbind(c1, c2, c3, c4, c5, c6, c7, c8) 

> cormatrix 

        c1    c2    c3    c4    c5    c6    c7    c8 

[1,] 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 

[2,] 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 

[3,] 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 

[4,] 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 

[5,] 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 

[6,] 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 

[7,] 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 

[8,] 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 

 
A covariance or correlation matrix is a symmetric matrix, meaning that the upper and lower 
triangulars are mirror images of each other. Generating it by concatenating rows or columns 
results in the same matrix.  
 
 
A.6. Operations on Matrices 
 
Matrix addition and subtraction are defined only for matrices of the same dimension. For 
example, we can add matrices A  and B :   
 

11 12 13

21 22 32

31 32 33

a a a

a a a

a a a

 
 

=
 
  

A           

11 12 13

21 22 32

31 32 33

b b b

b b b

b b b

 
 

=
 
  

B  

 

such that 

11 12 13 11 12 13 11 11 12 12 13 13

21 22 23 21 22 23 21 21 22 22 23 23

31 32 33 31 32 33 31 31 32 32 33 33

a a a b b b a b a b a b

a a a b b b a b a b a b

a a a b b b a b a b a b

+ + +     
     

+ = + = + + +
     
     + + +     

A B  
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Addition of matrices A and C, however, is undefined since A and C are not of the same 
dimension:  

11 12 13 11 12

21 22 23 21 22

31 3231 32 33

a a a c c

a a a c c

c ca a a

   
   

+  +
   
     

A C  

 

To demonstrate in R, let matrix 
5 9

3 4

 
=  
 

A  and matrix 
1 3

7 2

 
=  
 

B . +A B  is therefore:   

> A + B 

     a1 a2 

[1,]  6 12 

[2,] 10  6 

 
The following properties hold for the addition of matrices. Many of these properties you might 
also recognize from the general properties of real numbers.  
 
Matrix addition is commutative, which means:  
 

+ = +A B B A  
 
That is, whether you add matrix B  to matrix A  or matrix A  to matrix B , the same answer will 
be obtained. 
 
Matrix addition is associative, which means:   
 

( ) ( )+ + = + +A B C A B C  

 
That is, whether you add A  to the sum of +B C  or add the sum of +A B  to C , you will 
obtain the same answer. Matrix multiplication also obeys the associative law, which states: 
  

( ) ( )=AB C A BC  

 
When multiplying matrices A  and C , the product AC  is defined only for matrices for which 
the number of columns in A  is equal to the number of rows in C . When the number of 
columns in the first matrix is equal to the number of rows in the second matrix, we say the 
matrices are conformable for multiplication. For example, let matrices A  and C  be defined 
as:  
 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 

=
 
  

A      

11 12

21 22

31 32

c c

c c

c c

 
 

=
 
  

C . 
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Notice that the number of columns in A  is equal to the number of rows in C . That is, there are 
three columns in A  and three rows in C . They are conformable for multiplication so long as 
we wish to generate the product AC . Notice that the product CA  is not defined, since the 
number of columns in C  (equal to 2) is not equal to the number of rows in A  (equal to 3).  
 
To get the product AC, we carry on with multiplying each element in respective rows of A  
against each element in respective columns of C :  
 

11 12 13 11 11 12 21 13 31 11 12 12 22 13 3211 12

21 22 23 21 22 21 11 22 21 23 31 21 12 22 22 23 32

31 3231 32 33 31 11 32 21 33 31 31 12 32 22 33 32

a a a a c a c a c a c a c a cc c

a a a c c a c a c a c a c a c a c

c ca a a a c a c a c a c a c a c

+ + + +    
    

= = + + + +
    
     + + + +    

AC  

 
so that the product AC  has the n rows of A  and the m columns of C .   
 

Multiplying matrices in R is easy. To get the product 
5 9

3 4

 
=  
 

A  and 
1 3

7 2

 
=  
 

B  we compute   

> r1 <- c(5, 9) 

> r2 <- c(3, 4) 

> A <- rbind(r1, r2) 

> A 

   [,1] [,2] 

r1    5    9 

r2    3    4 

 

> c1 <- c(1, 7) 

> c2 <- c(3, 2) 

> B <- cbind(c1, c2) 

> B 

     c1 c2 

[1,]  1  3 

[2,]  7  2 

> A%*%B 

     b1 b2 

[1,] 68 33 

[2,] 31 17 

 
As mentioned, since matrix multiplication is not commutative, BA  will yield a different result 
than AB :  
 
> B%*%A 

     a1 a2 

[1,] 14 21 

[2,] 41 71 

 
Note that the above matrix product is not equal to that of AB  computed earlier.  
 
Finally, be sure when multiplying matrices that you use “%” to enclose “*” and not “*” alone to 
get the product. If you use “*”, as might at first seem like the obvious thing to do, you will not 
get a matrix product as computed above. What you will get is a product elementwise, meaning 
each respective element in each position in the matrix is multiplied by each other. 
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For example, in multiplying AB  using only “*” instead of “%*%”, we get   
 

> A*B 

   [,1] [,2] 

r1    5   27 

r2   21    8   

 
As can be seen, it generated the matrix product AB  by multiplying corresponding elements in 
each position. It generated a product, but not the product we typically want when multiplying 
matrices.  
 
For a given matrix A  that is symmetric and a y  vector, the product 'y Ay  is known as a 

quadratic form. In many multivariate procedures, it is important that the product 'y Ay  be 

positive (i.e., ' 0y Ay ). Such quadratic forms are called positive definite. Positive semidefinite 

quadratic forms are those for which ' 0y Ay . Matrices that are positive definite have 

eigenvalues greater than zero while matrices that are positive semidefinite have eigenvalues of 
zero or greater. Matrices that are not positive definite or positive semidefinite have negative 
eigenvalues. Matrices that are of full rank (see Section A.18) will have all eigenvalues positive.  
 
 
A.7. Transpose & Trace 
 
The transpose of a matrix is the matrix generated when one interchanges the rows and 

columns of a matrix. For instance, we denote the transpose of matrix 
11 12

21 22

b b

b b

 
=  
 

B

 

as 'B :  

 

11 21

12 22

b b

b b

 
=  
 

B'  

 
The trace of a square matrix is the sum of elements along the main diagonal. For example, the 
trace of the 3 x 3 matrix:   

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 

=
 
  

A  

 

is equal to 11 22 33a a a+ + . The trace of non-square matrices is not defined. Because elements 

that make up the trace of a covariance matrix represent variances, the computation of the 
trace is very common in multivariate analysis. For instance, in the derivation of principal 
components (Chapter 13), one of the properties of principal components is that the sum of 
their variances, which are called eigenvalues, is equal to the sum of the variances of the original 
variables. In a covariance matrix, that sum of the individual variances of each variable is found 
along the main diagonal. Hence, we say that a feature of principal components analysis is that 
the sum of eigenvalues is equal to the trace of the original covariance matrix:   
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2 2 2

1 2

1

...
p

i p

i

s s s
=

= + + +  

 

where the sample variances 2 2 2

1 2 ... ps s s+ + +  are found along the main diagonal of the 

covariance matrix:   

1

2

3

2

2

2

2

0 ... 0

0 ... 0
'

0 0 0

0 0 ...
p

s

s

s

s

 
 
 

= =  
 
 
 
 

S ASA  

 
We can easily demonstrate in R some useful results in matrix algebra involving transposes and 
traces:  
 
1. ( ) ( ) ( )= +tr A + B tr A tr B - In words, the trace of a sum is equal to the sum of the traces. In 

R, we request the trace of a matrix by tr. We first request the trace of the sum A+B :    
 
> library(psych) 

> tr(A + B) 

[1] 12 

 
The above represents the left-hand side of the result. Computing the right-hand side, we find 
that the above sum is equal to   
 
> tr(A) + tr(B) 

[1] 12 

 
which demonstrates the equivalence.  
 
 
2. ( ) ' ' '= +A + B A B  - In words, the transpose of a sum is equal to the sum of transposes. We 

first generate the transpose of the sum (i.e., ( ) 'A + B ):   

 
> t(A+B) 

   [,1] [,2] 

a1    6   10 

a2   12    6 

 
We then request the sum of the transposes (i.e., ' '+A B ):  
 
> t(A) + t(B) 

   [,1] [,2] 

a1    6   10 

a2   12    6 

 
which demonstrates the equivalence.  
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3. ( ) ' ' '=AB B A - In words, the transpose of a product is equal to the product of transposes in 

reverse order. Recall that to multiply matrices in R, we use the operator %*%. Thus, for the 
expression on the left-hand side, we compute the transpose of the matrix product AB :   
 
> t(A%*%B) 

   [,1] [,2] 

b1   68   31 

b2   33   17 

 

The expression on the right-hand side is computed as the transpose of B  multiplied by the 
transpose of A : 
 
> t(B)%*%t(A) 

   [,1] [,2] 

b1   68   31 

b2   33   17 

 
which demonstrates the equivalence.  
 
 
A.8. Identity Matrices 
 
An identity matrix is defined as a matrix having zeros everywhere except the main diagonal 
which has elements equal to 1. A property of identity matrices is that for any matrix A , it is 
true that = =IA AI A. For example, a 3 x 3 identity matrix is given as:  
 

1 0 0

0 1 0

0 0 1

 
 

=
 
  

I  

 
We could construct the matrix simply via diag(3). We can also generate a 3 x 3 identity matrix 
I in R by:  
 
> I <- matrix(0, nrow = 3, ncol = 3) 

> I[1, 1] <- 1 

> I[2, 2] <- 1 

> I[3, 3] <- 1 

> I 

     [,1] [,2] [,3] 

[1,]    1    0    0 

[2,]    0    1    0 

[3,]    0    0    1 

 
where I is the name of our newly created matrix, the line matrix(0, nrow = 3, ncol = 3) 
requests a matrix of zeros with three rows and three columns, I[1, 1] <- 1 requests R to put 
a “1” in row 1, column 1, I[2, 2] <- 1 requests R to put a “1” in row 2, column 2, and I[3, 
3] <- 1 requests R to put a “1” in row 3, column 3. Had we not requested these last three lines 
of code, R would have simply generated a 3 x 3 zero matrix: 
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> I <- matrix(0, nrow = 3, ncol = 3) 

> I 

     [,1] [,2] [,3] 

[1,]    0    0    0 

[2,]    0    0    0 

[3,]    0    0    0 

 
If we desired a larger identity matrix, suppose 5 x 5, we could likewise code:  
 
> I <- matrix(0, nrow = 5, ncol = 5) 

> I[1, 1] <- 1 

> I[2, 2] <- 1 

> I[3, 3] <- 1 

> I[4, 4] <- 1 

> I[5, 5] <- 1 

> I 

 

     [,1] [,2] [,3] [,4] [,5] 

[1,]    1    0    0    0    0 

[2,]    0    1    0    0    0 

[3,]    0    0    1    0    0 

[4,]    0    0    0    1    0 

[5,]    0    0    0    0    1 

 
We could also alter the general matrix code, and easily generate a matrix with values of say, 5 
everywhere, except for values of 2 along the main diagonal:  
 
> M <- matrix(5, nrow = 3, ncol = 3) 

> M[1, 1] <- 2 

> M[2, 2] <- 2 

> M[3, 3] <- 2 

> M 

     [,1] [,2] [,3] 

[1,]    2    5    5 

[2,]    5    2    5 

[3,]    5    5    2 

 
We can also verify the main diagonal of an identity matrix or any other matrix for that matter, 
by the function diag. For example, for the matrix M, we request the diagonal:  
  
> diag(M) 

[1] 2  2  2 

  
which also serves to confirm the matrix to be a 3 x 3 matrix (since there are three matching 
values of 2).  
 
Even more generally, we can use the matrix function to generate any matrix with specific values 

in each position. For instance, if we wanted to generate the matrix 
5 9

3 4

 
=  
 

A , we would enter 

the following code:  
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> A <- matrix(nrow = 2, ncol = 2) 

> A[1, 1] <- 5 

> A[1, 2] <- 9 

> A[2, 1] <- 3 

> A[2, 2] <- 4 

> A 

     [,1] [,2] 

[1,]    5    9 

[2,]    3    4   

 
Of course, it is usually much easier to generate such matrices by simply binding column or row 
vectors, as we did earlier, especially for large matrices. Even more efficiently, we could have 
also constructed A  by:  
 
> A <- matrix(c(5, 3, 9, 4), nrow = 2) 

> A 

     [,1] [,2] 

[1,]    5    9 

[2,]    3    4  

 
 
A.9. Vectors 
 
In physical applications, a vector is a quantity that has magnitude and direction. In computer 
science fields, it can be considered simply a list of numbers. It can also be likened to a matrix 
that consists of a single row or a single column. For example, vector c  is a 3 x 1 matrix (i.e., 3 
rows, 1 column):  

11

21

31

c

c

c

 
 

=
 
  

c  

whereas 'c  is a 1 x 3 row matrix:  
 

 11 12 13' c c c=c  

 

As we can see, 'c  is the transpose of c .  
 
Let us now assign real numbers to vector c. Let vector c equal:   
 

5

2

9

 
 

=
 
  

c  

 

To generate this vector in R, we compute  
 
> c <- c(5, 2, 9) 

> c 

[1] 5 2 9 
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A.10. Inner Product or Dot Product  
 
The inner product or dot product (Strang, 1993, p. 10) is the product generated when two 
vectors are multiplied by one another, where 'a a  denotes a sum of squared elements. Two 
vectors are orthogonal if their inner product is equal to 0. If we take the square root of 'a a , we 
obtain the length of a .   
 
The inner product of vectors c  and d  is equal to   
 

 

6

5 2 9 2 30 4 45 79

5

 
 

= = + + =
 
  

c'd  

 
To demonstrate in R, we first generate the vector d :  
 
> d <- c(6, 2, 5) 

> d 

[1] 6 2 5 

 
The inner product of vectors c  and d  is therefore  
 
> c%*%d 

     [,1] 

[1,]   79 

 
which we note is equal to that computed manually.  
 
Notice that in computing the product 'c d  in R, we did not have to specify vector c  as its 
transpose. R makes the adjustment itself and multiplies the vectors. Had R not made this 
adjustment, we would be multiplying two column vectors, which would not be conformable for 
multiplication. We could have also specified the transpose directly and obtained the same inner 
product:  
 
> t(c)%*%d 

     [,1] 

[1,]   79 

 
Multiplication of c  by a scalar a  proceeds by multiplying each element of c  by that scalar. 
Thus, the product ac  is given by   

11 11

21 21

31 31

( )

( )

( )

c a c

a a c a c

c a c

   
   

= =
   
      

c . 
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For example, suppose we wish to multiply matrix 

5

2

9

 
 

=
 
  

c  by the scalar 10a = . The result is 

> 10*c 

[1] 50 20 90 

 
As we can see, R multiplied each element of the vector by the scalar 10. Multiplying vectors by 
scalars is a key operation in multivariate analysis. For instance, when obtaining principal 
components, each component is nothing more than a vector (called an eigenvector) associated 
with a unique scalar (called an eigenvalue). The eigenvector determines the direction of the 
component, while the eigenvalue determines the magnitude (or length) of the vector. For 
details, see Chapter 13.     
 
 
A.11. Zero Matrix 
 
In a zero matrix (or “null” matrix), every element is equal to 0. We can easily produce a zero 
matrix in R. For instance, suppose we want a 3 x 3 zero matrix:  
 
> M <- matrix(0, nrow = 3, ncol = 3) 

> M 

     [,1] [,2] [,3] 

[1,]    0    0    0 

[2,]    0    0    0 

[3,]    0    0    0 

 
It is easy to see that the zero matrix is the matrix equivalent of zero in scalar algebra, such that 
pre- or post-multiplication of a matrix by the zero matrix always generates another zero matrix. 
For example, for a non-zero matrix A , the products A0  and 0A  are the same. In both cases, 
the solution is 0 .     
 
 
A.12. Inverse of a Matrix 
 
Inverses in matrix algebra are very important and play a significant role in multivariate analysis. 

Recall that in scalar algebra, the inverse of an ordinary scalar a is defined as 1a−  so that 
 

1 1
1

1

a a
a a

a a

− =  = =  

 

is true, assuming 0a   (if 0a =  then while 
1

a
 is defined, 

1

a
 is not).   

 
In matrix algebra, the analogous statement of the scalar relation for matrices A  and B  is:  
 

= =AB BA I  
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That is, if A  and B  are square matrices and a matrix can be found such that = =AB BA I , 
then the matrix A  is regarded as an invertible matrix, and matrix B  is regarded as the inverse 
of matrix A . 
 
Generating matrix inverses in R is easy. Oftentimes in multivariate analysis, we are required to 
invert either covariance or correlation matrices, usually not explicitly, but rather as a part of 
one or more of the statistical tests we run (Raveh, 1985). For instance, consider once more the 
previously constructed correlation matrix:  
 
> cormatrix 

         a     b     c     d     e     f     g     h 

[1,] 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 

[2,] 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 

[3,] 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 

[4,] 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 

[5,] 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 

[6,] 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 

[7,] 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 

[8,] 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 

 
We can request R to compute the inverse of cormatrix by solve(cormatrix). We name the 
new matrix by the name D :  
 
> D <- solve(cormatrix) 

 

         [,1]        [,2]        [,3]        [,4]        [,5]        [,6]        [,7]        [,8] 

a  2.62391779 -0.32529402 -0.79748547  0.07143344 -1.34883744  0.14277980 -0.27074036 -0.25993622 

b -0.32529402  1.45211520  0.03592592 -0.40955548  0.22539180  0.31041745 -0.38009280 -0.29342246 

c -0.79748547  0.03592592  1.56495953 -0.48016535  0.04087805 -0.13719304 -0.03786275  0.34747695 

d  0.07143344 -0.40955548 -0.48016535  1.85491453  0.19261836 -0.58606745 -0.05349807 -0.54938320 

e -1.34883744  0.22539180  0.04087805  0.19261836  2.14973569 -0.07659356 -0.06236400 -0.56556392 

f  0.14277980  0.31041745 -0.13719304 -0.58606745 -0.07659356  1.53618210 -0.49852528 -0.14614977 

g -0.27074036 -0.38009280 -0.03786275 -0.05349807 -0.06236400 -0.49852528  1.55055676 -0.08044157 

h -0.25993622 -0.29342246  0.34747695 -0.54938320 -0.56556392 -0.14614977 -0.08044157  1.77763927 

 
To verify that the above matrix is indeed the inverse of cormatrix, it can easily be 
demonstrated that their product is equal to the identity matrix, hence establishing the relation 

= =AB BA I .  
 
We now demonstrate some of the more common properties of matrix inverses.  
 

1. 1 1( ) ' ( ')− −=A A - In words, the transpose of the inverse of a matrix is equal to the inverse of 

its transpose. We demonstrate with matrix 
5 9

3 4

 
=  
 

A . We first request the left-hand side of 

the property, that of the transpose of the inverse (recall that t in R is the function for transpose 
whereas tr is the function for trace):  
 
> t(solve(A)) 

             a1         a2 

[1,] -0.5714286  0.4285714 

[2,]  1.2857143 -0.7142857 
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We then compute the inverse of the transpose, and note that it is equal to the transpose of the 
inverse computed above:  
 
> solve(t(A)) 

             a1         a2 

[1,] -0.5714286  0.4285714 

[2,]  1.2857143 -0.7142857 

 
 

2. 1 1 1( ) ( ) ( )− − −=AB B A - In words, the inverse of the product of matrices is equal to the 

product of inverses in reverse order. We demonstrate this property by first requesting the 
inverse of the product (left-hand side):  
 
> solve(A%*%B) 

         [,1]       [,2] 

b1  0.1278195 -0.2481203 

b2 -0.2330827  0.5112782 

 

We then request the right-hand side, the product of inverses in reverse order: 
 
> solve(B) %*% solve(A) 

         [,1]       [,2] 

b1  0.1278195 -0.2481203 

b2 -0.2330827  0.5112782 

 
Note that the resulting matrix is identical to that produced above.  
 

 

3. 1 1( )− − =A A - In words, the inverse of the inverse of a matrix is equal to the original matrix. 

This is also easily demonstrated in R. The left-hand side, 1 1( )− −
A , is computed as   

 
> solve(solve(A)) 

     a1 a2 

[1,]  5  9 

[2,]  3  4 

 

which is easily shown to be equal to the original matrix A :  
 

> A 

     a1 a2 

[1,]  5  9 

[2,]  3  4 

 
 
A.13. Symmetric Matrices and Inverses 
 
An n x n matrix A  is symmetric if it is equal to its transpose, that is, =A A' . For instance, 
consider the matrix S :  

6 4 8

4 9 3

8 3 7

 
 

=
 
  

S
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The matrix is symmetric since the upper triangular is a mirror reflection of the lower triangular 
such that '=S S , as we can easily demonstrate in R. First, we construct the matrix S :  
 
> s1 <- c(6, 4, 8) 

> s2 <- c(4, 9, 3) 

> s3 <- c(8, 3, 7) 

> S <- cbind (s1, s2, s3) 

> S 

     s1 s2 s3 

[1,]  6  4  8 

[2,]  4  9  3 

[3,]  8  3  7 

 
When taking the transpose, we find 
 
> t(S) 

   [,1] [,2] [,3] 

s1    6    4    8 

s2    4    9    3 

s3    8    3    7 

 
which we note is equivalent to the original matrix S . Hence, matrix S  is symmetric. If a matrix 
is symmetric and invertible, then its inverse is also symmetric. For instance, computing the 
inverse of S , we obtain  
 
> solve(S) 

          [,1]        [,2]        [,3] 

s1 -0.31395349  0.02325581  0.34883721 

s2  0.02325581  0.12790698 -0.08139535 

s3  0.34883721 -0.08139535 -0.22093023 

 

We note that the matrix 1−
S  is symmetric, as was the original symmetric matrix S .  

 
 
A.14. Determinants 
 
The determinant of a matrix is a unique number associated with a matrix. Determinants are 
defined only for square matrices. Though the computation of determinants for matrices of 
higher dimensions can quickly become unwieldy and is best left to software, it is a simple 
matter to demonstrate the computation for simple lower-dimension matrices. For 2 x 2 matrix 

A , the determinant is computed as  
 

11 12

11 22 12 21

21 22

| | .
a a

a a a a
a a

= = −A  

 

For a 3 x 3 matrix, the computation of the determinant is computed:   
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11 12 13

21 22 23

31 32 33

22 23 21 23 21 222 3 4

11 12 13

31 3232 33 31 33

11 22 33 12 23 31 21 32 13 31 22 13 21 12 33 32 23 11

| |

( 1) ( 1) ( 1)

.

a a a

a a a

a a a

a a a a a a
a a a

a aa a a a

a a a a a a a a a a a a a a a a a a

=

= − + − + −

= + + − − −

A

 

We can obtain the determinant of a matrix easily in R. For example, the determinant of 
cormatrix aforementioned is computed as:  
 
> det(cormatrix) 

[1] 0.06620581 

 
Determinants play a significant role in statistical analyses. When computing, for instance, 

1( ' ) '−=b X X X Y  in Chapter 7, to solve for b , we are required to take the inverse of ( ' )X X . 

The inverse, however, does not exist for a matrix whose determinant is equal to 0. What this 
translates into statistically is that if the data matrix X  exhibits any kind of problems, such as 
being of less than full rank (which translates to columns and rows being dependent instead of 
independent – see Section A.15), this means 'X X will not be invertible, and hence a solution 

for b  in 1( ' ) '−=b X X X Y  is not obtainable. The geometric interpretation of a determinant for 

two vectors is that of a quadrilateral for which if the two vectors are perfectly correlated, the 
quadrilateral collapses into a line, which simultaneously generates a determinant of zero 
(Lattin, Carroll and Green, 2003). Some properties and results of determinants include the 
following:  
 
1. | | | |=A' A - In words, the determinant of the transpose of a matrix is equal to the 

determinant of the matrix. We demonstrate in R using cormatrix. We first compute the 
determinant of the transpose: 
  
> det(t(cormatrix)) 

[1] 0.06620581 

 

This is equal to the original determinant of cormatrix, since:  
 
> det(cormatrix) 

[1] 0.06620581 

 

 

2. | | | || |=AB A B  - In words, the determinant of a product of matrices (if defined, which means 

if A  and B  are conformable for multiplication, and since we are taking the determinant, 
implies AB  is square) is equal to the product of determinants. This is easily demonstrated. 

Recall matrices 
5 9

3 4

 
=  
 

A  and 
1 3

7 2

 
=  
 

B . We compute the determinant of AB :  
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> det(A%*%B) 

[1] 133 

 
and equate this to the product of determinants:  
 
> det(A) %*% det(B) 

 

     [,1] 

[1,]  133 

 
which demonstrates the equivalence.  
 
 

3. | | | |nk k=A A  - In words, if k is a constant, then for a square matrix with n rows, the 

determinant of the product of the constant and the matrix is equal to the product of the 
constant raised to the power of n and the determinant of the matrix. This is also easily 
demonstrated in R. Suppose we let k = 3. Then the determinant of 3A is found:  
 
> det(3*A) 

[1] -63 

 

and is shown equivalent to  
 
> 3^2%*%det(A) 

     [,1] 

[1,]  -63  

 
 
A.15. Linear Independence, Determinants, and Matrix Invertibility 
 
The concepts of linear independence and linear dependence are at the core of linear and 
matrix algebra, and since these are the structural foundations of statistics, they are likewise 
important concepts in applied analysis.  
 
We begin by first defining linear dependence. Given a set of two vectors, if we can write one or 
more vectors as a linear combination of one or more vectors in the set, then the set of vectors 
is deemed linearly dependent. If we cannot write one or more vectors as a linear combination 
of one or more vectors in the set, then the set of vectors is linearly independent.   
 
More formally, consider the following linear combination:  
 

1 1 2 2 ... n na a a+ + + =v v v 0              (A-1) 

 

If equality (A-1) holds true for possible scalars 1a , 2a , . . . other than 0  (i.e., the trivial case), 

then the set of vectors is a set of linearly dependent vectors. If the above equality holds for 0 

only, then the set of vectors is a set of linearly independent vectors.  

 
For instance, consider the matrix D :  
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2 5 7

3 1 8

4 10 14

 
 

=
 
  

D  

 

Is the set linearly dependent? Yes, because notice that row 3 (i.e., 4, 10, 14) is a scalar multiple 
of row 1 (i.e., 2, 5, 7), since if we multiply row 1 by a scalar of 2, we get row 3. Hence, there is 
linear dependence among these two rows, and when there is linear dependence, this also 
implies that the determinant of the matrix will equal 0 and the matrix will not be invertible. 
Notice that linear dependence or independence refers to the particular set of vectors you are 
considering. Speaking of the linear independence or dependence of a single vector without 
reference to its set has no meaning. Strictly speaking, a single nonzero vector is considered by 
mathematicians to be linearly independent, but the point is that without reference to its set, 
one cannot determine the linear dependence or independence of a vector.      
 
We demonstrate how to establish linear dependence of matrix D  in R. First we construct the 
matrix:  
 
> c1 <- c(2, 3, 4) 

> c2 <- c(5, 1, 10) 

> c3 <- c(7, 8, 14) 

> D <- cbind(c1, c2, c3) 

> D 

     c1 c2 c3 

[1,]  2  5  7 

[2,]  3  1  8 

[3,]  4 10 14 

 

We compute the determinant of D , and find it equal to 0:   
 

> det(D) 

[1] 0 

 

Given that D  has a determinant equal to 0, we should also expect to not be able to compute its 
inverse. When we attempt to solve, we obtain:  
 
> solve(D) 

Error in solve.default(D) :  

  Lapack routine dgesv: system is exactly singular 

 
R reports that “system is exactly singular.” A matrix is regarded as singular when it cannot be 
inverted. Analogously, it implies that its determinant is equal to 0. Another equivalent 
statement is to say the matrix is not of full rank (see Section A.18). Nonsingular matrices have 
determinants that are not equal to 0 and are of full rank.  
 
A set of linearly independent vectors in a vector space that span the space is generally referred 
to as a basis for the space. As we will discuss shortly, the number of linearly independent 
vectors in that space is the rank of the vector space. If the pairs of vectors in that space are 
pairwise mutually orthogonal, then that basis is regarded as an orthogonal basis. Furthermore, 
if each of the vectors in the space is of unit length (i.e., ' 1=aa ), then the basis is called an 
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orthonormal basis. Orthonormal bases can be generated using what is known as the Gram-
Schmidt orthogonalization process. If every vector in a vector space is expressible as a linear 
combination of particular vectors, then these vectors are said to span the vector space.        
 
 

A.17. Orthogonality 
 
A square matrix A  is said to be an orthogonal matrix if the following holds:   
 

AA'= A'A =I  
 

In words, a matrix post-multiplied by its transpose is equal to the matrix pre-multiplied by its 
transpose, and both of these products are equal to the identity matrix. If this condition exists, 
matrix A  is defined as orthogonal. Analogously, AA'= A'A =I  also implies that the columns 
or rows of A  form an orthonormal basis.    
 
Substantive areas of multivariate analysis in which orthogonal matrices play a very important 
role are in principal components analysis and factor analysis. More specifically, these concepts 
play a role in the orthogonal rotation of estimated component or factor loadings. For example, 
as discussed in Chapter 14, to rotate a factor solution to a new coordinate system, loadings are 
multiplied by the transformation matrix T : 
  

cos sin

sin cos

 

 

− 
=  
 

T .  

 
A few other properties of orthogonal matrices (which we do not demonstrate):  
 

• If A  is an orthogonal matrix, then its inverse, -1
A  is also an orthogonal matrix. 

• If A  is an orthogonal matrix, and B  is an orthogonal matrix, then AB  is an orthogonal 
matrix.  

• The determinant of an orthogonal matrix is equal to either 1 or -1. 
 

 
A.17. Eigenvalues & Eigenvectors 
 

The importance and relevance of the concepts of eigenvalues and eigenvectors in both 
univariate and multivariate applied statistics cannot be overstated. Quite simply, much of so-
called advanced statistical analysis boils down to the extraction of eigenvalues and eigenvectors 
of covariance or correlation matrices.  
 
Though there are numerous substantive reasons for applying eigenvalue and eigenvector 
decomposition (EVD) to problems in the social and natural sciences, our consideration here is to 
simply survey how they are computed. Throughout the book, especially later chapters, their use 
will become apparent.   
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Let A  be a n n  square matrix. The eigenvalue problem is to find  a scalar   and vector x  
(other than zero) so that the following equality holds:  
 

=Ax λx          (A-2) 
 

The scalar   is called an eigenvalue of the matrix A  and the vector x  is called an eigenvector 
associated with  . To solve for   and x , we can re-write (A-2) as 
 

( )





− =

− =

Ax x 0

A I x 0
 

 
It stands that if | | 0− A I , then this implies that ( )−A I  has an inverse, which means that 

=x 0  is the only solution. This is referred to as the trivial solution. To obtain nontrivial 
solutions, we deliberately set | | 0− =A I  and find values of   that can be substituted into 

( )− =A I x 0  to then provide a solution for x .   
 

The equation | | 0− =A I  is called the characteristic equation. For a matrix A  that is n n (i.e., 

square, with n  rows and n  columns), the characteristic equation will have n  roots, that is, n  

eigenvalues 1 2, ,..., n   , not all necessarily different from one another and not all nonzero. 

 
As a simple example of EVD, consider the following matrix:   
  

2 2

0 6

 
=  
 

A  

 

The vector 
0.4472136

0.8944272

 
=  
 

x  is an eigenvector of A  that corresponds to the eigenvalue 6, 

because 

2 2 0.4472136 0.4472136
6

0 6 0.8944272 0.8944272

     
=     

     
 

 

We can easily demonstrate in R that the above holds. We first construct the matrix A :   
 
> a1 <- c(2, 0) 

> a2 <- c(2, 6) 

> A <- cbind(a1, a2) 

> A 

     a1 a2 

[1,]  2  2 

[2,]  0  6 

 
> x <- c(0.4472136, 0.8944272) 

> x 

[1] 0.4472136 0.8944272 
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The product of Ax is equal to:  
 

> A%*%x 

         [,1] 

[1,] 2.683282 

[2,] 5.366563 

 

which is equal to the product of  
 
> 6*x 

[1] 2.683282 5.366563 

 

and hence we have demonstrated that 
0.4472136

0.8944272

 
=  
 

x  is an eigenvector of 
2 2

0 6

 
=  
 

A   

 
corresponding to an eigenvalue of 6.  
 
Computing eigenvalues and eigenvectors for matrices of small dimension provides little 
computational difficulty. However, for the majority of times in multivariate analysis we are 
required to compute EVD for matrices of much larger dimension, and computed manually “by 
hand,” the computations quickly become unwieldy. Software is consequently required. For 
instance, consider once more cormatrix. We can request the eigenvalues and eigenvectors of 
this matrix quite easily in R by using the eigen function:   
 
> eigen(cormatrix) 

 

$values 

[1] 3.4470520 1.1572358 0.9436513 0.8189869 0.6580753 0.3898612 0.3360577 

[8] 0.2490798 

 

$vectors 

           [,1]        [,2]         [,3]        [,4]         [,5]       [,6] 

[1,] -0.4125682 -0.45771854 -0.098873465  0.08795002  0.066755981 -0.1352881 

[2,] -0.3034726  0.11443307  0.637320040  0.47138991  0.088175982 -0.4697628 

[3,] -0.3180940 -0.06869755 -0.546391282  0.58136533 -0.121757436  0.1921707 

[4,] -0.3730602  0.43006317 -0.001725853  0.11149001 -0.471416291  0.1757057 

[5,] -0.3572744 -0.54341592 -0.067983885 -0.31379342  0.005351703 -0.2192800 

[6,] -0.3008318  0.49347718 -0.380799221 -0.40057953  0.065440460 -0.5409419 

[7,] -0.3664721  0.21605328  0.060830978 -0.06123129  0.775010839  0.4437028 

[8,] -0.3806410 -0.04717545  0.363552650 -0.39618322 -0.381782069  0.3945174 

           [,7]        [,8] 

[1,]  0.0911831  0.75610613 

[2,] -0.1315217 -0.14378501 

[3,] -0.3684690 -0.26465820 

[4,]  0.6393505  0.03954700 

[5,]  0.3112839 -0.57354688 

[6,] -0.2453502  0.05840491 

[7,]  0.1046301 -0.05574971 

[8,] -0.5116712  0.02337248 

 
The first eigenvalue extracted is equal to 3.4470520 with associated eigenvector  
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0.4125682

0.3034726

0.3180940

0.3730602

0.3572744

0.3008318

0.3664721

0.3806410

− 
 
−
 
 −
 
− 
 −
 
− 
 −
 
−  

. 

 

In line with our earlier discussion of EVD, then it should be true that the product of cormatrix 
and the eigenvector is equal to the eigenvalue multiplied by the eigenvector. We verify this in R 
by first producing the eigenvector, then generating the two products: 
  
 > cormatrix%*%eigenvec 
        [,1] 

c1 -1.422144 

c2 -1.046086 

c3 -1.096486 

c4 -1.285958 

c5 -1.231543 

c6 -1.036983 

c7 -1.263249 

c8 -1.312089 

 

> 3.4470520*eigenvec 

[1] -1.422144 -1.046086 -1.096487 -1.285958 -1.231543 -1.036983 -1.263248 

[8] -1.312089 

 
We note that both vectors, that of cormatrix*eigenvec and eigenvalue*eigenvec, are 
equal, confirming that the stated eigenvector is indeed an eigenvector of the eigenvalue 
3.4470520.  
 

An especially important and relevant property of eigenvalues is the following: 
 

1

| |
n

i

i


=

= A  - In words, the product of eigenvalues for matrix A is equal to the determinant of 

matrix A. We can verify this for cormatrix. We first produce the vector of extracted 
eigenvalues and then request the product (prod) of these eigenvalues :  
 
> eigenvalues <- c(3.4470520, 1.1572358, 0.9436513, 0.8189869, 0.6580753, 0.3898612, 0.3360577, 

0.2490798) 

> prod(eigenvalues) 

[1] 0.06620582 

  

We note that the value of 0.06620582 matches that value of the determinant of cormatrix 
computed earlier [i.e., det(cormatrix) = 0.06620581]. 
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Another important feature of eigenvalues that is relevant to multivariate analysis is that the 
trace of a square matrix is equal to the sum of eigenvalues for that matrix. That is, for matrix A
, the following holds:  

1

tr( )
n

i

i


=

=A  

 
For a covariance matrix, the trace of the matrix is the sum of variances along the main diagonal. 
What the above is saying is that once we solve for the given eigenvalues of the matrix, we can 
re-express the trace of the original matrix through summing eigenvalues. This simple equality is 
the basis on which the method of principal components analysis rests. More formally, PCA 
operates by diagonalizing the covariance (or correlation) matrix such that all entries in the 
matrix other than in the trace are equal to 0. In the spirit of factor analysis and structural 
equation modeling, eigenvalues are also sometimes referred to as latent values and their 
associated eigenvectors as latent vectors (Bollen, 1989).    
 
   
A.18. Rank 
 
A central problem of linear algebra, and hence one that also makes its way into multivariate 
analysis, is to obtain a solution for x  in the fundamental equation:   
 

=Ax b  
 

For a solution to x , we can solve = -1
x A b . The rank of a matrix is defined as the number of 

linearly independent rows and columns of a matrix. If the number of columns or rows in a 
matrix is equal to the number of linearly independent columns or rows, the matrix is said to be 

of full rank, and -1
A  exists. If the number of columns or rows in a matrix is unequal to the 

number of linearly independent columns or rows, the matrix is said to be not of full rank, or 
equivalently, reduced rank. The objective in principal components analysis, for example, is to 
obtain a low-rank approximation of a given covariance or correlation matrix. The lower rank 
approximation constitutes the eigenvectors of the analyzed matrix. For instance, in a 10-
variable problem, we will extract 10 components (there are typically as many components as 
there are variables), but we choose to retain only a few of these components if they account for 
most of the variance in the initial variables. Hence, through retaining only a few “meaningful” 
components, we obtain a lower rank approximation without, hopefully, losing too much 
information in the process.   
 
Checking whether rows or columns of a matrix are linearly independent or dependent can be a 
lengthy ordeal. Fortunately, if linear independence does hold for a set of vectors, then it is a 
fact of matrix theory that the determinant of a matrix will not equal 0. Hence, as a quick check 
to ensure a matrix is of full rank, one simply needs to compute the determinant of the matrix in 
question and ensure it is not equal to 0.  
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For example, recall matrix A :  

2 2

0 6

 
=  
 

A  

 
The determinant of this matrix is equal to 12. Hence, we know the matrix is of full rank because 
the determinant is not equal to 0. Equivalently, the rows and columns in A  are linearly 
independent. If the rows are linearly independent, this implies the columns are linearly 
independent as well.   
 
In R, we can obtain the rank of a matrix by the function qr, which stands for the QR 
factorization of a matrix. Because the rows and columns of matrix A  are linearly independent, 
we should expect the rank to be equal to 2. We confirm this in R (the function qr will produce 
more output than we need, we only show the output for matrix rank below):  
 
> qr(A) 

 

$rank 

[1] 2 

 
Indeed, as R confirms, the rank of matrix A  is equal to 2. One can also use a variety of other 
functions in R to compute rank. For example, rank.condition() in the package corpcor 
(Schafer et al., 2014) will return the rank of a matrix.    
 
 


