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Appendix Part II 

 
Essential Mathematics and Probability Theory for Statistics 

 
How can it be that mathematics, being after all a product of human thought which is 
independent of experience, is so admirably appropriate to the objects of reality? . . . As 
far as the laws of mathematics refer to reality, they are not certain, and as far as they 
are certain, they do not refer to reality. (Einstein, 1921)  

 
In this appendix, we introduce as well as review some of the essential elements of mathematics 
and probability theory that are useful for an understanding of statistics. We reserve Chapter 2 
for a review of the elements of essential statistics that is generally required for an 
understanding of the rest of the book. Our distinction between what we consider mathematics 
and probability vs. statistics is not a sharp one. In this text, we use mathematics as a vehicle to 
understanding applied statistics rather than see it as a field in its own right, which of course it 
is, with a variety of branches and subdisciplines such as real analysis, linear algebra, topology, 
etc.   
 
Our brief mathematics review draws material sparingly from introductory courses such as pre-
calculus, calculus, linear and matrix algebra, and probability. Such topics constitute the very 
bedrock of mathematics used in applied statistics. Elements such as functions, continuity, 
limits, differential and integral calculus and others are reviewed. We also demonstrate some 
of these fundamentals using R where appropriate. For an excellent review of essential 
mathematics for the social sciences, consult Gill (2006). Barnett, Ziegler and Byleen (2011) also 
provide a very readable overview of mathematics covering a wide range of topics. Fox (2009) is 
also a useful monograph. Consult Gemignani (1998) for how calculus is used in statistics.    
 
We do not pretend to cover any of these topics in any true respectable depth whatsoever, 
having only the space to provide brief and relatively informal overviews of these essential 
concepts. If you lack familiarity with such fundamentals, a bit of time taken to study and 
appreciate these elements can go a long way to understanding material covered in this book 
and more advanced material you may encounter in your career. This is not to say that without 
this knowledge you cannot learn and apply principles in the book, but the deeper your 
knowledge of these concepts, the more confident you will likely be in applying your skills to 
data analysis because you will be better familiar with the “rules of the game.”    
 
For instance, informally, the definition of continuity is that of not lifting your pencil as you draw 
a line on a piece of paper. The line is said to be “continuous” since at no point did you impose a 
discontinuity by lifting your pencil. Informally, the idea of continuity has existed for milenia. 
And if it were not for the mathematicians’ quest to provide a rigorous logical justification for 
the calculus in the 1800s thereby formalizing such things as continuity and limits, “naïve” 
definitions such as that for continuity would still do us just fine. However, as a result of the 
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advance in fields such as real analysis (i.e., the theory of calculus), complexity and rigor has 
been introduced in order to make these definitions extremely precise and very rigorous. Having 
even some appreciation and understanding of this level of precision and rigor can only benefit 
the student of applied statistics if for no other reason than to sharpen one’s analytical skill and 
ability to differentiate and decipher among objects one deals with – a skill that is required of 
anyone who purports to do any kind of quantitative analysis or research, either elementary or 
advanced.  
 
Furthermore, having an understanding of essential mathematics also serves to “demystify” 
what can otherwise seem like a quite arcane field of study. Perhaps this sentiment was best 
expressed by Stan Mulaik (1972) when advising the reader on the mathematical training 
required to study a topic such as factor analysis:  
 

Ideally, one begins a study of factor analysis with a mathematical background of up to a 
year of calculus. This is not to say that factor analysis requires an extensive knowledge 
of calculus, because calculus is used in only a few instances, such as in finding values of 
an independent variable which will maximize or minimize a dependent variable. But 
having calculus in one’s background provides sufficient exposure to working with 
mathematical concepts so that one will have overcome reacting to a mathematical 
subject such as factor analysis as though it were an esoteric subject comprehensible 
only to select initiates to its mysteries. (p. 16)  

 
With Mulaik’s thoughts in mind, I strongly encourage you to embrace as much technical 
information as possible, even for its own sake, and even if you may be currently unaware of the 
answer to the longstanding question students love to ask -- When will I use this? If you learn to 
embrace rather than shy away from difficult, technically rich material replete with symbols, it 
puts you on course to being able to understand and comprehend virtually anything that is put 
in your path in terms of complexity. On the other hand, if you regularly shy away from 
complexity, you forever weaken your neuronal ability to disentangle and otherwise figure out 
things. Our general advice is that if you want to make the difficult simple to understand, study 
the difficult until it is simple. The best of researchers do not necessarily “know everything,” but 
rather are adept at problem solving and knowing where to look for answers because they have 
a good grounding in statistics and mathematical modeling more generally.  
 
 
2.1. Set Theory 
 
A set in mathematics is simply a group of objects or elements. What is key to the definition of a 
set is that it is sufficiently descriptive and identifiable such that we can know which objects 
belong to the given set, and which do not. For example, the set of persons of at least 5 feet, 10 
inches in a room is a precisely defined group of persons. Consequently, given this precision of 
the elements in question, we are in a position to be able to know who belongs to the set and 
who does not. Anyone who is that height or taller is a member of the set. Anyone who is less 
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than that height does not belong to the set. The concept of a set is fundamental to 
mathematics, for one, because it helps immensely to organize the subject, and secondly, also 
provides a language for relating mathematical fields. It has been said that sets are so 
fundamental to mathematics that the theory of sets can encompass virtually all of mathematics 
in terms of providing for it a logical foundation (though of course, not without debate or 
controversy, see Dzamonja (2017) for a discussion).   
 
To communicate that x  is in the set A , we write that x  is an element (or a member) of set A :  
 

x A  
 

where the notation “” means “is an element of.” To denote that y  is not an element of the 

set A , we write (see Venn Diagram in Figure 2.1):  
 

y A  

 

 
 
To denote that the set A  is a subset of the set B , we write:  
 

A B  or B A . 

 
What does it mean to say A  is a subset of B ? It means that the set A  is “smaller than or equal 
to” the set B  (note that this is not the precise meaning of  , but it can help as a first step to 

approximating the concept). That is, if A  is a subset of B , it implies that elements in A  are 
also contained in B  but that elements in B  are not necessarily contained in A . Note there are 
two possibilities here, and “” can logically be used to qualify both, “smaller than” or “equal 

to”. However, if we know definitively that there is at least one element in set B  that is not in 
set A , then we say that A  is a proper subset of B , and write:  
  

A B . 
 

An example of a proper subset A B  is given in Figure 2.2. 
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When you hear the phrase “proper subset,” just think to yourself that this implies a “true” 
subset, meaning there is no possibility of the two sets being equal. If we say set A  is a proper 
subset of set B , then A  cannot equal B ; set A  must actually be “less” than B  such that the 
elements in A  are also in set B  but that there is at least one element in B  that is not 
contained in A .    
 
The equality of two sets is written as A B= . To show that two sets are equal, one should be 
able to show that A  is a subset of B  and B  is a subset of A .  
 
Thinking up applied examples for sets is not difficult. For instance, consider the set A  of 
numbers 1 through 6 on a die. The set E  of even numbers plus the set O  of odd numbers 
between 1 through 6 can be considered a subset of this set, that is, E O A+  , whereas the set 

of only odd numbers O  would be considered a proper subset of the set A . That is, O A . To 
demonstrate equality between these sets, it would be a simple matter to show that E O A+   

and A E O + . Other simple examples of sets in a research setting:  

 

• The set of those suffering from schizophrenia is a proper subset of the collection of 
human beings. 

• The set of those gainfully employed is a proper subset of those desiring a job. 

• The set of students passing a course is a subset of students enrolled in that course. 
 
Note that for the first two examples, the phrase proper subset was used to denote the fact that 
those suffering from schizophrenia and employed individuals are surely less than the sets of 
human beings and those seeking work. However, in the 3rd example, since it is a sure possibility 
that everyone in a given course passes the course, we do not automatically assume this set to 
be smaller than the set of students enrolled in the course, which is why we used the word 
“subset” here instead of the identifier “proper subset.” If we knew, on the other hand, that at 
least one student in the class failed the course, then the set of students passing the course 
would be a proper subset. 
 
A countable set is one in which elements of the set can be put into one-to-one correspondence 
with the positive integers. A finite set is one which has a non-infinite number of elements. See 
Gill (2006) for examples along with further characteristics of sets.    
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2.1.1. Operations on Sets 
 
We can define various operations on sets. For instance, the union of two sets A  and B  is given 
by  

: { :A B x x A =   or }x B  
 
where in words, the above reads “ x  is an element of A  or x  is an element of B ,” and “:=” 
means the left-side symbol of the equality is being “defined by” the right-side symbol(s). For 
example, if set A  is the set of unemployed and set B  is the set of students passing a course, 
the union of these sets, A B  is the set of unemployed or passing a course or those belonging 
to both sets. See Figure 2.3 for an example of a union of two sets.  
 

 
 
We can perform simple set operations using R. For example, consider sets A  and B , and the 
computation of their union:   
 
> setA <- c("3", "4", "5", "6") 

> setB <- c("5", "6", "7", "8") 

> union(setA, setB) 

 

[1] "3" "4" "5" "6" "7" "8" 

 
The intersection of sets A  and B  is denoted:  
 

: { :A B x x A =   and }x B  

 
and is the set of elements in both sets A  and B . That is, for an element to belong in the 
intersection, it cannot simply be in one of the sets. It must be in both to qualify for the 
intersection. An example of two intersecting sets is given in Figure 2.4.  
 

 
 
In R, we can easily find the intersection of sets A  and B :  
 

> intersect(setA, setB) 

[1] "5" "6" 
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A practical example of intersecting sets might be the set of college students who are also 
enrolled in a statistics course. Another example is the set of men who are also married.  
 
 
Denoting Unions and Intersections of Many Sets 
 
We have thus far expressed the union and intersection of a very small numbers of sets (i.e., 2). 
We can however represent the union and intersection for many sets, even if infinite in number. 
For unions, we can represent this by:  

1

n

n

A


=

 

 

The above is the set of elements belonging to at least one of the sets 1 2, ,... nA A A . We use the 

qualifier “at least one” because we are dealing with the union of sets, meaning that the 
element in question can be in one set, or another set, or another set, etc. The expression reads 

to start with set 1n=  of nA  and to sum to infinity  . An example of a union of 3 sets is given 

in Figure 2.5, 
3

1

n

n

A
=

(where 1 2 3, ,A A A B A C= = = ).   

 
 
Analogously, we can represent intersections by:  
 

1

n

n

A


=

 

 

Figure 2.6 is the set of elements belonging to the intersection of the sets 1 2, ,... nA A A  (where 

again 1 2 3, ,A A A B A C= = = ). Notice the difference between the qualifier “or” vs. “and,” when 

discussing unions vs. intersections. When we use the word “and,” as we will soon see, we are 
specifying a joint probability in probability theory.  
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2.1.2. Complement of a Set 
 
The complement of set B  relative to A  can be denoted:  
 

\ : { : and } A B x x A x B=    

 
In words, this means all the elements in set A  that are not in set B . For example, if we defined 
a set of employed and unemployed individuals, with no other possibilities, then the 
complement to the set of employed individuals is the set of unemployed persons. If we had 
defined the full set to include such circumstances as individuals looking for work but unable to 
find it, then the complement to the employed individuals would still be “all others,”only that 
now, all others would be defined as the unemployed and those actively seeking work.  
Substantively, in research, complements are useful especially computationally when we want 
to specify an “else” category on such things as questionnaires and other measures. For 
instance, the complement to all those individuals earning up to $60,000 per year are those 
individuals earning more than $60,000 per year. The complement to individuals suffering from 
a psychiatric diagnosis are those not suffering from a psychiatric diagnosis.  
 
 
2.2. Cartesian Product A x B 
 
The Cartesian product A B  is defined as:  
 

: {( , ) : , }A B a b a A b B =    

 
and is the set comprising of ordered paired elements in A and B, such that each element in A 
has a pairing with another element in B. The Cartesian product, or more generally the Cartesian 
coordinate system, originated with René Descartes (1596 - 1650) and forever linked algebra to 
geometry, and gave birth to the field of analytic geometry. The Cartesian coordinate system 
was a major stepping stone in the history of mathematics and science in general. An example of 
a Cartesian coordinate system in two dimensions is given in Figure 2.7. 
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When one takes a number from the first set and pairs it with a number from the second set, 
one obtains a new number. For example, if we take the number 3 from set A (along the 
abscissa) and number 4 from set B (along the ordinate), we obtain the new number (3,4). We 
can extend coordinate systems to many more dimensions than simply 2, and mathematically, 
there is no limit on how many dimensions we may have. Indeed, when considering some of the 
multivariate techniques in this book, we will regularly work in three and higher dimensions.   
 
A mathematical relation is a subset of the Cartesian product (Hays, 1994). By deleting a few 
points in the Cartesian product, we can appreciate the nature of a mathematical relation 
(Figure 2.8). 
 

 
 
For the purpose of demonstration, we deleted a few points to reveal a meaningful (in this case, 
somewhat linear) relation between the two sets. Any subset of the Cartesian product is 
considered a relation between sets. Some relations, of course, are of more interest to us than 
others, and will be more substantively meaningful to us as scientists. The whole basis of 
correlational theory rests on the idea of a mathematical relation. Indeed, it was Francis Galton 
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who visually spotted the ellipse in such a subset of the Cartesian product depicted in Figure 2.9 
(to be discussed further in Chapter 7 on regression).  
 

 
 
In Galton’s plot, we can see that not all pairings of mid-parent height and child height are 
represented. Rather, a subset of all possible pairings defines the relation. The ellipse represents 
the general area where most of the data lay. Galton’s contribution was in visually spotting a 
subset of the Cartesian product in the form of a linear relation between parent and offspring 
height. Tall parents tended to have taller children, whereas shorter parents tended to have 
shorter children.  
 
 
2.3. Sets of Numbers 
 
As discussed, sets are useful for classifying objects. If those objects are numbers, then we can 
use the theory of sets to generate groupings of the various kinds of numbers encountered in 
mathematics.  
 
The set of natural numbers, often called counting numbers, is given by : {1, 2,3,...}= . The 

natural numbers are defined by the set 1, 2, 3, etc. The set of natural numbers are numbers 
beginning with the number 1 and extending to infinity. It can be shown that the number of 
counting numbers has no upper limit, meaning that there are an infinite number of natural 
numbers. Natural numbers are the ones first learned in school to count such things as the 
number of apples on the table or the number of hours in a day or the number of beads on an 
abacus.   
 
The set of integers is given by : {0,1, 1, 2, 2,3...}= − − . Notice that the set of natural numbers 

is a proper subset of the set of integers. Integers are more difficult to grasp than natural 



APPENDIX PART II: MATHEMATICS AND PROBABILITY THEORY FOR STATISTICS 
Copyright Daniel J. Denis, Ph.D. 2021 – updated July 13, 2021 
 

 

10 
 

numbers since the possibility of negative numbers exists, which historically, was actually quite a 
significant transition in mathematics. But anyone who has purchased a home mortgage, 
financed a vehicle, or played Vegas (in the long run at least) likely has an intuitive (if not 
painful) grasp of the concept of a negative number.    
 
The set of rational numbers is given by : { / : , , 0}m n m n n=   , where /m n  represents a 

ratio of two integers. The fact that they must be integers is denoted by ,m n . The condition 

that the denominator cannot equal 0 is imposed (i.e., 0n ) to avoid dividing by 0, which 
would make the ratio undefined. A rational number is a number that can be expressed by a 
ratio of two integers such that the quotient has a terminating (finite) or repeating decimal 
(recurring expansion). If you can write a number as this ratio /m n , then you have a rational 
number. For example, 4 is a rational number because we can write it as a ratio of 8/2. The 
number 10 is another example of a rational number because we can write it as a ratio of 20/2 
or 100/10, for example.   
 
If /m n  does not result in a number that has a terminating or recurring decimal, then such is an 

irrational number. The classic example of an irrational number is 2 , which try as we may (and 

the Greeks tried aplenty!), cannot be expressed as a ratio of two integers. For a proof that 2  
is irrational, see any of the many texts in introductory real analysis (e.g., Bartle & Sherbert, 
2011). The union of rational numbers and irrational numbers is known as the set of real 
numbers, denoted . The real numbers are the numbers with which we will deal exclusively in 
this book.  
 
If you do have an interest in learning more about numbers in general and if questions such as 
the number of prime numbers that actually exist excite you, you may find the field of number 
theory to your liking.1    
 

 
2.4. Set Theory into Practice:  
Samples, Populations, Probability 

 
As discussed, set theory is a field of mathematics unto itself. Set theorists are pure 
mathematicians who daily study and derive theorems and proofs related to sets, and have little 
concern in needing to define what the objects in those sets might actually be in a practical 
sense. That is, the sets need not be empirical for them to be mathematically “real.” As 
researchers and scientists however, our study of sets is not motivated by abstraction. Our study 
of sets is motivated by how we might use sets to group real, empirical objects. From a statistical 
point of view, there is no better example for making the leap from theoretical sets to real sets 
than through the concepts of samples and populations.  
 
A population is defined as the set of objects or elements (whether they be people, animals, 
coin flips, etc.) we are interested in studying. This is the group of objects we wish to know 
something about. In an ideal circumstance, being able to study all the elements of a population 
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we are interested in would be best. That way, we could make conclusions about the actual 
population and we would have no need to estimate or infer using inferential statistics.  
However, our populations are usually quite large, and collecting observations is usually a timely 
and expensive endeavor. For these reasons and others, we regularly collect samples, which in 
set language, are simply proper subsets of the wider population. The scientist studies the 
sample extensively, computing a number of useful numerical characteristics or functions on 
such samples, called statistics, then wishes to use such functions as estimators of population 
characteristics. The process is one of induction and inference of the sort - if this is true of my 
sample, then to what extent can I say it is true of the population from which these data were 
presumably drawn? The purpose of inferential statistics is to be able to generalize from the 
specific to the whole, and to be able to quantify how good, in some sense, that generalization 
is.   
 
 
2.5. Probability 
 
Probability is the mathematical language of uncertainty. Before reviewing the essentials of 
probability, it is well worth asking why it is we even require probability in the first place. We 
require probability because even if we believe the world is fundamentally deterministic (a 
viewpoint which in itself can be quite controversial, classical Laplacian determinism is being re-
evaluated by theoretical physicists), our knowledge of events that occur in the world is 
definitely not. Our knowledge of most events is incomplete and uncertain. We can predict 
events, yes, but our predictions are far from perfect. If there were no uncertainty in the world, 
we would have little need for probability, and by consequence, much of statistical inference 
would not be required either.  
 
Probability is intrinsically difficult to define and is a very deep philosophical concern for which 
there is plenty of disagreement among philosophers and other thinkers. These issues are far 
beyond the scope of the current book. For historical and philosophical accounts, the reader is 
strongly encouraged to consult Hacking (1990). Intuitively however, we all “know” what 
probability means, such that when we make statements as “Looks like it will probably rain 
today,” we are simply expressing that we think it more likely to rain than not. Hence, 
probability is a statement of likelihood of an event occurring. How that likelihood is actually 
operationalized and defined is the more difficult part.      
 

 
The Mathematical Theory of Probability 
 
We have defined probability as the mathematical language of uncertainty. However, we have 
not yet decided how we will think about probabilities, nor how we will assign probabilities to 
events. For instance, if I asked you what the probability of rain is today, you might give me a 
number between 0 and 1. Perhaps you believe the probability of rain today is 0.70. Was your 
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quantification of it correct? How would we know? How did you obtain the number you got? 
What was your reasoning in estimating the probability of rain to be 0.70?    
 
The way to correctly quantify and conceptualize probability is a debate that has existed, in one 
form or another (regardless of whether we had a word for it), since the origins of counting and 
even primitive estimation. That you can give me a number that I can call a probability in no way 
immediately suggests that the quantification was correct, reasonable, or in the slightest way 
meaningful. After all, all a probability is, mathematically, is a proportion between 0 and 1 (as 
we will see when we discuss Kolmogorov’s axioms). The numbers do not care where they came 
from, but we, usually do. Analogously, statistical software cares little about where the numbers 
came from either, but as scientists, it is virtually all that matters.  
 

 
Events 
 
Defining an “event” in probability theory is not as easy as it first sounds. To know what an event 
is, and how it is used, it is first useful to define what it is not. An event is not something that 
happens. It is not a flip of a coin, it is not getting heads or tails on that coin. An event is a 
possible outcome (subset) in a sample space. For instance, heads and tails are events only if 
they are possible outcomes (see Figure 2.10) of the experiment or trial. 

 

 
 
After you flip the coin, and get tails, we usually call this the realized event or simply, the 
realization. When we typically speak of events, we associate with each event a sample point, 
which is simply a point that represents the event (see Figure 2.10).   
 
Elementary events are those which cannot be decomposed into smaller events. For example, 
“head” on a coin is an elementary event because it cannot be decomposed into simpler, smaller 
events. However, suit of card is not an elementary event, because it can be decomposed into 
smaller events (e.g., nine of spades). The sample space for an experiment in probability is the 
set of all possible elementary events defined on that space. If the event can be decomposed 
into smaller events, then the event in question is called a compound event. Such an event 
consists of multiple, simpler events.    
 
In probability theory, we often speak of experiments. These can also informally be called trials, 
and are in no way equivalent to laboratory experiments in the way that we manipulate levels of 
an independent variable and observe a response on a dependent variable. Examples of 
experiments in probability theory include the flipping of a coin, a client entering your office, a 
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rat pressing a lever for food, or a bolt of lightning striking a tree. All of these, in a general sense, 
can be regarded as experiments as concerns the theory of probability. Fundamentally, they are 
all repeatable and hence, at least theorically, we can assign probabilities to their outcomes.    
 
 
2.5.1. The Axioms of Probability 
And Some of Their Offspring 
 
We now survey the mathematical theory of probability by first noting the axioms of probability 
as developed largely by Andrei Kolmogorov, a Russian mathematician who lived from 1903 to 
1987 and who made several contributions to both mathematics and statistics. Kolmogorov 
suggested the following axioms:   
 

• The probability of an event in a given set is greater than or equal to 0, ( ) 0p A   for all 

elements in A . That is, a probability is a non-negative real number.   
 

• The probability of the entire sample space must equal 1. That is, ( ) 1p S = , where S  

denotes the sample space. Pragmatically, what this axiom essentially guarantees is that 
on a given experiment, something must happen. For example, if I flip a coin, a head or 
tail must occur (assuming the coin cannot land on its edge).  

 

• If events 1 2, ,... nA A A  are pairwise mutually exclusive (or pairwise mutually disjoint, 

which is another name for mutually exclusive, see Section 2.5.3), then the sum of their 
probabilities is equal to the union of their probabilities. More formally:  

 

1

1

( ) ( )i i i

i

p A p A




=

=

 =  

   
Any function that satisfies these three axioms is known as a probability function. From these 
axioms, we can deduce several rules of probability such as the following:    
 

• ( ) 0p  =  (the probability of the null or empty set is equal to 0) 

• ( ) 1p A   (the probability of any event in the sample space S  must be less than or equal 

to 1) 

• ( ) 1 ( )p A p A= −  (the probability of the complement of event A  is equal to 1 minus the 

probability of A ). Here, A  denotes the compliment to whatever larger set we are 
considering.  

 
Why should we believe in such rules of probability? All of these rules, and others, can be 
justified by tracing their paths back to the original axioms set out by Kolmogorov. For a proof of 
these rules, see DeGroot and Schervish (2002). The proofs, however, are not tremendously 
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enlightening from an applied point of view, meaning that they will typically not generate any 
“ah ha!” moments for you. The key thing to recognize from an applied perspective is that the 
rules used in probability theory are justifiable and not simply drawn out of thin air. They are 
not just “made up.” They are founded on the well-established and well-accepted axioms of 
mathematics. Of course, should the axioms one day prove to be faulty2 or otherwise not work 
and lose their utility, then there is no guarantee that the derived rules will still hold. However, 
until that day should come, we operate under the assumption that they are true, and proceed 
to build additional probability rules on them as a foundation. The axioms are what get us 
started.    
 

 
2.5.2. Conditional Probability 
 

Conditional probability is a very important topic, both to the disciplines of mathematics and 
statistics proper as well as to applied scientific domains. Conditional probabilities are just as 
they sound, they are probabilities that are conditional or contingent upon some other event 
occurring.    
 
For example, suppose the unconditional probability of getting cancer is equal to 0.10. Now, if I 
selected an individual at random from the population, and learned that that individual has been 
smoking two packages of cigarettes per day for the past 30 years, we would probably both 
agree that the probability of cancer for this individual is not equal to the unconditional 
probability of 0.10. That is, what we have just agreed on is that:  
 

( ) ( / )p C p C A  

 
where ( )p C  is the probability of cancer and ( / )p C A  is the probability of cancer given 

addiction to cigarettes. If, on the other hand, the person we randomly selected had mini-
wheats as his favorite cereal without any mention of smoking cigarettes, we would probably 
agree that:  

( ) ( / )p C p C M=  

 
where again ( )p C  is the probability of cancer, but now ( / )p C M  is the probability of cancer 

given mini-wheat eating. In this case, we would likely expect the unconditional probability  
( ( )p C ) to more or less equal that of the conditional probability ( ( / )p C M ), unless of course 

mini-wheat eating is increasing or decreasing the chance of cancer.   
 
Conditional probabilities allow us to narrow the sample space so that we may “zero in” on a 
more well-defined set of elements and assess their probability. More formally, we can state the 
conditional probability of an event B  given that event A  has occurred as:  
 

( )
( | ) , ( ) 0.

( )

p A B
p B A p A

p A


=                 (2.1) 
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In words, (2.1) reads that the probability of event B  given that event A  has occurred is equal 
to the probability of A  and B  occurring together relative to the probability of A  occurring, 
assuming that the probability of A  cannot equal 0. If ( ) 0p A = , then ( | )p B A  is undefined, 

since any number divided by zero is, by definition, undefined.  
 
From the definition of conditional probability in (2.1), we may also calculate: 
  

( )
( | ) , ( ) 0.

( )

p A B
p A B p B

p B


=   

 
In general, the conditional probabilities ( | )p B A  and  ( | )p A B  will not be equal, because, from 

a substantive point of view (which is probably the best way to understand why they are usually 
not equal in this case) they represent different sets of events. For example, the probability of 
cancer given addiction to cigarettes is likely not equivalent to the probability of addiction given 
cancer. The first probability of cancer is based on first reducing the space to all those who are 
addicted to cigarettes. The second probability is based on first reducing the space to all those 
who have cancer. Surely, all those who have cancer did not get the disease from smoking 
cigarettes. However, of all those heavily addicted to cigarettes, the probability of cancer is likely 
relatively higher than the unconditional probability of cancer. The two conditional probabilities 
are not necessarily equivalent since they refer to different subsets of spaces.    
 
All scientific investigation and statistical modeling can be said to ultimately be about 
conditional probabilities. They go hand-in-hand. For instance, we are rarely interested in the 
probability of schizophrenia. We are much more interested in probabilities such as that of 
schizophrenia given factors as genetic history and environment. The meteorologist is not 
interested in the probability of rain. She is interested in the probability of rain given certain 
atmospheric conditions. Likewise, the student is not interested in the probability of passing a 
course, he is interested in the probability of passing given that he studies a certain amount of 
time, attends lectures, etc. Hence, the probabilities of true interest to us, regardless of field, are 
typically conditional ones. Theoretically, if we know enough about the conditions, we can “zero 
in” on more precision regarding the probability of interest.     
 

 
2.5.3. Mutually Exclusive vs. Independent Events  
 
Two events A  and B  are considered mutually exclusive or disjoint (another word for mutually 
exclusive) if the probability of their intersection is equal to zero. That is,  
 

( ) 0p A B =         (2.2) 

 

For numerous events, say, 1 2, ,... nA A A , we say that these events are pairwise mutually exclusive 

if 0i jA A =  is true for all events 1 2, ,... nA A A  such that i j  (i.e., an event cannot be mutually 
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exclusive from itself). “Pairwise mutually exclusive” just means that any two events in the set 
are mutually exclusive (Casella and Berger, 2002). This saves us the trouble of having to list all 
pairings that are mutually exclusive. In a Venn diagram, two mutually exclusive events are 
depicted by their events having an intersection of zero, or the null set (Figure 2.11). 
 

 
 
Examples of mutually exclusive events are easy to come up with:  
 

• Events night and day are mutually exclusive. That is, it is either night or day and not 
both (i.e., In Figure 2.11, let set A  = night and set B  = day; since it cannot be “night and 
day” simultaneously, the set of elements containing these two events is empty). 
 

• Events tall and short are mutually exclusive. One cannot be the event “tall” and also be 
the event “short.”  
 

• Events happy and sad are mutually exclusive, though existentially, I suppose it is 
possible to be in both states at once, which would violate their disjointness. For 
instance, you may be both happy and sad about your friend embarking on a new career 
overseas.  

 
Two events A  and B  are considered statistically independent if the probability of their 
intersection is equal to the product of their individual probabilities. That is,  
 

( ) ( ) ( )p A B p A p B =              (2.3) 

 
We can also further unpack (2.3) as the probability of the joint occurrence of A  and B  equal to 
the product of the respective marginal probabilities of A  and B , where the marginal 
probabilities of A  and B  are given by ( )p A  and ( )p B . Loosely speaking, when we say two 

events are independent of one another, it means that the occurrence of one event in no way 
influences the probability of occurrence of the other event. Be sure to appreciate this is only 
about probabilities, and not necessarily anything more. Examples of independent events that 
indeed should be independent, and if not, could face legal challenges, include:   
 

• Employment and gender should be independent; whether one is male, female or other, 
should not have any effect on the probability of gaining employment.  
 

• Verdict should be independent of race of defendant in a court trial. 
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Many court challenges in areas of employment law (e.g., see Zeisel and Kaye, 1997) and racism 
claims are actually accusations on the part of the plaintiff that the events under consideration 
are not empirically independent, but under the law, they should be. Showing a violation of 
substantive independence of two events can be exceedingly difficult in practice. Can you really 
demonstrate to a jury or judge that a hiring committee purposely did not hire a man or woman 
of a particular race? While you may have a strong suspicion that such racism has occurred, it is 
quite another matter to actually demonstrate it. Even in cases where one can show lack of 
independence quantitatively (e.g., through a statistical test), it is still quite another matter to 
legally prove that such lack of independence had its origin in the cognition of the accused, that 
there was real discrimination going on. Statistical dependence is only an indicator that an 
underlying directional action or process may be occurring. Substantive matters can rarely be 
concluded based on statistical tests alone. More generally, and in the language of hypothesis 
testing, rejecting a null hypothesis never proves a substantive alternative, a topic we will return 
to later. 
 
How does independence arise mathematically? If events A  and B  are independent, then 

( / ) ( )p B A p B= , so we can rewrite (2.1) as:  

 
( )

( )
( )

p A B
p B

p A


=  

 
The probability of the joint occurrence of A  and B  is thus equal to:  
 

( ) ( ) ( )p A B p A p B =   

 
which gives us the rule for independence of (2.3).  
 
Note that if two events A  and B  are mutually exclusive, it stands that they cannot 
simultaneously be independent, since if A  and B  are indeed mutually exclusive, then, by 
definition ( ) 0p A B =  is true. If A  and B  were independent however, then as we just saw, 

(2.3) should be true. Since ( ) ( ) 0p A p B =  does not hold unless ( ) 0p A =  or ( ) 0p B =  (or both 

are equal to 0), then it cannot be the case that two mutually exclusive events are 
simultaneously independent.  
 
As an example, consider the events “head” and “tail” on a single flip of a coin. They are 
obviously mutually exclusive events. Are they independent? We usually would not ask the 
question given we have only conducted a single trial, but if we did, we would conclude that 
getting a head on the coin tells us everything about the probability of getting a tail. Given that 
we obtain a head, the probability of obtaining a tail is equal to 0. Again, we ordinarily would not 
ask such a question, since it seems foolish to ask of the probability of an event after it has 
already occurred (logically speaking, the probability doesn’t exist). But when we do push the 
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limits on contrasting the concepts of mutual exclusiveness vs. independence, this is what we 
find.  
 

 
More on Mutual Exclusiveness 
 
A further distinction on mutual exclusiveness is required. Consider once more the event head 
and the event tail on a single flip of a coin. Since one cannot obtain a head and a tail on a single 
flip of a coin, the events are deemed mutually exclusive. But this is only so in this particular 
context. Why is the caveat “in this particular context” required? It is necessary because if we 
consider two successive flips of the coin, then the event head and the event tail are not 
mutually exclusive. What this means is that when you define the mutual exclusiveness of two 
events, you must also state the context or physical model you are assuming or imposing when 
applying the property. “On a single flip of a coin, events “head” and “tail” are mutually 
exclusive” is the correct way to describe the context. Head and tail are not, by themselves, 
intrinsically or organically mutually exclusive events. 
 
Notice as well that in substantive contexts, one does not simply apply the “formula” A B  to 
“discover” if two events are mutually exclusive. For instance, on a single flip, are the events H  
(head) and T  (tail) mutually exclusive? The answer is, of course, yes, because one cannot 
obtain a head and a tail on a single flip of the coin. However, if one naively treated the concept 
of mutual exclusiveness as a formula and sought to find the answer numerically, one could 
theoretically compute 

( ) (0.5)(0.5) 0.25p H T = =  

 

and potentially, and erroneously, conclude that since ( ) 0p H T  , events H  and T  are not 

mutually exclusive! Of course, this would be an error, since we know that ( ) 0p H T =  holds 

by how we defined our context for discussing the mutual exclusiveness. Multiplying 
probabilities in this case and obtaining ( ) 0p H T   does nothing to counter the fact that 

head and tail are mutually exclusive events on a single flip of the coin. The lesson to be learned 
from this example, one which will in one way or another be repeated throughout this book in a 
variety of contexts, is the following -- Formulas and equations used blindly will provide blind 
answers. One must first decide on the correct use of a formula, statistical method, or other 
computation, including those offered by software, before one can have any confidence in the 
result. Formulas and equations never speak for themselves. You must oversee their correct 
interpretation.   
 
If you blindly “trust” statistical machinery rather than see it as a tool requiring human oversight, 
then you can easily fall into such traps of trying to solve a problem or conduct an analysis in a 
context that makes little, if any, sense. Before you apply any statistical model, and before you 
do any computations, it has to “feel right” that you are proceeding correctly. Statistics and 
probability are quite slippery, so after all is said and done, if something still feels wrong or out 
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of place with your model, then something likely is amiss. Software alone cannot usually tell you 
if something is right or wrong.     
 
 
2.6. Interpretations of Probability: 
Frequentist vs. Subjective 
 
Though the computation of probabilities is generally agreed upon, the interpretation one gives 
to those probabilities is definitely not. Historically, the traditional interpretation of probability is 
to take a relative frequency as the “best guess” of the true probability of an event. This is the 
so-called frequentist version of probability. However, as we will soon discuss, relative 
frequency interpretations of probability carry with them some difficulties.  
 
An even more primitive interpretation of the probability of event A  is to simply take the 
number of elementary events in set A  relative to the total number of elementary events in the 
sample space S . This version of probability is often referred to as classical or analytical.  
For example, consider the probability of drawing any single ball out of a bag containing 10 balls 
(numbered one through ten). The number of elementary events comprising A  is equal to 1 
(since we are drawing only one ball). The denominator of the ratio is equal to the number of 
ways the given event can occur, which in this case is equal to 10. The probability of A  is thus 
1/10. Now, consider the probability of drawing a 3 and a 5 from the bag containing 10 balls, 
irrespective of order. The denominator will still be equal to the number of ways the event can 
occur, but now, the question is - How many ways can you draw 2 objects out of a group of 10 
objects, irrespective or order? For this, we compute the number of combinations of choosing 2 
out of 10:  

!

!( )!

n n

r r n r

 
= 

− 
 

 
where n  is the number of objects we have, r  is the number we are choosing, and !n  (and 
similarily !r ) is defined as ( 1)( 2) (1)n n n− −  . For the case of choosing 2 out of 10, we obtain: 

  

10 10!

2 2!(8)!

45

 
= 

 

=

 

 
Hence, the number of ways one can choose 2 objects out of 10, when the order of the sampled 
balls does not matter, is equal to 45. Therefore, the probability of any one of those ways is 
1/45. Notice that the 45 here represents the total number of events in S , only that now, the 
elementary “unit” is defined as being 2 objects. When we selected only a single ball out of the 
10, there were 10 ways in which the event could occur. If you always think about the 
denominator as representing the number of ways rather than simply the number of “things” 
there are to sample from, you will usually understand the probability problem.   
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2.6.1. Law of Large Numbers 
 
Why should we believe that the relative frequency of an event is a good estimate of the true 
probability of that event? This is justified in probability theory by a theorem called the law of 
large numbers. The theorem generally holds that if an experiment or trial is repeated many 
times under identical conditions, the relative frequency of occurrence of the event is likely to 
be close to the probability of that event. As the number of repetitions increase, we zero in on 
the true probability.  
 
We can represent the law of large numbers more formally as follows, as a somewhat crude, yet 
still conceptually powerful version of the law of large numbers. If an experiment is repeated n  

times where r  denotes the number of times that the event E  occurs in these n  repetitions, 
then the following is true:  
 

[(| ( / ) ( ) | )] 0p r n p E −  →    (2.4) 

 
What (2.4) means is that as n  gets larger and larger, without bound, the absolute distance 
between /r n  and the true probability of an event E , denoted by ( )p E , being equal to or 

greater than some small positive number   (think of this as being some small magnitude), goes 
to zero. That is, in the long run, there will be no difference between the relative frequency of 
an event /r n  and its true probability, ( )p E . Relative frequency will eventually yield the true 

probability for increasing n . We can also express (2.4) using a limit3 concept more generally for 
that of sampled random quantity x  based on n  samplings, 
  

lim (| ) | ) 1
n

n
p x  

→
−  =  

 
which says that in the limit as n→, the probability of any absolute distance or difference 

between our average of sampled sequence of random values n
x  and the parameter   being 

smaller than  , an arbitrary positive number, is equal to 1 (we will name the sequence nx  

arising from a random variable in Chapter 2). The law guarantees, in a theoretical sense, that as 
we draw more n , a  convergence toward   occurs, and is generally known as the strong law 

of large numbers. For further discussion on this particular interpretation, see Casella and 
Berger (2002, pp. 232-233).   
 
In practical terms, the law of large numbers more or less implies that even if we have only a 
limited number of trials, we should generally expect the probability of any event to be reflected 
in the relative frequency we actually observe for the given event. In the long run, such an 
observed relative frequency should approach the true probability.  
 

 
 
 



APPENDIX PART II: MATHEMATICS AND PROBABILITY THEORY FOR STATISTICS 
Copyright Daniel J. Denis, Ph.D. 2021 – updated July 13, 2021 
 

 

21 
 

2.6.2. Problem with the Law of Large Numbers 
 
Since we cannot ever obtain an infinite number of repetitions, no matter how many repetitions 
we do have, we might expect /r n  in (2.4) to be close to ( )p E  but we can never be sure they 

are equal. The idea of letting sample size grow infinitely is quite unrealistic. However, as noted 
by Casella and Berger (2002), “Although the notion of an infinite sample size is a theoretical 
artifact, it can often provide us with some useful approximations for the finite sample case, 
since it usually happens that expressions become simplified in the limit.” (p. 232)  
 
Thus, we can tentatively conclude that the law of large numbers, though a useful concept, is 
entirely unachievable and only truly makes sense theoretically. Wouldn’t it be a good idea then 
to adopt an interpretation of probability that does not require the law of large numbers? The 
subjective interpretation of probability accomplishes this goal, which we now briefly discuss.   
 
 
2.6.3. The Subjective Interpretation of Probability 
 
According to Winkler (2003, p. 14), “The probability concept acquired an interpretation in terms 
of relative frequency because it was originally developed to describe certain games of chance 
where plays [ . . . ] are indeed repeated for a large number of trials and where it is reasonable 
to assume that the elementary events of interest are equally likely.” That is, in gambling games 
where probability theory began in mid-1600s, it was usually a safe assumption to make that a 
game can be repeated over and over, hence having an infinite number of trials. And though 
even in this context this idea of an infinite number of trials is still unrealistic, it was nonetheless 
imaginable.  
 
There are many situations in research however and in daily life where being able to assume an 
infinite number of trials simply does not make sense, and hence basing a theory of probability 
on the law of large numbers does not work in such cases. The subjective interpretation is 
especially useful when we cannot use a relative frequency interpretation. The subjective 
interpretation holds that probability is a degree of belief, and not simply a relative frequency. 
The subjective probabilist can still use frequency information in her estimate of the probability 
of an event, but the point is that she is not restricted to solely frequency information. She may 
draw from a variety of informational sources in deriving her estimate. For instance, consider 
how you might go about evaluating the probability of the following events:  
 

• Probability of a nuclear world war in the next five years 

• Probability of an earthquake in California in the next fifty years 

• Probability of the earth exploding tomorrow 
 
In these scenarios and others, it is difficult if not impossible to assign a probability based on a 
relative frequency interpretation. We have never had a nuclear world war, and so we cannot 
“flip” the event to see how many times a nuclear war shows up as we could with a coin. The 
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“Big One” has yet to occur in California, and thus any estimate of its probability must be based, 
at least in part, on information external to the event under consideration. The earth has never 
exploded before, and so estimating the probability that it will explode tomorrow is very difficult 
to put into relative frequency terms. However, we would still like to provide probability 
estimates for such events and others like them where relative frequency seems to fail us. 
Consider the information we may use in estimating the probability of a nuclear world war in the 
next 5 years: 
 

• Political climate and stability of nations possessing nuclear arms 

• Probability of nonpossessing nuclear countries obtaining nuclear arms in the next five 
years (and the probability that these arms could be or are used) 

• Political motivation for any nation or individuals seeking to use a nuclear bomb 
 
The list goes on and on regarding the information we may wish to use in arriving at an estimate 
of the probability of nuclear world war. If we end up generating an estimate of say, 0.001, it 
would have been generated based on our opinion or belief of the probability of war, 
presumably by incorporating all information available, including that of relative frequency 
information where appropriate. In this sense, relative-frequency probability can be considered 
a subset or special case of the wider subjective probability framework, as depicted in Figure 
2.12.  
 

 
 

 
2.7. Bayes’ Theorem: 
Inverting Conditional Probabilities 
 
Bayes’ theorem, sometimes called “Bayes’ rule”, provides a way to evaluate relationships 
among various conditional probabilities. More specifically, it allows us to “invert” probabilities 
such that we begin with ( | )p B A , and are able to compute ( | )p A B  (notice that A  and B  

have switched places, they have been inverted). The theorem is named after Reverend Thomas 
Bayes (1702 – 1761), a British clergyman and great thinker (see Figure 2.13).  
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The theorem can be stated:   
 

( | ) ( )
( | )

( | ) ( ) ( | ) ( )

p B A p A
p A B

p B A p A p B A p A
=

+
          (2.5) 

 

where A  denotes the complement of event A .4  Bayes’ theorem reveals that the conditional 
probability can be computed in a particular unique, and as we will see, extremely useful way. In 
addition to being aesthetically pleasing to the probabilist or mathematician, Bayes’ theorem is 
also extremely practical, as we shall soon see by constructing some examples of its use. There 
are entire fields of statistics and philosophy devoted to the study of Bayesian analysis, 
including a variety of procedures developed for the estimation of posterior probabilities and 
distributions. What follows is only a peak into this vast world of analysis. For more on Bayesian 
analysis, consult Gill (2014). Savage (1972) is also a classic resource.     
 
 
2.7.1. Decomposing Bayes’ Theorem 
 
We take a closer look now at the elements of Bayes’ theorem and discuss each component. The 
first probability estimate that enters into Bayes’ theorem is ( | )p A B . This is what we seek to 

know from our calculation. It is the probability of some event A , given some other event B . It 
is thus a conditional probability. In the paradigm of hypothesis testing, we will denote ( | )p A B  

as ( | )p H D  where H  stands for “hypothesis” and D  stands for “data”. That is, the question 

we are asking is - What is the probability of our hypothesis given obtained data?    
 

The next estimate that enters into Bayes’ formula is ( | )p B A , or ( | )p D H , the probability of 

some data given some hypothesis. This is the probability estimate that dominates classical 
statistics. When we conduct a statistical significance test (e.g., p < .05), we are computing in a 
general way the probability of the observed data given some null hypothesis. This conditional 
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probability is often referred to as a likelihood; it is the likelihood of the obtained data given the 
hypothesis. Note carefully that it is not the probability of the hypothesis given some data. That 
is:   

( | ) ( | )p D H p H D  

 
To get ( | )p H D  from knowledge of ( | )p D H , we need to invert probabilities. This is what 

Bayes’ theorem allows us to do.   
 
Next in (2.5), we come to the term ( )p A . In hypothesis testing language, this is the probability 

of our hypothesis, H , that is, ( )p H . It is the prior probability estimate of the hypothesis. How 

this single estimate is obtained is the source of much controversy and debate (and 
misunderstanding) concerning Bayes’ theorem. The term itself is meant to represent our prior 
knowledge of the hypothesis under consideration before “revising” this estimate in line with 
new data and obtaining ( / )p H D . Often, ( )p H  can be obtained from base rate information or 

some similar information, but sometimes (perhaps often) ( )p H  is not so easily obtained. 

Bayesian statistics often employ subjective probability estimates or personal probabilities in 
their initial computations to get the relevant prior probability. This doesn’t imply these 
probability estimates are somehow “irrational,” only that a Bayesian is allowed to justify his or 
her prior as a “degree of belief” in a hypothesis, something that hardcore frequentists find 
deplorable. Hence, historically, this has been a contentious issue between the relative 
frequency and subjectivist camps.  
 

Finally in (2.5), we come to ( / )p B A  or ( / )p D H , which is again a likelihood. It is the 

conditional probability of the data given the complement of the hypothesis or theory. 
An example will help elucidate how these probabilities can be used.    
 
 
2.7.2. A Medical Example – Probability of HIV: 
The Logic of Bayesian Revision 
 
Suppose as a medical doctor, before administering a diagnostic test, you attempt to assess the 
probability that your patient has HIV, the virus that causes AIDS. What would be your best 
estimate? It would probably be the figure representing the percent of those having the disease 
in the city or region of interest, otherwise known as the population base rate. If it is known that 
the prevalence of HIV in your population is 1%, then for a randomly chosen individual from this 
population, I think you would agree that your “best guess” (so far) at the probability of the 
individual being HIV positive is 0.01.  
 
Now, enter the diagnostic test. The purpose of the diagnostic test will be to sharpen your 
probability estimate based on newly acquired data. Diagnostic tests alone do not tell us 
whether a person has a disease or not. They are simply an input to the final decision, and come 
with error rates. They are a sign, not a certainty. Suppose that you give the patient the 
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diagnostic blood test for HIV. The result of this test constitutes data, and it is in using such data 
that you will revise your original probability estimate of 0.01.    
 
What are the probabilities that we need for Bayes’ theorem to work? For our example, we have 
the following:  
 

• ( )p H  is the probability of the hypothesis that the patient has HIV; it is the probability 

estimate we would essentially use in the absence of additional information, and as such, 
is our base rate of 0.01.  

• ( | )p D H  is the probability of the positive reading on the diagnostic test given that the 

patient has HIV; for our example, suppose this is equal to 0.98.  

• ( )p H  is the probability that the patient does not have HIV; it is the complement of 

( )p H , equal to 0.99 (i.e., 1 – 0.01).  

• ( | )p D H  is the probability of a positive reading (data) given no HIV (or “HIV negative”); 

for our example, suppose this is equal to 0.05.  
 
We now have all the information required to run Bayes’ theorem, and invert probabilities:  
 

( | ) ( )
( / )

( | ) ( ) ( | ) ( )

0.98(0.01)

0.98(0.01) 0.05(0.99)

0.165

p D H p H
p H D

p D H p H p D H p H
=

+

=
+

=

 

 
After revising our initial probability estimate of 0.01, ( / )p H D  is now equal to 0.165. That is, 

the probability that the patient has HIV given a positive blood test is equal to 0.165, an increase 
from the initial estimate of 0.01. The data, in the form of the positive blood test, has added to 
our knowledge of the probability of disease.  
 
 
2.7.3. Recap of Bayes’ Theorem: 
The Idea of Revising Probability Estimates and Incorporating New Data 

 
In the HIV example just featured, we have a powerful demonstration of how Bayes’ theorem 
can be used to revise a probability estimate. Notice how we proceeded through the example. 
We first considered the estimate of HIV in the population from which the subject was sampled. 
This was our prior probability, which was equal to 0.01. How did we obtain this information? 
Although in this example we could simply rely on medical population estimates or real data 
about the prevalence of HIV (I made the figure up, but 1% may actually be a suitable estimate 
for some impoverished populations), the nature of obtaining this probability estimate is not 
always straightforward, and again is one reason why the Bayesian approach to statistics is 
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sometimes heavily criticized by some. This estimate, ( )p H  is often referred to as the “prior 

probability,” because it is calculated “prior” to consideration of the obtained data, D . The 
purpose of Bayes’ theorem is to revise ( )p H  in light of new information, which in the medical 

example was the diagnostic blood test. That is, as a medical clinician, even before the patient 
entered your examination room, your best “bet” about him or her being HIV positive would be 
0.01, the base rate in the population from which the subject is being sampled. Now if the 
patient simultaneously confessed to engaging in promiscuous sex with high-risk partners, 
and/or regularly using dirty needles to inject drugs, you may wish to increase this base rate 
prior probability. Hence, for a given patient that is high-risk, the prior may be much higher than 
for a competing patient of much lower risk. Bayesian analysis allows this sense of flexibility in 
stating priors.   
 
After administration of the diagnostic blood test however, the probability of the patient having 
HIV given the result of the diagnostic test ( / )p H D  is now “updated” to 0.165. This probability 

estimate is called the posterior probability because it is obtained after (i.e., “post”) 
consideration of the obtained data (in this case, the positive blood test).  
 
 
2.7.4. The Consideration of Base Rates and Other Information: 
Why Priors are Important 

 
The consequences of not considering base rates, or any other prior information, should be 
evident from our medical example. For instance, if instead of the prior being equal to 0.01, it 
were equal to 0.90, this would have a drastic influence on the posterior estimate (try the 
computation). When we do Bayesian revision, what we start out with in terms of a prior is often 
just as important and in some cases more important than the actual data we obtain. And 
although prior probabilities are often considered to reflect personal opinion, there is nothing in 
Bayesian philosophy that says they should be “irrational” or otherwise poorly derived. At 
minimum, however, if you come up with a ridiculous prior, it is there for everyone to see, and 
hence will not be taken very seriously. For instance, had we started out with a prior probability 
of 0.90 for HIV, a critic could easily, and rightfully, dismiss our analysis since 0.90 is obviously an 
irrational prior for even relatively high-risk populations. Prior probabilities, whether in the 
context of Bayesian revision or other research settings, even if constituting one’s “subjective” 
opinion, should nonetheless be “reasonable.”  
 
 
2.7.5. Conditional Probabilities and Temporal Ordering 
 
With regard to Bayes’ theorem and conditional probabilities in general, it should be noted that 
conditional probabilities do not care about temporal order. We, however, usually do. For 
instance, pondering the probability of something that occurred in the past given something that 
occurred more recently makes no sense to us logically. However, the calculus of probabilities 
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themselves care little about time. In other words, they are still computable. They may not be 
interpretable, but they can still be calculated numerically.   
 
For example, the probability of one’s suicide ten years ago could never, in a rational way, be 
conditional or contingent upon an event that occurs today. The problem simply makes no sense 
to us.5 However, one could still obtain a conditional probability of such an event. That is, we 
could still compute a number for it. The computations themselves do not “know” what the 
events in the problem actually represent. We give them meaning, otherwise they have none. 
That is, logically, as opposed to numerically, the number we would obtain in this case would 
make little sense. This is again a reminder of why you should never blindly trust calculations of 
any kind when computing probabilities or anything else in a research setting. The problem 
must make sense to you first for things to work out as they should, and be correct. 
Understanding, comprehension, and judgment are not things you can relagate to a computing 
algorithm.6       
 
 
2.8. Statistical Inference 
 
Statistical inference is a process by which conclusions and decisions about population 
parameters are made based on information obtained in samples. It is most easily understood 
through the use of very simple examples. The classic example is, again, that of a fair coin. 
Suppose I hold a coin in my hand and for no reason other than my prior experience with coins, I 
assume the coin is fair. That is, I assume that on any given flip of the coin, the probability of 
getting a head or a tail is equal to the same value, ( ) .5p H = , and ( ) .5p T = . Note carefully that 

we are starting off the process with an assumption. We are having to first assume something 
about the coin. The assumption is the hypothesis that is presumed true pending further 
evidence. Such an assumption often goes by the name of a null hypothesis. It is the hypothesis 
assumed to be true in generating the sampling distribution (see Chapter 2) of the test statistic 
appropriate for the given problem, and is the hypothesis we will attempt to reject given 
evidence that contradicts it. More generally, in the case of the coin, you can think of this 
assumption or null as the “status quo,” or your prior belief (to impose a Bayesian flavor) in the 
probability characteristics of the coin. Null hypotheses do not need, however, to be statements 
about equality.  
 
We now proceed to sample some data. Suppose our first flip (or our first “trial”) of the coin 
turns up a head. Would you doubt the assumption of a fair coin based on this piece of 
evidence? Likely not. After all, it’s just one flip, and getting a single head is no reason to reject 
our assumption. Suppose we keep taking trials, and obtain the following sequence of flips for 
the first 10 trials:  

H     H     H     H     T     H     H     T     H     H 
 

We obtained eight heads and two tails. The question we want to ask is - What is the probability 
of obtaining 8 heads out of 10 flips under the assumption that the coin is fair? That is, what is 
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the probability of obtaining 8 heads out of 10 flips under the assumption of the null hypothesis? 
If the probability of such a sequence is low, then it suggests that the obtained data may not 
have arisen under the model (i.e., assumption) we started out with. Obtaining 8 heads out of 10 
flips seems more likely to have occurred under a different model, one for which the coin is not 
fair. This alternative model is typically housed in the alternative hypothesis, and may take 
many forms depending on the given context. It may simply be a statement that ( ) .5p H   or 

even a more specific, well-defined hypothesis such as ( ) .8p H = , in which case our obtained 

sample of 8 heads out of 10 flips would “fit” such an alternative very well.  
 
The key point in this example, as is true of virtually all examples of statistical inference, is that 
we are evaluating the probability of data given some hypothetical situation which we couch in 
terms of a null hypothesis. If the probability of data is low under our hypothetical situation, 
then it serves to cast doubt on that hypothetical situation, and probabilistically, we begin to 
think that perhaps a competing model (i.e., one other than the null hypothesis) is better able to 
account for the obtained data. Even intuitively, without any statistical computation, a result of 
8 heads out of 10 flips would cause us to doubt our assumption that ( ) .5p H =  and we would 

reject it in favor of the alternative hypothesis (e.g., ( ) .5p H  .)     

 
 
2.8.1. Shouldn’t the Stakes Matter?   
 
If something does not sit right with you with regard to the previous example, that’s a good 
thing. You may be wondering how we can decide to reject the null hypothesis or infer the 
alternative hypothesis without any sense of the consequences of making the wrong decision. 
Yes, in our example of the coin, the situation is trivial. That is, the costs associated with deciding 
whether the coin is fair or not fair are likely nonexistent. However, in other paradigms, life or 
death may be at stake, or at minimum, the consequences of making the wrong decision may be 
more severe or grave than losing a coin-flip betting game. 
 
In any decision of this sort, where two choices are available to the decision maker, two types of 
error might occur. The first type of error is that of a Type I error, which is a false rejection of 
the null hypothesis. The probability of a Type I error is set at  , the significance level of the 
test. The second type of error is a Type II error, which is failing to reject a false null hypothesis. 
A Type II error is equal to   (Beta), and will depend on such things as the distance between the 

null and the hypothesized alternative.   
 
We can display both types of error in the classic decision table featured in Table 2.1. Note that 
in addition to specifying Type I and Type II error rates, Table 2.1 also depicts a loss function 
associated with the decision we are making.    
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Note that the decision to “Accept 0H ” is associated with zero loss if in fact 0H  is true (cell in 

row 1, column 1). Note also that the decision to “Accept 1H ” if in fact 1H  ends up being true is 

likewise associated with zero loss (cell in row 2, column 2).  
 
Where losses begin to occur is when our decision does not accord with the state of the world. If 

we “accept” 1H  but 0H  turns out to best reflect reality, then we have made a false rejection of 

the null hypothesis (or, in the case of decision theory, a false acceptance of 1H ). This is the 

classic Type I error of both Fisherian and Neyman-Pearson hypothesis paradigms.7 Similarly, an 

incorrect acceptance of 0H  when in fact 1H  is true leads us to make the classic Type II error. 

Which is the more daunting error to make? Without associating costs with each error, we have 
no means by which to evaluate which is the more consequential error.  
 
This is where decision theory comes in. Decision theorists will encourage that one assign a loss 

function with each type of error. These are represented by 1Q  and 2Q  values in Table 2.1, 

referred to as Loss I and Loss II respectively. If one can quantify these losses somehow, then 
one can incorporate such losses into the computation of expected values (see Chapter 2) in the 
decision-making process. Though we do not pursue decision modeling in this book, readers who 
are interested in this approach should consult Winkler (2003) for more details and an excellent 
read into the world of decision analysis.   
 
 
2.9. Essential Mathematics:  
Pre-Calculus, Calculus, Matrix Algebra 
 
We suspend our discussion of further probabilistic concepts and statistics until Chapter 2 where 
we survey and review essential statistics in more detail in preparation for the rest of the book. 
We instead turn now to surveying some of the elements of modern mathematics, focusing 
primarily on concepts from pre-calculus up to and including calculus. Much of what we cover 
only skims the surface, and the reader is strongly encouraged to consult sources cited within 
the text, or simply consult Labarre (1961) for a classic and very readable overview of 
fundamental mathematics (the book is somewhat dated, but extraordinary in its clarity). 
Central to our brief overview and discussion of modern mathematics is the development of the 
idea of a function. Functions are what mathematics, statistics, and research are all about. To set 
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the stage for such a discussion, we first begin with a review of polynomials, of which functions 
are a special case.   
 
 
2.9.1. Polynomials 
 
A nomial is a single mathematical term usually with a variable in it. For example, ax  is a nomial 
having the variable x  and where a  is a constant.  
 
A polynomial function of the form 
 

1

1 1 0( ) ...−

−= + + + +n n

n nf x a x a x a x a  

 
is an equation that contains many (i.e., poly) nomials. The degree of the polynomial is a 

nonnegative integer n , while the coefficients of the polynomial are 0 1, ,..., na a a  (Barnett et al., 

2011). The domain is the set of all real numbers. Polynomials are everywhere in mathematics 
and science. One very special type of polynomial is that of a function, an extremely important 
topic we now develop.  
 
 
2.9.2. Functions 
 
The concept of a function literally pervades all of mathematics, statistics, and applied scientific 
research. It is so central to virtually all areas of investigation, that one has little if any chance at 
understanding any kind of mathematics related to science, including statistical modeling 
techniques, if one does not first understand the nature of a function. Indeed, as Labarre (1961) 
noted:  
 

The first man to introduce the word function in mathematics seems to have been 
Gottfried Leibniz, in about 1694. Since Leibniz’s time, the notion of a function has 
undergone many refinements, but it has survived these and, without undue 
exaggeration, we say that it can lay serious claim to being the most important single 
concept in mathematics (p. 73) 

 
For some examples of functional statements, consider the following research questions: 
  

• Is Alzheimer’s disease a function of age?  

• Is mental illness a function of stress?  

• Is intelligence a function of genetics? 

• Are school shootings in America a function of current gun laws?   
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Each of the above research questions imparts a function statement. However, as we will see 
when we review the precise definition of a function, the above statements are far from perfect 
functional forms. Why? Because they are messy English, and not precise mathematics. We all 
know what it means to ask the question of whether school shootings are a function of current 
gun laws. Intuitively, it implies that if indeed functional, if we changed the gun laws, it would 
have an influence or effect on school shootings.9 Likewise, if you argue that mental illness is a 
function of stress, then you are presumably suggesting that stress in some way “contributes” to 
the prevalence of mental illness. Again, these concepts are very vague and imprecise, yet the 
word “function” is used in all of them. Functions in mathematics proper have been defined in a 
much more precise and rigorous fashion.   
 

 
What is a Mathematical Function?     
 
Mathematically, a function can be defined as a correspondence between two sets of elements 
such that to each element in the first set, there corresponds one and only one element in the 
second set. The first set is called the domain of the function, and the second set (which 
corresponds to elements in the first set) is called the range of the function (Barnett et al., 
2011). 
 
The easiest function is that of y x= , given in Figure 2.14, which is a linear function that passes 

through the origin (0, 0) with slope equal to 1. In this function, y  is known as the dependent 

variable and x  is known as the independent variable.  
 

 
 
It is easy to recognize the line in Figure 2.14 as a function since for each value of x  that we can 
choose, there is one and only one value of y . In a very big way, the job of statistical modeling is 

to fit functional forms to data that do not follow functional forms perfectly, but do so in a 
manner close enough that we can nevertheless adequately account for the data using the 
function. Virtually all of statistical modeling constitutes the imposing of a functional form(s) 
on imperfect, messy data. Regression, analysis of variance, structural equation modeling, as we 
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will see, are ultimately all examples of this process. Quantifying how much the functional form 
does not fit is usually of interest to us just as much as we are interested in how much data it 
does account for.     
 
The linear function is but one of an infinite number of possible functional forms. Other 

functional forms include quadratic functions, 2( )f x ax bx c= + + ( 0a  ), cubic functions, 
3( )f x x= , square root functions, ( )f x x= ,  and absolute value functions, ( ) | |f x x= . The 

absolute function is more precisely denoted by: 
 

, 0
| |

, 0

x x
x

x x


= 

− 
 

 
For example, 3, or -3, in absolute value, are both equal to 3.  
 
A graph of the absolute function appears in Figure 2.15.   
 

 
 
Previewing what is to come, the absolute value function is an example of a function that is 
continuous at all points, yet as we will see, the derivative cannot be defined at every point (i.e., 
the derivative does not exist at (0)f ). We discuss these matters shortly.   
 

 
2.9.3. Spotting Functions Graphically: 
The Vertical Line Test 
 
Having defined what is a function, it would be helpful to be able to identify functions rather 
easily. That is exactly what the vertical-line test is for. The vertical-line test for a function is a 
test one can use to verify or confirm that a line or curve constitutes a function. The way it works 
is as follows: If you are able to draw a vertical line through the line or curve (i.e., the polynomial 
form) without it passing through more than a single point on the line or curve, then it is a 
function. In other words, the vertical line test assures us that for a given value of x  there is 
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associated one, and only one value for y . If, however, you are able to draw a vertical line 

through the line or curve and it passes through more than a single point, then it is not a 
function. It is still considered to be a mathematical relation, but it is does not earn the title of 
function. As an example, consider the linear function once more in Figure 2.16.    

 

 
 
It is easy to see that if we drew a vertical line from top to bottom on the graph, that line would 
pass through a maximum of a single point, as shown in (b) graph.    
 

An example of a relation that is not functional is that of a circle, 2 2 2r x y= +  (Figure 2.17).  

 

 

 

Since we are able to draw a vertical line through the relation and it crosses at more than a 
single point, the subset of points defining a circle is not a relation that is functional. Again, it is 
still a mathematical relation since the set of points defining the circle is still a subset of the 
Cartesian Product, but it is not a functional relation.  
 
The motivation for probabilitistic statistical analysis is the fact that very few phenomena (if any, 
at a precise theoretical level) follow pure functional rules. More often, the best we can do is 
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approximate these data using functional forms. Francis Galton’s linear regression (Figure 2.9) is 
a classic (perhaps “the” classic, from an historical perspective) example of this. Though the 
correspondence between heights of parents and their offspring is far from functional, a linear 
function nonetheless provided him a useful summary or “model” of the messy data. More 
generally, one can say the goal of statistical modeling is to impose rationally-derived 
structures (e.g., lines, curves, etc.) on imperfect empirical observations. Much of the rest is in 
the details of the particular model used.   
 
 
2.9.4. Limits 
 

The idea of a limit in calculus and mathematical analysis has a very deep and rich history. The 
“discovery” of limits is usually associated with the invention of the calculus, however informal 
conceptions of limits date way back to the Greeks, and likely even before. Very few concepts in 
history (whether mathematical history or other) arrive on the scientific scene without any 
“marinating” and development over time by noteworthy thinkers. The concept of a limit is 
probably one of the best examples of this. Limits are also a pillar and passage way to higher 
mathematics. For a discussion of limits from an historical perspective and how they relate to 
the development of the calculus, see Boyer (1949).    
 
When we compute the limit of a function, we are not so much interested in how the function 
behaves at a particular point as much as we are on how the function behaves near a particular 
point on the curve. A simple example is all we need to illustrate the concept of a limit. Consider 
the linear function:  

( ) 2= +f x x  

 

What questions might we ask of this function? Well, we might ask how the function behaves at 
different values of x . For instance, we might ask what the value of the function is at 1x = . The 
answer is, of course, ( ) 1 2 3f x = + = . We now ask a similar question, but one that is yet 

different enough from the one we just asked as to call for a new historically grounding-breaking 
concept. Consider the following question:  
 

What is the behavior of the function when x  is close to 2? 
 
This question does not ask us for the value of the function at 2x = , but instead requests the 
value of the function near 2x = . To help us answer this question, consider the simple linear 
function in Figure 2.18.  
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We can see that as x  gets closer and closer to 2, the function f  gets closer and closer to the 

number 4. The way we express this idea of the value of the function as x  nears 2 is to say the 
limit of the function as x  approaches 2 is 4. More formally, we write:  
 

2
lim ( ) 4
→

=
x

f x  

 
which reads, as x  approaches 2, the limit of the function is equal to 4.  
 
Notice as well that the value of the function at 2=x  is also equal to 4, since 
 

(2) 2 2 4= + =f  

 
The fact that the limit of the function as 2→x  and the value of the function at 2=x  are the 
same implies that there is no hole or break in the graph. As we will see shortly, we have just 
described the idea of continuity at a point for the given function.   
 
It is of significant importance to note that even if the function were not defined at 2=x , we 
may have still been interested in the limit of the function as 2→x . Remember, when speaking 
of and evaluating limits, we are not concerned with what the function does at a particular 
point, but rather are interested in what the function does near a particular point. The value of 
the function at 2=x  is really of no interest to us when we are concerning ourselves with limits. 
 
 
2.9.5. Why Limits? How are Limits Useful?  
  
As with many mathematical ideas, at first glance, their actual pragmatic use may appear arcane 
and perplexing. Limits are a prime example of this. For a full understanding of how limits are 
used and how they are employed in a wide variety of applications, one must study differential 
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and integral calculus. We very briefly review these techniques shortly, but a simple example for 
now will suffice to demonstrate the idea of how and why limits are useful.  
 
The Greeks used to love computing areas. They could calculate areas of squares and rectangles 
quite easily. However, computing areas within other shapes that were not so “ordinary” caused 
them great difficulty. For instance, one question they asked was how to compute the area in a 
shape that did not follow traditional forms, such as that given in Figure 2.19 (we are using the 
bell-shaped curve for obvious reasons, but could have chosen from a wide variety of curves).  
 

 
 
Computing areas inside of shapes such as these baffled the Greeks. Their approach to the 
problem was essentially to “divide and conquer” and they would compute several areas of 
smaller shapes within the larger shapes as depicted in Figure 2.20. 
 

 
 
By making the rectangles smaller and smaller and computing the area of each, then summing 
these rectangles, an approximation to the area under the given curve was obtained. Their 
method, known as the method of exhaustion, was imperfect, because it still seemed 
impossible to capture the entire area under the curve. One would have to approximate 
“infinitely” many rectangles in order to get the true area. This is where the idea of the limit 
comes in. We say that as the number of rectangles grows successively larger and larger, in the 
limit, the sum of the areas of these rectangles will be equal to the area under the curve. This, in 
part, was the genius of the calculus “invented” by Newton (1642 – 1726) and Leibnitz (1646 – 
1716), with much help, of course, from the “giants” on whose shoulders they stood in mid-
seventeeth century. They provided a coherent computational system for computing such sums.  
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2.9.6. Reimann Sums 
 
These sums were later to be refined as Riemann sums (named after the mathematician 
Bernhard Riemann (1826 - 1866)), and helped form the theory of Riemann integration. We will 
review integration shortly. The important point for now is to appreciate how the limit concept 
is employed in defining areas under curves. The application to statistics is obvious – if we are 
able to compute areas beneath curves, we are able to compute corresponding areas under 
probability distributions such as the normal curve (to be discussed in Chapter 2). If we are able 
to do that, we are able to then make statements about probability, which extends to 
statements about the phenomena we are modeling.     
 

 
2.9.7. Asymptotes 
 
Limits are helpful in appreciating a very important property exhibited by some curves, that of 
asymptotes. To understand what is an asymptote, consider the function (Figure 2.21):   
 

1
( )

1
=

−
f x

x
 

 

 
 
We can see that as x  approaches 1 from the right-hand side, the values for the function ( )f x  

become larger and larger and do not seem to “settle” on any particular value. In fact, it seems 
as though the values of the function go to infinity, so we write the right-hand limit as: 
 

1

1
lim

1+→
= = 

−x x
 

 
Look at the left-hand limit now. As x  approaches 1 from the left-hand side, the values of the 
function ( )f x  likewise do not seem to “settle” on any given value of the function, but rather 

seem to go on to negative infinity, − . Hence, we write the limit as: 
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1

1
lim

1−→
= = −

−x x
 

 
However,   is not a real number, and so in each case above, the left-hand and right-hand 
limits do not exist. That we have computed the respective limits as   and −  is only to 
communicate the way in which the limit does not exist. These are called infinite limits. The 
vertical line that extends to positive and negative infinity, in this case (i.e., 1x = ), is called a 
vertical asymptote. Note that the area between the curve and 1x =  tends to 0, about which 

1x =  is the center of this limiting effect. In statistics, when the asymptotic behavior of an 
estimator is discussed, it typically refers to the behavior of the estimator as sample size grows 
without bound, with the properties of the estimator evaluated in the limit as n  approaches 
infinity (i.e., n→).   
 

 
2.9.8. Continuity 
 
The idea of continuity is intuitive. If I draw a line on a piece of paper without lifting my pencil, 
the line is a continuous one, it contains no breaks, no discontinuities (at least not at the 
macroscopic level). Mathematically, we must be more precise and exact in our definition. When 
we speak of continuity, we typically speak of the continuity of a function, whether that function 
be linear, quadratic, cubic, or other. As well, when speaking of continuity, we are usually 
interested in knowing whether a function is continuous at a particular point on that function. 
For example, consider the sin( x ) function (Figure 2.22).  
 

 
 
The function surely looks continuous at all points on it, as there does not appear to be any 
“breaks” in the line. However, in speaking of continuity, visual inspection is not enough. Three 
conditions need to be satisfied for a function f  to be deemed continuous at a point x c= , for 

instance, 2x =  on the curve:   
 
1. lim ( )

x c
f x

→
 must exist (i.e., the limit of the function must exist)   
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2. ( )f c  must exist (i.e., the function must be defined at the given point)   

3. lim ( ) ( )
x c

f x f c
→

=  (i.e., the limit of the function must equal the function defined at the given 

point)  
 
If these three conditions are satisfied, we say the function is continuous at x c= . We can also 
speak of continuity on an open interval ( , )a b . What justifies a function being continuous on an 

open interval is if the function is deemed continuous at each point on the interval (Barnett et 
al., 2011).  
 
Having defined continuity so precisely, we are now in a position to define discontinuity. The 
definition of discontinuity is quite easy, because it is essentially the complement of continuity. 
If one or more of conditions 1, 2 or 3 do not hold, then we say the function f  is discontinuous 

at x c=  (Barnett et al., 2011). An example of a function that is discontinuous is: 
  

2 4
( )

2

x
g x

x

−
=

−
 

 
The graph of the function is depicted in Figure 2.23.  
 

 
 
Though the graph at first glance may appear continuous for all values of x , upon closer 
inspection and zooming in on the graph, we notice that at 2x =  there is a break. There is a 
break at 2x =  because the function is not defined at that point:  
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2

2

4
( )

2

2 4 0
(2)

2 2 0

x
g x

x

g

−
=

−

−
= =

−

 

 

When a function results in 
0

0
, it is said to be of indeterminate form. Hence, we would say that 

the function is continuous at all points in the set of real numbers  except for at 2x =  

(Barnett et al., 2011). The function does not exist at 2x =  since 
0

(2)
0

g = . Or, more formally, 

we may write ( , 2) (2, )−    to indicate that the function is continuous on the real line except 

for 2x = , which is why we use round brackets instead of square (which would indicate that 2 is 
included). Now, had we factored the numerator, we would have obtained 
  

2 4 ( 2)( 2)
( ) 2

2 ( 2)

x x x
g x x

x x

− + −
= = = +

− −
 

 

in which case, the function is now defined at 2x = , yielding 4.  
 
 
2.9.9. Why Does Continuity Matter?  
Leaping from Rationalism to Empiricism 
 

For the applied scientist, our discussion of continuity may at first appear quite useless. After all, 
the phenomena of the scientist can rarely if ever be depicted so “neatly” by such perfect curves 
and functions. However, even if “real” objects of nature, as opposed to mathematical ones of 
our minds, are far from continuous, the abstractions we use to model them, in the name of 
mathematical functions and distributions, often are. For instance, when we fit a linear 
regression line to a plot of data, the line we are fitting is continuous at all points. It is a 
beautiful, idealized, perfect line with no breaks. Hence, for starters, having an understanding of 
what continuity means from a purely mathematical point of view is important if for no other 
reason than to understand some of the properties of the functions we do fit to our empirical 
data in the process of statistical modeling.  
  
However, an even more important reason for having an understanding of continuity is that in 
applied statistical analysis, the first question you will need to consider about your variables is 
whether or not they are measured, or at minimum, can be considered measurable, on a 
continuous scale. For instance, if a medical scientist measured heart rate down to say, two 
decimal places, where theoretically any heart rate value can exist on the scale, research-wise, 
we would deem this variable measurable on a continuous scale. This is true even if theoretically 
we are “chopping” the variable off at two decimal places for each measurement. The important 
point for the purpose of statistical analysis is whether or not the variable in question can 
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essentially assume a theoretically infinite number of points along the real line. If it can, then it is 
usually deemed continuous.  Now, if we instead measured heart-rate more qualitatively using 
labels “low” “medium” or “high”, then the variable would not be considered measurable on a 
continuous scale. Such a way of measuring heart-rate would call for an alternative statistical 
model, one which does not assume continuity of variables. Such variables would be considered 
discontinuous or discrete.    
 
To recap, the point of this discussion of continuity from the perspective of pure mathematics is 
simply to understand that in the world of rational abstraction (i.e., the mathematical/logical 
world), continuity really does exist. In the world of applied research, achieving the same 
degree of continuity in our variables is practically impossible, though often times, we will 
nonetheless use statistical models that assume continuity, such as a normal distribution or 
linear regression, on data that is less than continuous.   
 
 
2.9.10. Differential & Integral Calculus 
 

So far, we have reviewed ideas of sets, functions, limits, and continuity. These are the very 
pillars of modern mathematics. Why is this so? One can argue that they are interesting topics in 
and of themselves, but the more “practical” purpose of these fundamental building blocks is 
that they help lay the foundation for calculus, which according to most historians of science is 
the crowning intellectual achievement of modern times. As discussed, calculus evolved through 
centuries, as many mathematical and scientific ideas do, but as mentioned calculus itself is 
usually associated with Newton and Leibnitz who essentially consolidated prior ideas and made 
it the reigning champion of science.  
 
There are two branches of calculus, though they are intimately (and somewhat surprisingly) 
related. The first branch is known as differential calculus, while the second branch is known as 
integral calculus. Differential calculus, generally considered, is concerned with such problems 
as finding tangents to curves at given points along the curve. For instance, consider the graph of 
a logarithmic function in Figure 2.24. 
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Differential calculus is concerned with questions of the sort – What is the slope, or rate of 
change, of the curve at a given point along the x  axis? For example, assume this point is 2x =
, as circled on the graph in Figure 2.25.   
 

 
 
How are we to know the slope at this particular point? To know what the slope is at this point, 
we draw a line tangent to the curve at that point. Though somewhat difficult to visualize on the 
graph, the tangent we drew is touching the curve at exactly one precise point, that of 2x = . 
So, our original question of the slope at the given point of 2x =  boils down to computing the 
slope of the tangent to the curve at 2x = . This slope of the tangent, once computed, we will 
call the derivative of the function at 2x =  . Notationally, for a given function ( )y f x= , the 

derivative of the function is expressed as ' '( )y f x= . Differential calculus, fascinating as it is, is 

very much a set of computational techniques and methods for finding tangents to curves in a 
variety of contexts. In other words, it is a set of techniques for finding derivatives.  
 
 

2.9.11. The Derivative as a Limit 
 
We informally defined the derivative as the slope of the tangent for a given point along the x  
axis. Defining what this actually means mathematically is what we must do next. We need a 
definition of the derivative. To arrive at a definition, we need the idea of limits. The discussion 
is best motivated by a graphical visualization as depicted in Figure 2.26. 
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Note that h , some small quantity, can be greater (a) or less (b) than 0. What happens as h  gets 
closer and closer to 0? That is, what happens as h  gets nearer and nearer to 0? Recall we have 
a name for this process of closeness, and that name is the limit. The limiting position is 
indicated by the dashed line in Figure 2.26. Hence, we are interested in knowing what happens 
to the difference or “change” ( ) ( )f x h f x+ −  on the ordinate axis relative to the change in h  

on the abscissa as that change goes to zero. We call this rate of change, the derivative, and 
define it formally for function ( )=y f x  as: 

 

0

( ) ( )
'( ) lim

→

+ −
=

h

f x h f x
f x

h
 

 
assuming the given limit exists (Barnett et al., 2011). Note carefully what the derivative actually 
is. It is simply the rate of change of one difference (i.e., the difference along the ordinate) 
relative to the rate of change of another difference (i.e., the difference along the abscissa). 
However, it invokes the limit concept to describe 0h→ . That is, the limit concept describes 
infinitesimal change. A more physical interpretation is that it is the instantaneous rate of 
change of the function relative to x .   
 
As already mentioned, sometimes the derivative of a function for a particular range of values 
does not exist. Such functions are those for which it is impossible to draw tangents at those 
given points. For instance, one such function is the absolute function, ( ) | |f x x= , already 

discussed and depicted again in Figure 2.27.  
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For this function, it becomes impossible to compute a derivative at 0x =  because of the sharp 
turn taken by the curve at that point. Even though the function is continuous at 0x = , the 
function is not differentiable at 0x = . Hence, given that not all functions are differentiable at 
all points, it becomes convenient to be able to specify ranges of intervals for which a function is 
differentiable. In general, we can say that if the derivative '( )f x  exists for each x  in the open 

interval ( , )a b , then the function f  is considered to be differentiable over that interval, ( , )a b .  

 
 
2.9.12. Derivative of a Linear Function 
 
To better understand just what is a derivative, it is helpful to consider the absolute easiest case. 
We have said that essentially, interpreted geometrically, the derivative is the slope of a 
tangent. If this is true, then what might be the derivative of a linear function? If you are 
understanding the nature of a derivative, then the answer should immediately come to mind. 
The derivative of a linear function is equal simply to the slope of the line. For instance, consider 
the linear function having slope equal to 5 (i.e., “b ”) and intercept equal to 3 (i.e., “ a ”):     
 

( )

5 3

f x bx a

y x

= +

= +
 

 

According to the power rule of differentiation10, the derivative of this function is equal to 
'( ) 5f x = . To demonstrate this algebraically, we start with the original definition of a derivative 

and simply substitute into that expression our linear function. More generally, we can write:  
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0

( ) ( ) [ ( ) ] [ ]
lim
h

f x h f x b x h a bx a

h h

bx bh a bx a

h

bh

h

b

→

+ − + + − +
=

+ + − −
=

=

=

 

 

We see that the derivative of a linear function is simply the slope, b . 
 
Oftentimes we wish to take derivatives of functions while holding certain variables constant. 
For example, suppose we wish to compute the derivative ( )f x  while holding a second variable 

z constant. For this we compute what are called partial derivatives. As an example, consider 
the following function:  

2( ) 2 5f x x z= +  

 

If we wished to compute the derivative of y  with respect to x  while simultaneously holding z  

constant, we would compute:  
'( ) 4f x x=  

 

Quite simply, all we did was apply the power rule to 22x . In our discussion of linear regression 
in Chapter 7, partial differentiation is used in obtaining the least-squares normal equations.  
 

 
2.9.13. Using Derivatives: 
Finding Minima and Maxima of Functions 
 
Among the most popular uses of differentiation in applied mathematics is that of learning of 
the behavior of curves. Just as a psychologist might be interested in learning about the behavior 
of an individual, the mathematician is interested in learning of the behavior of functions. 
Consider once more the sin function, sin( )x  (Figure 2.28).  

 



APPENDIX PART II: MATHEMATICS AND PROBABILITY THEORY FOR STATISTICS 
Copyright Daniel J. Denis, Ph.D. 2021 – updated July 13, 2021 
 

 

46 
 

 
 
We may ask many questions about this curve, but one question of high importance in 
optimization problems is to locate areas on the curve where the function (i.e., the set of y  

values) attains a maximum or a minimum value. For instance, between the values of 0x =  and 
2x = , at what value of x  does the function achieve a maximum? By “maximum” we mean the 

greatest value within that open interval. We can see by inspection that it is probably slightly 
greater than the value 1.5x = , but to know for certain, and here is where the utility of calculus 
comes in, we can use the fact that the highest point of the curve must be the location where 
the derivative (denoted by dy/dx in Figure 2.28) of the function in the interval (0, 2)  is equal to 

0 . This fact is implied by a result known as Rolle’s theorem (see Bartle and Sherbert, 2011). 
That is, graphically, the maximum in the interval (0, 2)  occurs where the slope of the function is 

equal to 0, as indicated by the horizontal line. 
  
Hence, when we set the derivative of the function equal to 0, we are able to solve for the local 
maximum (i.e., by “local” we mean in a particular neighborhood of points). Likewise, we can 
also learn where a function attains a local minimum through a similar strategy, that of setting 
the derivative of the function equal to 0. This is one very common use of derivatives in science, 
that of finding maxima and minima of a variety of functions. Optimization algorithms often 
feature the search for such extrema. In structural equation modeling, for instance, Lagrangian 
multipliers are regularly used in maximizing functions subject to specific constraints. For a brief 
discussion, see Mulaik (2009, pp. 60-61). For a general discussion of optimization methods, 
refer to Meerschaert (2007, Chapter 3).      
 
 
2.9.14. The Integral 
 
If we let f  be a continuous function on a closed interval [ , ]a b , then the definite integral of f  

from a  to b  is defined as:  

( )dx
b

a
f x  
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The integrand is ( )f x , the lower limit of integration is a , and the upper limit of integration is 

b . The definite integral represents the cumulative sum (the limit of Riemann sums) of the 
signed areas between the graph of f  and the x  axis from x a=  to x b= , where the areas 

above the x  axis are counted positively and the areas below the x  axis are counted negatively 
(see Figure 2.29, where only positive areas are shown).  
 

 
 
There is sometimes a misunderstanding that area can only be computationally positive, but the 
definition of the definite integral tells us different. However, area itself is typically defined to be 
a positive quantity (Barnett et al., 2011). In most statistics texts, the areas under the standard 
normal distribution are given in appendices. These areas were computed by integrating under 
the normal curve (though the integral in this case is much more complex than it may appear). 
Analogously, areas under the curves of other distributions such as t or F can be established. 
These areas under curves are then used to make statements about probability. Hence, even if 
one does not use integration in applied statistical work and research, it is important 
nonetheless to recognize where integration plays a role in determining probabilities in normal 
and other densities. Most of the “heavy-lifting” computation is seated in calculus, and what we 
see in the typical applied statistics textbook is the end result.   
 
   
2.9.15. Calculus in R 
 
Computing derivatives and integrals manually can at best be impractical and time consuming, 
and at worst, utterly exhausting. In this day of computing power, mental energy spent on 
computing derivatives is almost akin to doing long division before calculators became widely 
available. This is not to say that working through differentiation problems by hand is not a great 
exercise to help master technical skill, but being a “human computer” is a skill less and less 
required now that we have computing machines that do it far better than us with far better 
accuracy! Fortunately, we can compute derivatives in R. For example, suppose we wanted to 

compute the derivative of the polynomial function 4( ) 5f x x= . Through using the power rule, 

we know the derivative is equal to 3'( ) 20f x x= . To perform this computation in R, we 

compute:  
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> D(expression(5*x^4), "x") 

5 * (4 * x^3) 

 

That is, the derivative of 4( ) 5f x x=  is 3 3'( ) 5(4) 20f x x x= = . Integrals can also be computed in 

R and other software. See Crawley (2013, p. 339-340) for an example of computing areas under 
the curve and also for an example of computing a differential equation, which is an equation 
that contains one or more derivatives in it. These equations are quite common in areas such as 
biology and physics. Refer to Kline (1977, pp. 848-865) for a readable introduction.     
 
 
2.9.16. Vectors and Matrices 
 
Ordinary algebra is done on scalars, which are essentially “ordinary” numbers.11 For instance, in 
the linear equation y bx a= + , both the “inputs” and “outputs” of the function are typically 

scalars. Using scalars works well in one-dimensional data analysis, that is, where  is 

understood to be raised to the first power, 1. We denote higher dimensions and additional 
axes by raising  to higher powers. For instance, for pairs of observations ( , )x y  we are in the 

realm of 2 . The set of ordered triples is denoted by 3 . Theoretically, there is no limit to how 
many dimensions in which we can work. In complex multivariate analysis for instance, we could 

be working in 7 . And theoretically, a mathematician can work in as many dimensions as he or 
she chooses (and often does). These dimensions or “spaces” are usually referred to as 
Euclidean spaces. The number of dimensions a scientist works in, of course, will typically be 
dictated by the empirical context in which she finds herself in. For example, data reduction 
techniques on observed variables can necessitate working in extremely large dimensions, 
though as we will discuss later in the book, the goal is often to reduce the dimensionality of the 
data to a fewer number.  
 
Most textbooks on multivariate analysis include either individual chapters or appendices on 
essential matrix theory. There are also many books that feature the study of matrix theory with 
applications to statistics. In addition to the brief introduction and overview we provide in this 
appendix, some of the better sources for matrix algebra include Searle (1982) and Harville 
(1997). For a complete and very well-written introductory text on linear algebra and matrix 
operations the reader should refer to Anton and Rorres (2000). Strang (1993) is also a great 
reference.    
 
Why Vectors and Matrices?  
 

When we work in higher dimensions such as 2  and 3 , scalar algebra will not suffice, and we 
require a new notation to deal with these higher dimensions. Geometrically, a vector is simply a 
directed line segment on a Cartesian coordinate system. That is, it has magnitude and 
direction. Outside of physical applications, vectors may also generally be referred to as arrays 
of numbers (e.g., in computer science). The end or tip of the vector denotes the joint 



APPENDIX PART II: MATHEMATICS AND PROBABILITY THEORY FOR STATISTICS 
Copyright Daniel J. Denis, Ph.D. 2021 – updated July 13, 2021 
 

 

49 
 

coordinates for the given observation. For instance, consider the following vector v  on 
variables ,x y , respectively: 

1

3

 
=  
 

v  

 
The vector v  represents the point (1, 3), and can be visualized in Figure 2.30.  
 

 
 

The vector denotes the “position” on these variables in the 2  plane. We adopt the convention 
to use small bold type to denote vectors. Collections of vectors that are closed under addition 
and multiplication are generally known as vector spaces in linear algebra. A subset of vectors in 
that space is referred to as a vector subspace.   
 
Let us now add another dimension z  and include the point 5: 
  

1

3

5

 
 

=
 
  

v  

 

Figure 2.31 denotes a visualization of this three-dimensional space:  
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As an applied example, suppose we wanted to represent data on IQ (intelligence) and GPA (i.e., 
grade-point average). We could then extend the vector to be: 
 

100 3.8

90 3.6

85 3.4

 
 

=
 
  

V  

 

where 100, 90, 85 are IQ scores, and 3.8, 3.6, 3.4 are GPA scores.  
 
Notice that we have changed the name of the “object” from v  to V  to denote what we call a 
matrix. A matrix is simply many vectors in an array. In general, we may denote a matrix A  as 
 

11 12 1

21 22 2

1

. . .

. . .

.

.

.

p

p

m

a a a

a a a

a

 
 
 
 

=  
 
 
 
  

A  

 

having m  rows and p  columns.  

 
As in scalar algebra, we are able to add, subtract, and multiply vectors and matrices. 
Understanding a bit of how these operations work on matrices is important because it helps 
demystify somewhat what occurs in multivariate techniques such as multiple regression and 
principal component analysis (Chapter 13). We revisit these multidimensional ideas when we 
tackle those topics later on in the book.    
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A vector may be elongated or shortened by multiplying that vector by a constant. For instance, 
consider once more the vector v : 
  

1

3

 
=  
 

v  

 
Suppose we wanted to maintain the direction of the vector, but make the vector longer by a 
factor of 2. To do this, we multiply the elements of the vector by the scalar 2: 
  

(2)1 2
2

(2)3 6

   
= =   
   

v  

 

which graphically is depicted in Figure 2.32.  
 

 
 
In general then, to influence the length of a vector v  by a scalar  , we multiply that vector 
element by element by the scalar:  

1

2

3

( )

( )

( )

v

v

v



 



 
 

=
 
  

v  

 
For two vectors or matrices to be added or subtracted, they must be of the same dimension. 
That is, they must have the same number of rows and columns. For example, consider the 
vectors u  and v :  
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1 1

2 2

3 3

,

u v

u v

u v

   
   

= =
   
      

u v  

 

Notice that both u  and v  are of the same dimension (3 rows, 1 column). To add these two 
vectors, we add element by element:  

1 1

2 2

3 3

u v

u v

u v

+ 
 

+ = +
 
 + 

u v  

 

Likewise, to add matrices A  and B , we add element by element:  
 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 

=
 
  

A  

11 12 13

21 22 23

31 32 33

b b b

b b b

b b b

 
 

=
 
  

B  

 

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

a b a b a b

a b a b a b

a b a b a b

+ + + 
 

+ = + + +
 
 + + + 

A B  

 
When multiplying matrices, say, A  and C, the product AC is defined only for matrices for which 
the number of columns in A (left matrix) is equal to the number of rows in C (right matrix). 
When the number of columns in the first (left) matrix is equal to the number of rows in the 
second (right) matrix, we say the matrices are conformable for multiplication.   
 
For example, let matrices A and C be defined as:  
 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 

=
 
  

A      

11 12

21 22

31 32

c c

c c

c c

 
 

=
 
  

C  

 
Notice that the number of columns in A is equal to the number of rows in C. That is, there are 
three columns in A and three rows in C. They are conformable for multiplication so long as we 
wish to generate the product AC. Notice that in this case, the product CA is not defined, since 
the number of columns in C (equal to 2) is not equal to the number of rows in A (equal to 3). 
Hence, we see that contrary to ordinary simple algebra on scalars, the order of matrix 
multiplication is important.   
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To get the product AC, we carry on with multiplying each element in respective rows of A 
against each element in respective columns of C: 
 

11 12 13 11 11 12 21 13 31 11 12 12 22 13 3211 12

21 22 23 21 22 21 11 22 21 23 31 21 12 22 22 23 32

31 3231 32 33 31 11 32 21 33 31 31 12 32 22 33 32

a a a a c a c a c a c a c a cc c

a a a c c a c a c a c a c a c a c

c ca a a a c a c a c a c a c a c

+ + + +    
    

= = + + + +
    
     + + + +    

AC  

 
 
2.10. Appendix Summary & Highlights 
 

• Gaining an understanding of essential mathematics and probability is important for any 
work using or applying statistics to empirical problems. 
  

• The theory of sets, though studied for its own sake, is useful to the applied researcher in 
understanding the distinction between a sample and a population. Basic set operations 
such as unions and intersections are also important to master as they are the same 
tools used in elementary probability theory.  

 

• A mathematical relation is a subset of the Cartesian product. A function is a 
mathematical relation in which each element of the domain is paired with only one 
element of the range.  
 

• Sets of numbers include the natural numbers, integers, the rational numbers, and 
irrational numbers, among others. In typical data analysis, numbers are assumed to be 
real numbers (i.e., rational or irrational).  
 

• Probability is the language of uncertainty and is a deep philosophical topic. Though the 
mathematical theory of probability is well-defined and has been axiomatized, how to 
conceptualize probability is a more difficult problem. Traditional camps include the 
frequentist and subjectivist perspectives.  
 

• Virtually all of scientific endeavors, in one way or another, is about estimating 
conditional probabilities of interest. Scientists are usually not very interested in 
unconditional probabilities, but are much more interested in the probability of events 
given certain specific conditions. Ideas of conditional probabilities pervade virtually all 
statistical methods.   
 

• Two events in probability are considered mutually exclusive or disjoint if the probability 
of their intersection is equal to zero.  
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• Two events are statistically independent if the probability of one event does not alter or 
change the probability of the second event. A lack of independence, by itself, is not 
enough to substantiate a physical directional process.   
 

• The law of large numbers says that if an experiment is repeated many times under 
identical conditions, the relative frequency of the event will approach the true 
probability of the event as the number of trials increases. In the limit, as sample size 
grows without bound, the true probability of the event is theoretically attainable.   
 

• The subjective interpretation of probability overcomes some of the logical difficulties 
with the law of large numbers and instead designates the probability of an event as 
one’s belief or opinion.  

 

• Bayes’ Theorem is an equation used to invert probabilities and is useful in situations 
such as when diagnostic information is obtained as a sign that can inform us of the 
probability of disease. The theorem requires the specifying of a prior probability, which 
is sometimes considered controversial, but in many cases can be regarded as simply the 
base rate of the event in question for the given population under study.  

 

• Statistical inference is a process of drawing conclusions about parameters based on 
information provided by samples on which statistics are computed.  
 

• Deciding to reject a null hypothesis should ideally incorporate, even if informally, an 
estimate of the costs associated with making a wrong decision.  
 

• The vertical-line test can be used as a quick visual test to ascertain the existence of a 
function by its graph.  

 

• The idea of a limit in calculus is one of great historical and scientific importance because 
it laid the groundwork for the fields of differential and integral calculus. Limits concern 
themselves with the behavior of functions near particular points on a curve rather than 
the behavior of functions at those points.  
 

• One use of limits is in conceptualizing the process of integration in calculus. When we 
take the limit of areas under a curve, we are determining the area under that curve. The 
process for this is called Riemann integration.  
 

• Differential calculus concerns itself with the determination of the slopes of tangents at 
a given point on a curve. Like integration, differential calculus is heavily based on the 
limit concept.  
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• The idea of continuity is that of drawing a line without lifting one’s pencil off the page. A 
more formal definition of continuity has been developed by mathematicians that make 
it more precise and exact.  
 

• For the research scientist, an understanding of continuity is important if for no other 
reason than to be able to recognize when his or her variables can be considered 
continuous or discrete for the purpose of statistical analysis. 
  

• Vectors and matrices are used to display data in higher than a single dimension. 
Geometrically, vectors are directed line segments with both magnitude and direction, 
which is their typical physics meaning (in other applications, such as in computer 
science, they can be regarded simply as arrays of numbers). Matrices are collections of 
vectors (or again, a collection of arrays). Vectors and matrices are needed in the study of 
multivariate methods in which one regularly works in greater than a single dimension.   

 
 

FOOTNOTES 
 
1. A classic introduction to number theory is Hardy, G.H., Wright, E. M., Wiles, A., Heath-Brown, 
R. and Silverman, J. (2008). An introduction to the theory of numbers. 
 
2. An example of what was thought to be an axiom (though different in flavor to the probability 
axioms we are discussing), but was later proved not to be an axiom is Euclid’s 5th postulate. See 
Boyer (1991, p. 106) for details.    
 
3. The concept of a limit is briefly discussed later in the appendix.   
 
4. A more general form of Bayes’ theorem is the following:  
 

1 1 2 2

( / ) ( )
( | )

( | ) ( ) ( | ) ( ) ... ( | ) ( )

j j

j

J J

P B A P A
P A B

P B A P A P B A P A P B A P A
=

+ + +
 

 
Note the parallel between the first formulation of Bayes’ theorem given in (2.5) and the 
extended form. Both formulations have in common the partitioning of event A, only that in the 

first case, the partitioning is only between two possibilities, A and A , whereas in the general 

formulation, it is between 1A  and JA  possibilities (Winkler, 2003).  

 
5. Perhaps from a more existential or metaphysical perspective, all events from the beginning 
of what we call “time” to the end know no temporal order, making all events, regardless of 
time, inexorably “linked.” This would make one’s suicide ten years ago perhaps contingent on 
an event in the present day. We rule out such possibilities, however.  
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6. Of course, those who specialize in artificial intelligence may challenge this statement. My 
purpose is not to initiate debate or controversy over systems that aid us in decision-making. My 
point is simply that if we do not first have a solid grasp of what we are computing or subjecting 
to the given algorithm, we are on shaky ground when attempting to interpret the output. This 
holds true in one’s use of sophisticated scientific or statistical software just as much as it is true 
in the use of one’s pocket calculator. Statistical software is best conceived, for our purposes, as 
nothing more than a sophisticated calculator. It is the interpretation of what the software 
produces that requires a diligent study of statistical theory and methodological (and 
philosophical) principles.    
 
7. For a historical and very readable account of the Fisherian vs. Neyman-Pearson camps, see 
Denis (2004).   
 
8. For example, the suffering of a war veteran not diagnosed may have more serious 
consequences than treating that war veteran even if in actuality he or she does not suffer from 
the disorder. Of course, the costs associated with treating someone who does not have a 
disorder may in itself constitute a financial cost, but perhaps not as serious as the error of 
failing to diagnose someone with a real mental health condition.  
 
9. As we shall discuss, however, functions do not necessarily imply a cause-and-effect relation.  
 
10. The power rule is just one of several differentiation rules used for the computation of 

derivatives. For a function ( ) nf x x= , the derivative is equal to 1'( ) ( )nf x n x −= . For a thorough 

treatment of calculus, see Salas, Hille and Etgen (1999).    
 
11. A more precise and useful definition of a scalar in mathematics, especially as it relates to 
multivariate analysis, is that it is a quantity that multiplies vectors in a vector space.  
 
 

REVIEW EXERCISES 
 
2.1. Discuss the quote of Einstein given at the opening of this appendix: 
 

How can it be that mathematics, being after all a product of human thought which is 
independent of experience, is so admirably appropriate to the objects of reality? . . . 
As far as the laws of mathematics refer to reality, they are not certain, and as far as 
they are certain, they do not refer to reality. (Einstein, p. 28)  

 
Specifically, why are the laws of mathematics, as they refer to reality, not certain?  
 
2.2. Define what is meant by a set in mathematics, and give a couple practical examples of sets.  
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2.3. What might be the difficulty in defining the set of all beautiful clouds in the sky? Under 
what condition(s) could such a set exist, and under what conditions could such a set not exist?  
 
2.4. Distinguish between a subset and a proper subset. Under what condition(s) are they 
equal?  
 
2.5. Distinguish between the union of sets and the intersection of sets.  
 
2.6. Discuss the following notation with regard to the union of sets. Describe exactly what is 
specified.  

3

1

n

n

A
=

 

 

2.7. Define what is meant by a Cartesian product, and then define what is meant by a 
mathematical relation on that Cartesian product. 
   
2.8. Distinguish between the natural numbers and the integers. 
 
2.9. Distinguish between a rational and an irrational number.  
 

2.10. What makes the number 2  irrational? Can you think of another irrational number?   
 
2.11. Define a population vs. a sample in terms of sets.  
 
2.12. Define an event in probability theory.  
 
2.13. Define an experiment in probability theory.  
 
2.14. First, discuss the nature of an axiom in mathematics, then state the axioms of the theory 
of mathematical probability.  
 
2.15. Why is it that even if two people disagree on how to define probabilities, they will still 
likely (though not always) agree with the axioms of probability and the mathematical theory on 
which probability is based?   
 
2.16. Compare and contrast an unconditional probability to a conditional one.  
 
2.17. Give a research example where the unconditional probability of an event would most 
likely be equal to the conditional probability of that event, and specify the condition you are 
imposing.  
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2.18. Discuss how the idea of statistical independence arises from a consideration of the 
following conditional probability:  

( )
( | )

( )

p A B
p A B

p B


=  

 
2.19. Define what is meant by mutual exclusiveness or to say two events are disjoint.  
 
2.20. Compare and contrast mutual exclusiveness with statistical independence. Specifically, 
why is it usually true that two events that are mutually exclusive cannot typically 
simultaneously be independent?  
 
2.21. Why is it that in practice, demonstrating a violation of independence is very difficult? For 
example, why is it that demonstrating that hiring practices are independent or dependent of 
race is a very difficult position to substantiate?  
 
2.22. Give a physical scenario in which the events heads and tails are mutually exclusive, and 
then one where these same two events are not mutually exclusive. How does the context 
matter in which we speak of mutual exclusiveness?  
 
2.23. Distinguish between the frequentist vs. subjectivist interpretations of probability, and 
discuss why the mathematical theory of probability cannot resolve the debate.   
 
2.24. What is often cited as a philosophical problem with the law of large numbers?   
 
2.25. Give an example (not featured in the appendix) where it would be virtually impossible to 
quantify probability using a frequentist approach and how a subjective version of probability 
would allow for such a quantification.  
 
2.26. Discuss what is meant by the following picture. Do you agree? Disagree? Why or why not? 
  

 
 
2.27. Describe the overall purpose of Bayes’ Theorem. How is it relevant in the overall scheme 
of things, especially as relatable to scientific practice?   
 
2.28. Discuss why the following statement is true: 
 

( | ) ( | )p D H p H D  



APPENDIX PART II: MATHEMATICS AND PROBABILITY THEORY FOR STATISTICS 
Copyright Daniel J. Denis, Ph.D. 2021 – updated July 13, 2021 
 

 

59 
 

2.29. Discuss why prior probabilities needed to effectively use Bayes’ theorem can be 
somewhat controversial. Why might prior probabilities be difficult to estimate?  
 
2.30. How are base rates important in the estimation of probabilities?  
 
2.31. Outline a simple example (other than one featuring a coin) of statistical inference, clearly 
detailing the steps involved in the process.  
 
2.32. Distinguish between a type I and a type II error. How might one error be potentially no 
more problematic to make than the other?   
 
2.33. Discuss how ignoring the stakes involved in decision making (i.e., type I and type II error 
rates) inhibits one to make a truly rational and coherent decision regarding a hypothesis.  
 
2.34. Define a polynomial in mathematics.  
 
2.35. Discuss the precise definition of a function in mathematics and why it can be said that 
functional statements are what virtually every science is about.   
 
2.36. Give three substantive examples of function statements from an area of investigation of 
your interest.  
 

2.37. Consider the equation 2( ) 3f x x= + . Is it that of a function? Why or why not?  

 

2.38. Consider the equation 2x y= . Is it that of a function? Why or why not?  

 
2.39. Explain how the vertical-line test is used to determine whether a given equation is or is 
not a function.  
 
2.40. Define a rational function, and give an example of one.   
 
2.41. Define and discuss what is meant by a limit in calculus, and give an example using a linear 
function.  
 
2.42. Define continuity in mathematics. Give three conditions that must exist for a function to 
be deemed continuous. Then, discuss how the concept of continuity is used in applied research.  
 
2.43. Discuss the nature of differential calculus. In a sentence or two, describe the goal and 
purpose of differential calculus.  
 
2.44. What is a derivative in calculus, and state one popular use of derivatives in calculus and in 
science in general.   
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2.45. What is an integral in calculus, and state one popular use of integrals in calculus and in 
science in general.  
 
2.46. Define what is meant by a vector in mathematics. What is a matrix? Why and how are 
these useful in applied statistics and methodology? 
 
 
Further Discussion & Activities 
 
2.47. The base-rate fallacy generally refers to individuals’ failure to incorporate base rate 
information into probability estimates. Read Bar-Hillel, M. (1980) and discuss the nature of the 
problem and some of the causes of the phenomenon. 
 
2.48. Calculus originated largely in the context of physical applications and was marveled 
mostly for its utility in addressing problems in areas of physics, astronomy, etc. It was only after 
calculus was deemed a success did mathematicians begin to investigate the logical foundations 
on which it was based, and to their alarm, discovered such a basis to be lacking. It was 
mathematicians in primarily the 1800s who undertook the job of putting calculus on a so-called  
rigorous footing. The new field became known as analysis. Concepts in this field are essentially 
deeper looks at the logical basis on which calculus is built. A brief overview of the origins of so-
called “rigorous calculus” is given by historian of science Grabiner (1983). Read this paper and 
briefly discuss and summarize many of the features that distinguish calculus from analysis.  
 


