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PREFACE

Technology is not progress. Empathy is. The dogs are watching us.

Now in its second edition, this book provides a general introduction and overview of univariate
through to multivariate statistical modeling techniques typically used in the social, behavioral, and
related sciences. Students reading this book will come from a variety of fields, including psychology,
sociology, education, political science, biology, medicine, economics, business, forestry, nursing,
chemistry, law, among others. The book should be of interest to anyone who desires a relatively com-
pact and succinct survey and overview of statistical techniques useful for analyzing data in these
fields, while also wanting to understand and appreciate some of the theory behind these tools. Spanning
several statistical methods, the focus of the book is naturally one of breadth than of depth into any one
particular technique, focusing on the unifying principles as well as what substantively (scientifically)
can or cannot be concluded from a method when applied to real data. These are topics usually encoun-
tered by upper division undergraduate or beginning graduate students in the aforementioned fields.

The first edition has also been used widely as a reference resource for both students and researchers
working on dissertations, manuscripts, and other publications. It is hoped to provide the student with a
“big picture” overview of how applied statistical modeling works, while at the same time providing him
or her the opportunity in many places to implement, to some extent at least, many of these models using
SPSS and/or R software. References and recommendations for further reading are provided throughout
the text for readers who wish to pursue these topics further. Each topic and software demonstration can
literally be “unpacked” into a deeper discussion, and so long as the reader is aware of this, theywill appre-
ciate this book for what it is—a bird’s eye view of applied statistics, and not the “one and only” source
they should refer to when conducting analyses. The book does not pretend to be a complete compendium
of each statistical method it discusses, but rather is a survey of each method in hopes of conveying how
these methods generally “work,”what technical elements unites virtually all of them, and the benefits and
limitations of how they may be used in addressing scientific questions.

This second edition has been revised to make the book clearer and more accessible compared to
the first edition. The book also contains a gentle introduction (“foot in the door”) to a variety of
new topics that did not appear in the first edition. All chapters have been edited to varying degrees
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to improve clarity of prose and in places provide more information or clarification of the concept under
discussion. The following is a summary of updates and revisions in the second edition:

• Significant revision and corrections of errata appearing in the first edition. The second edition is
a stronger and better book because it has been thoroughly re-read and edited in places where
rewording was required. In this sense, the second edition has undergone very much “vetting”
since the first edition. At the same time, some sections have been entirely deleted from the first
edition due to their explanations being too brief to make them worthwhile. These are sections that
did not seem to “work” in the first edition, so they were omitted in the second. This hopefully will
help improve the “flow” of the book without the reader stumbling across sections that are insuf-
ficiently explained.

• Bolded text is used quite liberally to indicate emphasis and signal areas that are key for a good
understanding of applied statistics. “Accentuate” bold text when reading the book. They are the
key words and themes around which the book was built.

• The images in many chapters have been reproduced to make them clearer and more detailed than
in the first edition. This is thanks to Wiley’s team who has reconstructed many of the figures and
diagrams.

• Chapter 2 now includes a brief survey of psychometric validity and reliability, along with a
simple demonstration of computing Cronbach’s alpha in SPSS.

• Chapter 3 features a bit more detail and better introduction on the nature of nonparametric sta-
tistics in the context of the analysis of variance.

• Chapters 7 and 8 on regression have been revised and edited in places to include expanded or new
discussion, including a demonstration of power analysis using G∗Power in addition to R.Chapter
8 now includes a more thorough and deeper discussion of model selection, and also features a new
section that briefly introduces ridge and lasso regression, both penalized regression methods.

• Chapter 9 on interactions in regression now contains a brief software demonstration of the anal-
ysis of covariance (ANCOVA), conceptualized as a special case of the wider regression model.
Some of the theory of the first edition has been removed as it did not seem to serve its intended
goal. For readers who would like to delve into the subject of interactions in regression more
deeply, additional sources and recommendations are provided.

• Chapter 11 now includes R and SPSS code for obtaining Hotelling’s T2. While readers can sim-
ply use a MANOVA program to evaluate mean vector differences on two groups, the inclusion of
the relevant software code for Hotelling’s T2 is useful to make the MANOVA chapter a bit more
complete.

• Chapter 14 on exploratory factor analysis now concludes with a brief introduction and overview
of the technique ofmultidimensional scaling should readers wish to pursue this topic further. By
relating the technique somewhat to previously learned techniques, the reader is encouraged to see
the learning of new techniques as extending their current knowledge base. This is due to the book
emphasizing foundations and fundamental principles of applied statistics, rather than a series of
topics seemingly unrelated.

• Chapter 15 has been expanded slightly to include a basic demonstration of data analysis using
AMOS software. Many users who perform SEM models use AMOS instead of R, and so it
seemed appropriate to include a small sample of AMOS output in the context of building a simple
path model. Additional references for learning and using AMOS are also provided for those who
wish to venture further into structural equation models.

• The inclusion in select places brief discussions of, and references to, “Big Data,” as well as data
science and machine learning, and why understanding fundamentals and classical statistics is
even more important today than ever before in light of these advancements. These fields are
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heavily computational, but for the most part, have technical origins in fundamental statistics and
mathematics.We try our best to key the reader to where these topics “fit” in the wider data analytic
landscape, so if they choose to embark on these topics in future study, or further their study of
computer science, for example, they have a sense of howmany of these techniques build on foun-
dational elements.

• Select chapter exercises have been edited as to clarify what they are asking, while a few others
have been deleted since they did not seem to work well in the first edition of the book. The major-
ity of the exercises remain conceptually-based as to encourage a deep and far-reaching under-
standing of the material. Select data-analytic exercises have been either edited or substituted for
better ones.

• Additional references and citations have been added to supplement the book which already fea-
tures many classic references to pioneers in applied statistics.

• An on-line Appendix featuring a review of essential mathematics is available at
www.datapsyc.com.
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1
PRELIMINARY CONSIDERATIONS

Still, social science is possible, and needs a strong empirical component. Even statistical technique may
prove useful – from time to time.

(Freedman, 1987, As Others See Us: A Case in Path Analysis, p. 125)

Before we delve into the complexities and details that is the field of applied statistics, we first lightly
survey some germane philosophical issues that lay at the heart of where statistics fit in the bigger pic-
ture of science. Though this book is primarily about applied statistical modeling, the end-goal is to use
statistical modeling in the context of scientific exploration and discovery. To have an appreciation for
how statistics are used in science, one must first have a sense of some essential foundations so that one
can situate where statistics finds itself within the larger frame of scientific investigation.

1.1 THE PHILOSOPHICAL BASES OF KNOWLEDGE:
RATIONALISTIC VERSUS EMPIRICIST PURSUITS

All knowledge can be said to be based on fundamental philosophical assumptions, and hence empirical
knowledge derived from the sciences is no different. There have, historically, been two means by
which knowledge is thought to be attained. The rationalist derives knowledge primarily from mental,
cognitive pursuits. In this sense, “real objects” are those originating from the mind via reasoning and
the like, rather than obtained empirically. The empiricist, on the other hand, derives knowledge from
experience, that is, one might crudely say, “objective” reality. To the empiricist, knowledge is in the
form of tangible objects in the “real world.”

Ideally, science should possess a healthy blend of both perspectives. On the one hand, science
should, of course, be grounded in objective objects. The objects one studies should be independent
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of the psychical realm. A cup of coffee is a cup of coffee regardless of our belief or theory about the
existence of the cup. On the other hand, void of any rationalist activity, science becomes the study of
objects for which we are not allowed to assign meaning. For example, the behavior of a pigeon in a
Skinner box1 (see Figure 1.1) can be documented as to the number of times it presses on the lever for
the reward of a food pellet. That the pigeon presses on the lever is empirical reality. Why the pigeon
presses on the level is theoretical speculation, of which there could be many competing possibilities.
Observing data is fine, but without theory, we have very little “guidance” to either explain current
observations or predict new ones. B.F. Skinner’s theory of operant conditioning, being such that
the pigeon presses the lever because it is reinforced to do so, is a prime example of where a wedding
of rationalism and empiricism takes place. The theory attempts to explain or account for the pigeon’s
behavior. It is a narrative for why the pigeon does what it does.

Of course, theorizing can go too far, much too far. One must be cautious to not “over-theorize” too
emphatically without acknowledging the absence of empirical backing. Is there anything wrong with
hypothesizing that cloudy days are associated with depressive moods? No, so long as you are prepared
to state what evidence exists that may support or contradict your theory. If no evidence exists, you may
still theorize, but you owe it to your audience to admit the lack of current empirical support for your
hypothesis.

As an example of “heightened theorizing,” recall the missingMalaysia Airlines Flight 370where a
Being 777 aircraft vanished, apparently without a trace, originally destined from Kuala Lumpur to Bei-
jing in March of 2014. Media were sometimes criticized for proposing numerous theories as to its dis-
appearance, ranging from the plane being flown into a hidden location to it being hijacked or a result of
pilot suicide. One theory even speculated that the plane was swallowed by a black hole! Speculation is
fine and theorizing is a necessary scientific as well as human activity, so long as one is up front about
existent available evidence to support the theory one is advancing. Indeed, one could assign probabil-
ities to competing theories and revise such probabilities as new data become available. This is precisely
what Bayesian philosophers and statisticians are wont to do. A theory should only be considered cred-
ible however when empirical reality and the theory coincide (see Figure 1.2). The fit may not be per-
fect, and seldom if ever is, but when the rational coincides well with the empirical, credibility of the

FIGURE 1.1 Observing the behavior of a pigeon in a Skinner box. Source: Dtarazona (1998). https://commons.
wikimedia.org/wiki/File:UNMSM_PsiExperimental_1998_2.jpg. Public Domain.

1 B.F. Skinner was a psychologist known for his theory of operant conditioning within the behaviorist tradition in psychology.
One of Skinner’s primary investigatory tools was that of observing and recording the conditions that would lead a rat, pigeon, or
other animal, to press a lever for a food pellet in a small chamber. This chamber came to be known as the Skinner box. For a read
of Skinner, see Rutherford (2009) and Fancher and Rutherford (2011).
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idea is at least tentatively assured, at least until potentially new evidence debunks it (e.g., the fall of
Newtonian physics).

We must also ensure that our theories are not too convenient of narratives fit to data. If you have
ever witnessed a sporting event where the deciding point occurred by the lucky bounce of a puck in
hockey or the breezy push of a tennis ball in midair, only to hear post-match commentators laud the
winning team or individual as suddenly so much better than the losing team, then you know what “con-
venient narratives” are all about. We must be careful not to exaggerate how well our given theory fits
data simply because a few data points went “our way.” George Box once said that all models are
wrong but some are useful. In any scientific endeavor, guard against falling in love with your theory
or otherwise exaggerating it far beyond what the data suggest. Otherwise, it no longer is a legitimate
theory, but rather is simply your brand and more a product of subjective bias and “career-building”
than anything scientific. After 20 years of advocating a theory, is the researcher you are speaking to
really prepared to “accept” evidence that contradicts his or her theory? They have a lot of stakes in that
theory, their whole career may have been built upon it, are they really willing to accept “defeat” of it?
Indeed, one reason I believe why economic predictions, for instance, are often looked upon with sus-
picion, is because economists, like psychologists (and theoretical physicists, for that matter), are far too
quick to advance theories as though they were near facts. “Sexy theories” sound great and may be mar-
ketable to uncritical consumers and media (make an outlandish claim on cable, you’ll be a hero!), but to
good scientists, theories are always only as good as the data that exist to support them. Science is excit-
ing, to be sure, but should not be overly speculative. If you are looking for fireworks, then you are best
to choose a field other than science.

1.2 WHAT IS A “MODEL”?

The word “model” is perhaps the most popular word featured in textbooks, tutorials, and lectures hav-
ing anything to do with the application of quantitative methods. Attempting to define just what is a
model in statistics can be a bit challenging. We discuss the concept by referring to Everitt’s definition:

A description of the assumed structure of a set of observations that can range from a fairly imprecise verbal
account to, more usually, a formalized mathematical expression of the process assumed to have generated
the observed data. The purpose of such a description is to aid in understanding the data.

(Everitt, 2002, p. 247)

Models, are, essentially, and perhaps somewhat crudely, equations. They are equations fit to data
that attempt to account for how the data came about or were generated in the first place. For example, if
for every hour a student studied for an exam corresponded to exactly a 1-point increase in a student’s
grade, the model that would best explain how this data was generated would be a linear model. Even if

Data

Theory

Model fit

FIGURE 1.2 “Model fit” as an overlap of data with theory.
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the relationship between hours studied and student grade was not perfect, a perfect line might still be
the “best” summary. Models are often used to account for messy or imperfect data.

Another example of a model is the classic Hebbian version of theYerkes–Dodson curve expressing
the relationship between performance and arousal, depicted in Figure 1.3.

The curve is an inverted “U” shape (an approximate parabola) that provides a useful model relating
these two attributes (i.e., performance and arousal). If one exhibits very low arousal, performance will
be minimal. If one exhibits a very high degree of arousal, performance will likely also suffer. However,
if one exhibits a moderate range of arousal, performance will likely be optimal. The model in this case,
as in most cases, does not account for all the data one might collect. The extent to which it accounts for
most of the data is the extent to which the model may be, in general, deemed “useful.” The use of a
model is also enhanced if it can make accurate predictions of future behavior.

As another example of a model, consider the number of O-ring incidents on NASA’s space shuttle
(the fleet is officially, and sadly, retired now) as a function of temperature (Figure 1.4). At very low or
high temperatures, the number of incidents appears to be elevated. A square function seems to ade-
quately model the relationship. Does it account for all points? No. But nonetheless, it provides a fairly
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FIGURE 1.3 Hebbian Yerkes–Dodson performance–arousal curve. Source: Diamond et al. (2007). Licensed
under CC by 3.0.
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good summary of the available data. Some have argued that had NASA had such a model (i.e., essen-
tially the line joining the points) available before Challenger was launched on January 28, 1986, the
launchmay have been delayed and the shuttle and crew saved from disaster.2We feature this data in our
chapter on logistic regression.

Why did George Box say that all models are wrong, some are useful? The reason is that even if we
obtain a perfectly fitting model, there is nothing to say that this is the onlymodel that will account for the
observed data. Some, such as Fox (1997), even encourage divorcing statistical modeling as accounting
for deterministic processes. In discussing the determinants of one’s income, for instance, Fox remarks:

I believe that a statistical model cannot, and is not literally meant to, capture the social process by which
incomes are “determined” … No regression model, not even one including a residual, can reproduce this
process … The unfortunate tendency to reify statistical models – to forget that they are descriptive sum-
maries, not literal accounts of social processes – can only serve to discredit quantitative data analysis in
the social sciences.

(p. 5)

Indeed, psychological theory, for instance, has advanced numerous models of behavior just as bio-
logical theory has advanced numerous theories of human functioning. Two or more competing models
may each explain observed data quite well. Sometimes, and unfortunately, the model we adopt may
havemore to do with our sociological (and even political) preferences than anything to do with whether
one is more “correct” than the other. Science (and mathematics, for that matter) is a human activity,
and often theories that are deemed valid or true have much to do with the spirit of the times (the so-
called Zeitgeist) and what the scientific community will actually accept and tolerate as being true.3 Of
course, this is not true in all circumstances, but you should be aware of the factors that make theories
popular, especially in fields such as social science where “hard evidence” can be difficult to come by.
The reason the experiment is often considered the “gold standard” for evidence is because it often (but
not always) helps us narrow down narratives to a few compelling possibilities. In strictly correlational
research, isolating the correct narrative can be exceedingly difficult or nearly impossible, despite which
narrative we wish upon our data the most. Good science requires a very critical eye. Whether the
theory is that of the Big Bang, the determinants of cancer, or theories of bystander intervention, all
of these are narratives to help account for observed data.

1.3 SOCIAL SCIENCES VERSUS HARD SCIENCES

There is often stated a distinction between the so-called “soft” sciences and the “hard” sciences (Meehl,
1967). The distinction, as is true in many cases of so many things, is fuzzy and blurry and requires
deeper analysis to fully understand the issue. The difference between what is “soft” and what is “hard”
science has usually only to do with the object of study, and not with the method of analytical inquiry.

For example, consider what distinguishes the scientist who studies temperature of a human organ-
ism compared to a scientist who studies the self-esteem of adolescents. Their analytical approaches, at
their core, will be remarkably similar. They will both measure, collect data, and subject that data to
curve-fitting or probabilistic analysis (i.e., statistical modeling). Their objects, however, are quite dif-
ferent. Indeed, some may even doubt the measurability of something called “self-esteem” in the first

2 See Friendly (2000, pp. 208–211) for an analysis of the O-ring data. See Vaughan (1996) for an account of the social, political,
and managerial influences at NASA that were also purportedly responsible for the disaster.
3 The reader is strongly encouraged to consult Kuhn’s excellent book The Structure of Scientific Revolutions in which an emi-
nent philosopher of science argues for what makes some theories more longstanding than others and why some theories drop out
of fashion. So-called paradigm shifts are present in virtually all sciences. An awareness of such shifts can help one better put
“theories of the day” into their proper context.
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place. Is self-esteem real? Does it actually exist? At the heart of the distinction, really, is that ofmeas-
urement. Once measurement of an object is agreed upon, the debate between the hard and soft sciences
usually vanishes. Both scientists, natural and social, are generally aiming to do the same thing, and that
is to understand, document phenomena, and to identify relations among these phenomena. As Hays
(1994) put it so well, the overreaching goal of science, at its core, is to determinewhat goes with what.
Virtually every scientific investigation you read about has this underlying goal but may operationalize
and express it in a variety of different ways.

Social science is a courageous attempt. Hard sciences are, in many respects, much easier than
the softer social sciences, not necessarily in their subject matter (organic chemistry is difficult), but
rather in what they attempt to accomplish. Studying beats-per-minute in an organism is relatively
easy. It is not that difficult to measure. Studying something called intelligence is much, much harder.
Why? Because even arriving at a suitable and agreeable operational definition of what constitutes
intelligence is difficult. Most more or less agree on what “heart rate” means. Fewer people agree on
what intelligence reallymeans, even if everyone can agree that some people havemore of themysterious
quality than do others. But the study of an object of science should imply that we can actually measure it.
Intelligence, unlike heart rate, is not easily measured largely because it is a construct open to much
scientific criticism and debate. Even if we acknowledge its existence, it is a difficult thing to “tap into.”

Given the difficulty in measuring social constructs, should this then mean the social scientist give up
and not study the objects of his or her craft? Of course not. But what it does mean is that she must be
extremely cautious, conservative, and tentative regarding conclusions drawn from empirical obser-
vations. The social scientist must be up front about the weaknesses of her research and must be very
careful not to overstate conclusions. For instance, we can measure the extent to which melatonin, a
popular sleep aid, reduces the time to sleep onset (i.e., the time it takes to fall asleep). We can perform
experimental trials where we give some subjects melatonin and others none and record who falls asleep
faster. If we keep getting the same results time and time again across a variety of experimental settings,
we begin to draw the conclusion that melatonin has a role in decreasing sleep onset. We may not know
why this is occurring (maybe we do, but I am pretending for the moment we do not), but we can be
reasonably sure the phenomenon exists, that “something” is happening.

Now, contrast the melatonin example to the following question—Do people of greater intelli-
gence, on average, earnmoremoney than those of lesser intelligence?We could correlate a measure
of intelligence to income, and in this way, we are proceeding in a similar empirical (even if not exper-
imental, in this case) fashion as would the natural scientist. However, there is a problem. There is a big
problem. Since few consistently agree on what intelligence is or how to actually measure it, or even
whether it “exists” in the first place, we are unsure of where to even begin. Once we agree on what IQ
is, how it is measured, and howwewill identify it and name it, the correlation between IQ and income is
as reputable and respectable as the correlation between such variables as height and weight. It is getting
to the very measurement of IQ that is the initial hard, and skeptics would argue, impossible part. But
we know this already from experience. Convincing a parent that her son has an elevated heart rate is
much easier than convincing her that her son has a deficit in IQ points. One phenomenon is measurable.
The other, perhaps so, but not nearly as easily, or at minimum, agreeably.

Our point is that once we agree on the existence, meaning, and measurement of objects, soft science
is just as “hard” as the hard sciences. If measurement is not on solid ground, no analytical method of its
data will save it. All students of the social (and natural, to some extent) sciences should be exposed to
in-depth coursework on the theory, philosophy, and importance of measurement to their field before
advancing to statistical applications on these objects, since it is in the realm of measurement where the
true controversies of scientific “reputability” usually lay. For general readable introductions to meas-
urement in psychology and the social sciences, the reader is encouraged to consult Cohen, Swerdlik,
and Sturman (2013), Furr and Bacharach (2013), and Raykov and Marcoulides (2011). For a deeper
and philosophical treatment, which includes measurement in the physical sciences as well, consult
Kyburg (2009). McDonald (1999) also provides a relatively technical treatment.
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1.4 IS COMPLEXITY A GOOD DEPICTION OF REALITY?
ARE MULTIVARIATE METHODS USEFUL?

One of the most prominent advances in social statistics is that of structural equation modeling. With
SEM, as wewill survey in Chapter 15, one canmodel complex networks of variables, bothmeasurable
and unmeasurable. Structural equation modeling is indeed one of the most complex of statistical
methods in the toolkit of the social scientist. However, it is a perfectly fair and reasonable question
to ask whether structural equation modeling has helped advance the cause of social science. Has it
increased our knowledge of social phenomena? Advanced as the tool may be statistically, has the tool
helped social science build a bigger and better house for itself?

Such a question is open to debate, one that we will not have here. What needs to be acknowledged
from the outset, however, is that statistical complexity has little, if anything, to do with scientific
complexity or the guarantee of scientific advance. Indeed, the two may even rarely correlate.
A classic scenario is that of the graduate student running an independent-samples t-test on well oper-
ationally defined experimental variables, yet feeling somewhat “embarrassed” that he used such a
“simple” statistical technique. In the lab next door, another graduate student is using a complex struc-
tural equation model, struggling to make the model identifiable through fixing and freeing para-
meters at will, yet feeling as though she is more “sophisticated” scientifically as a result of her
use of a complex statistical methodology. Not the case. True, the SEM user may be more sophisti-
cated statistically (i.e., SEM is harder to understand and implement than t-tests), but whether her
empirical project is advancing our state of knowledge more than the experimental design of the stu-
dent using a t-test cannot even begin to be evaluated based on the statistical methodology used. It
must instead be based on scientific merit and the overall strength of the scientific claim. Which sci-
entific contribution is more noteworthy? That is the essential question, not the statistical technique
used. The statistics used rarely have anything to do with whether good science versus bad science
was performed. Good science is good science, which at times may require statistical analysis as a
tool for communicating its findings.

In fact, much of the most rigorous science often requires the most simple and elementary of statis-
tical tools. Students of research can often become dismayed and temporarily disillusioned when they
learn that complex statistical methodology, aesthetic and pleasurable on its own that it may be (i.e.,
SEM models can be fun to work with), still does not solve their problems. Research wise, their pro-
blems are usually those of design, controls, and coming up with good experiments, arguments, and
ingenious studies. Their problems are usually not statistical at all, and in this sense, an overemphasis
on statistical complexity could actually delay their progress to conjuring up innovative, ground-
breaking scientific ideas.

The cold hard facts then are that if you have poor design, weak research ideas, and messy meas-
urement of questionable phenomena, your statistical model will provide you with anticlimactic find-
ings, and will be nothing more than an exercise in the old adage garbage in, garbage out.
Quantitative modeling, sophisticated as it has become, has not replaced the need for strict, rigorous
experimental controls and good experimental design. Quantitative modeling has not made correla-
tional research somehow more “on par” with the gold standard of experimental studies. Even with
the advent of latent variable modeling strategies and methodologies such as confirmatory factor
analysis and structural equation modeling, statistics does not purport to “discover,” for real, hidden
variables. Modeling is simply concerned with the partitioning of variability and the estimation of
parameters. Beyond that, the remainder of the job of the scientist is to know his or her craft and
to design experiments and studies that enlighten and advance our knowledge of a given field. When
applied to sound design and thoughtful investigatory practices, statistical modeling does partake in
this enlightenment, but it does nothing to save the scientist from his or her poorly planned or executed
research design. Statistical modeling, complex and enjoyable as it may be on its own, guarantees
nothing.
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1.5 CAUSALITY

Onemight say that the ultimate goal of any science is still to establish causal relations, even if classical
“Laplacian” determinism has been somewhat jettisoned by theoretical physicists, which would imply
that there may actually not be “true causes” to events (despite our continued attempts to assign them).
Our search for them may be entirely misguided. Still, and a bit more down to earth, nothing suggests a
stronger understanding of a scientific field than to be able to speak of causation about the phenomena it
studies. However, more difficult than establishing causation in a given research paradigm is that of
understanding what causation means in the first place. There exist several definitions of causality.
Most definitions have at their core that causation is a relation between two events in which the second
event is assumed to be a consequence, in some sense, of the first event.

For example, if I slip on a banana peel and fall, we might hypothesize that the banana peel caused
my fall. However, was it the banana peel that caused my fall, or was it the worn out soles on my shoes
that I was wearing that day that caused the fall? Had I been wearing mountain climbers instead of worn-
out running shoes, I might not have fallen. Who am I to say the innocent banana peel caused my fall?
Causality is hard. Even if it seems that A caused B, there are usually many variables associated with
the problem such that if adjusted or tweaked may threaten the causal claim. Some would say this is
simply a trivial philosophical problem of specifying causality and it is “obvious” from the situation
that the banana peel caused the fall. Nonetheless, it is clear from even such a simple example that cau-
sation is in no way an easy conclusion to draw. Perhaps this is also why it is extremely difficult to
pinpoint true causes of virtually any behavior, natural or social. Hindsight is 20/20, but attributing
causal attributes with any kind of methodological certainty in violent crimes, for instance, usually turns
out to be speculative at best. True, we may accumulate evidence for prediction, but equating that with
causation is under most circumstances the wish, not the reality, of a social theory.

In our brief discussion here we will not attempt to define causality. Books, dissertations, and treatises
have been written exclusively on the topic. At most, what we can do in the amount of space we have is to
simply heed the following advice to the reader—If you are going to speak of causation with regard to
your research, be prepared to back up your theory of causation to your audience. It is simply not
enough to say A causes B without subjecting yourself to at least some of the philosophical issues that
accompany such a statement. Otherwise, it is strongly advised that you avoid words such as “cause” in
hypothesizing or explaining results and findings. Relations and predictions are much epistemologi-
cally “safer” words to use, less prone to critique ending in quicksand. For a brief, but enlightening dis-
cussion of causality in the social sciences, see Fox (1997, pp. 3–14). For a more thorough treatment of
the subject as it relates to structural equation models, see Mulaik (2009, pp. 63–117). Even a brief study
of the philosophy of science goes a long way to understanding the complexities involved in using
“causal” statements in research. These issues are not nearly as simple as they may at first appear.

1.6 THE NATURE OF MATHEMATICS: MATHEMATICS
AS A REPRESENTATION OF CONCEPTS

Ian Stewart (1995) said it best when he wrote that the mathematician is not a juggler of numbers, he is a
juggler of concepts. The greatest ambivalence to learning statistical modeling experienced by students
outside (and even inside, I suppose) the mathematical sciences is that of the presumed mathematical
complexity involved in such pursuits. Who wants to learn a mathematically-based subject such as
statistics when one has “never been good at math?”

The first step in this pursuit is to critically examine assumptions and prior learned beliefs that
have become implicit. One way to help “demystify” mathematics and statistics is to challenge your
perception of what mathematics and statistics actually are in the first place. It is of great curiosity that
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so many students claim to dislike mathematics and statistics, yet at the same time cannot verbalize just
what mathematics and statistics actually are, and then even worse, proceed to engage in real-life activ-
ities that utilize very much the same analytical cognitive capacities as would be demanded from doing
mathematics and statistics!

More than likely, the “dislike” of these subjects has more to do with the perceptions one has learned
to associate with these subjects than with an inherent ontological disdain for them. Human beings are
creatures of psychological association. Any dislike of anything without knowing what that thing is in
the first place is almost akin to disliking a restaurant dish you have never tried. You cannot dislike
something until you at least know something about it and open your mind to new possibilities of what
it might be that you are forming opinions about. Not to sound overly “Jamesian,” (the analogy isn’t
perfect, but it’s close) but perhaps you are afraid of mathematics because of your fear of it rather than
the mathematics itself. That is, you run, not because of the mathematics, but because of the fear. If you
accept that you are yet unsure of what mathematics is, and will not judge it until you are knowledgeable
of it, it may delay derogatory opinion about it. It is only when we assume we know something (to
some extent, at least) that we usually feel free to judge and evaluate it. Keep your perceptions open
to revision, and what youmay find is that what was disliked yesterday curiously becomes likable today,
simply because you have now learned more about what that something actually is. But to learn more
about it, you need to first drop, or at minimum suspend, previously held beliefs about it. Have an open
mind from the outset, and refresh that mindset each time you open a book or attend a lecture in a course.

The first point is that statistics is not mathematics. Statistics is a discipline unto itself that uses
mathematics, the way physics uses mathematics, and the way that virtually all of the natural and social
sciences use mathematics. Mathematics is the tool statisticians use to express their statistical ideas, and
statistics is the tool that scientists use to help make sense of their research findings. The field of the-
oretical or mathematical statistics is heavily steeped in theorem-building and proofs. Applied sta-
tistics, of the kind featured in this book, is definitely not. Thus, any fear of real mathematics can be
laid to rest, because you will find no such mathematics in this book. Upon browsing this book, if you
are of the opinion that it contains “lots of math,” then quite simply, you do not know what “lots of
math” looks like. Rest assured, the mathematics in this book is simply used as a vehicle for understand-
ing statistics.

Mathematics and statistics are not things “mysterious” that can only be grasped by those with higher
mental faculties. A useful working definition might be that mathematics is a set of well-defined and
ever-expanding rules and consequences about symbolic abstract objects based on fundamental
assumptions called axioms. The axioms of mathematics are typically assumed to be true without need-
ing to be proved. Theorems and other results built on such axioms usually require proof. What is a
proof? It is an analytical argument for why a proposition should be considered true. Any given proof
usually relies on other theorems that have already been proven to be true. Make no mistake, mathe-
matics is a very deep field of intellectual endeavor and activity. However, expecting something to
be deeper than it is can also lead you to just as well not understand it. Sometimes, if you are not under-
standing something, it may very well be that you are looking far beyond what there is to be understood.
If you retreat in your expectations slightly of what there is to see, it sometimes begins to make more
sense. Thinking “too deep” where such depth is not required or encouraged, is a peril. Many “bright”
students have this “gift” of critical analysis, and to understand a concept, need to actually retreat some-
what in their depth of inquiry (at least for the moment).

For a general overview of the nature of mathematics, the reader is encouraged to consult Courant,
Robbins, and Stewart (1996), and for an excellent introduction to basic mathematical analysis, Labarre
(1961). Hamming (1985) is another good introduction to the field of mathematics, as well as Aleksan-
drov, Kolmogorov, and Lavrent’ev (1999). For more philosophical treatments, the reader should con-
sult Dunham (1994) and Stewart (1995). For an in-depth and very readable history of mathematics,
consult Boyer and Merzbach (1991).
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1.7 AS A SCIENTIST, HOW MUCH MATHEMATICS DO YOU NEED TO KNOW?

The answer to this question is, of course, as much as possible, for working through problems of any
kind can only serve to hone your analytical and deductive abilities. Even working through problems
completely unrelated to statistics can help your statistical abilities, because they give you practice in
“figuring things out.”However, that answer is, of course, a naïve if not idealistic one, since there is only
so much time available for study and the study of statistics must be balanced by your own study of your
chosen field.

For example, if the biology student became immersed in mathematics and statistics full-time, then
that student would no longer be a student of biology. It can be exceedingly difficult to apply a sta-
tistical technique and interpret the results of such a technique in a field for which you are not famil-
iar. If you are unaware of the substantive objects you are working with, that is, the “stuff” on which
the statistics are being applied, then regardless of your quantitative expertise, you will often have
difficulty interpreting the scientific result. Likewise, if spending too much time computing
higher-order derivatives, the student of animal learning, for instance, will have little time remaining
to study the learning patterns of the rats he is conditioning, or to speculate on theoretical advance-
ments in his field. Hence, a “happy medium” is required that will balance your study of your sub-
stantive area along with the technical quantitative demands of your field of study. Indeed, even for
those who specialize exclusively in statistics, the American Statistical Association strongly advises
aspiring statisticians to choose a field of application. As a researcher, you will be expected to apply
modeling techniques that are quite advanced (entire courses are devoted to the statistical technique
you may be applying), and so you will face the opposite problem, that of choosing to specialize in
statistics (to some extent) so that you may better understand the phenomena of your own science.
Hence, regardless of whether one is coming from a mathematics or science background, one should
aspire for a healthy mix of scientific and statistical expertise. Computing experience (e.g., R, SPSS,
SAS, etc.) should also be part of your “repertoire” of skills. As an applied scientist, you should prob-
ably find yourself in the data science or traditional research intersections in the following Venn
diagram.

Hacking skills
Math and statistics

knowledge

Machine

learning

Data
science

Substantive
expertise

Danger

zo
ne!

Traditional

research

Source: From Drew Conway, THE DATA SCIENCE VENN DIAGRAM, Sep 30, 2010. Reproduced
with permission from Drew Conway.
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1.8 STATISTICS AND RELATIVITY

Statistical thinking is all about relativity. Statistics are not about numbers, they are about distributions
of numbers (Green, 2000, personal communication). Rarely in statistics, or science for that matter, do
we evaluate things in a vacuum.

Consider a very easy example. You board an airplane destined to your favorite vacation spot. How
talented is the pilot who is flying your airplane? Is he a “good” pilot or a “bad” pilot? One would hope
he is “good enough” to fulfill his duties and ensure your and other passengers’ safety. However,
when you start thinking like a statistician, you may ponder the thought of how good of a pilot he
is relative to other pilots. Where on the curve does your pilot fall? In terms of his or her skill,
the pilot of an airplane can be absolutely good, but still relatively poor. Perhaps that pilot falls
on the lower end of the talent curve for pilots. The pilot is still very capable of flying the plane, they
have passed an absolute standard, but he or she just isn’t quite as good as most other pilots (see
Figure 1.5).

We can come up with a lot of other examples to illustrate the absolute versus relative distinc-
tion. If someone asked you whether you are intelligent, ego aside, as a statistician, you may
respond “relative to who?” Indeed, with a construct like IQ, relativity is all we really have. What
does absolute intelligence look like? Should our species discover aliens on another planet one day,
we may need to revise our definition of intelligence if such are much more (or much less) advanced
than we are. Though of course, this would assume we have the intelligence to comprehend that
their capacities are more than ours, a fact not guaranteed and hence another example of the trap
of relativity.

Relativity is a benchmark used to evaluate much phenomena, from intelligence to scholastic
achievement to prevalence of depression, and indeed much of human and nonhuman behavior. Under-
standing that events witnessed could be theorized to have come from known distributions (like the
talent distribution of pilots) is a first step to thinking statistically. Most phenomena have distributions,
either known or unknown. Statistics, in large part, is a study of such distributions.

Pilot
criterion

Is your pilot absolutely

skilled but relatively

unskilled?

–4 –2 0 2 4

FIGURE 1.5 The “pilot criterion”must be met for any pilot to be permitted to fly your plane. However, of those
skilled enough to fly, your pilot may still lay at the lower end of the curve. That is, your pilot may be absolutely
good, but relatively poor in terms of skill.
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1.9 EXPERIMENTAL VERSUS STATISTICAL CONTROL

Perhaps most pervasive in the social science literature is the implicit belief held by many that methods
such as regression and analysis of covariance allow one to “control” variables that would otherwise
not be controllable in the nonexperimental design. As is emphasized throughout this book, statistical
methods, whatever the kind, do not provide methods of controlling variables, or “holding variables
constant” as it were. Not in the real way. To get these kinds of effects, you usually need a strong
and rigorous bullet-proof experimental design.

It is true, however, that statistical methods do afford a method, in some sense, for presuming (or
guessing) what might have been had controls been put into place. For instance, if we analyze the
correlation between weight and height, it may make sense to hold a factor such as age “constant.” That
is, we may wish to partial out age. However, partialling out the variability due to age in the bivariate
correlation is not equivalent to actually controlling for age. The truth of the matter is that our statistical
control is telling us nothing about what would actually be the case had we been able to truly control age,
or any other factor. As will be elaborated on in Chapter 8 on multiple regression, statistical control is
not a sufficient “proxy” whatsoever for experimental control. Students and researchers must keep this
distinction in mind before they throw variables into a statistical model and employ words like “control”
(or other power and action words) when interpreting effects. If you want to truly control variables, to
actually hold them constant, you usually have to do experiments. Estimating parameters in a statistical
model, confident that you have “controlled” for covariates, is simply not enough.

1.10 STATISTICAL VERSUS PHYSICAL EFFECTS

In the establishment of evidence, either experimental or nonexperimental, it is helpful to consider the
distinction between statistical versus physical effects. To illustrate, consider a medical scientist who
wishes to test the hypothesis that the more medication applied to a wound, the faster the wound heals.
The statistical question of interest is—Does amount of medication predict the rate at which a
wound heals? A useful statistical model might be a linear regression where amount of medication
is the predictor and rate of healing is the response. Of course, one does not “need” a regression anal-
ysis to “know” whether something is occurring. The investigator can simply observe whether the
wound heals or not, and whether applying more or less medication speeds up or slows down the
healing process. The statistical tool in this case is simply used to model the relationship, not deter-
mine whether or not it exists. The variable in question is a physical, biological, “real” phenomenon.
It exists independent of the statistical model, simply because we can see it. The estimation of a sta-
tistical model is not necessarily the same as the hypothesized underlying physical process it is
seeking to represent.

In some areas of social science, however, the very observance of an effect cannot be realized without
recourse to the statistics used to model the relationship. For instance, if I correlate self-esteem to intel-
ligence, am I modeling a relationship that I know exists separate from the statistical model, or, is the
statistical model the only recourse I have to say that the relationship exists in the first place? Because of
mediating and moderating relationships in social statistics, an additional variable or two could dras-
tically modify existing coefficients in a model to the point where predictors that had an effect before
such inclusion no longer do after. As we will emphasize in our chapters on regression:

When you change the model, you change parameter estimates, you change effects. You are never,
ever, testing individual effects in the model. You are always testing the model, and hence the inter-
pretation of parameter estimates must be within the context of the model.
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This is one of the general problems of purely correlational research with nonphysical or “nonor-
ganic” variables. It may be more an exercise in variance partitioning than it is in analyzing “true”
substantive effects, since the effects in question may be simply statistical artifacts. They may have little
other bases. Granted, even working with physical or biological variables this can be a problem, but it
does not rear its head nearly as much. To reiterate, when we model a physical relationship, we have
recourse to that physical relationship independent of the statistical model, because we have evidence
that the physical relationship exists independent of the model. If we lost our modeling software, we
could still “see” the phenomenon. In many models of social phenomena, however, the addition of
one or two covariates in the model can make the relationship of most interest “disappear” and because
of the nature of measured variables, we may no longer have physical recourse to justify the original
relationship at all, external to the statistical model. This is why social models can be very “neurotic,”
frustrating, and context-dependent. Self-esteem may predict achievement in one model, but in another,
it does not. Many areas of psychological, political, and economic research, for instance, implicitly
operate on such grounds. The existence of phenomena is literally “built” on the existence of the sta-
tistical model and often does not necessarily exist separate from it, or at least not in an easily observed
manner such as the healing of a wound. Social scientists working in such areas, if nothing else, must be
aware of this. Estimating a statistical model may or may not correspond to actual physical effects
it is seeking to account for.

1.11 UNDERSTANDING WHAT “APPLIED STATISTICS” MEANS

In this day and age of extraordinary computing power, the likes of which will probably seem laughable
in even a decade from the date of publication of this book, with a few clicks of the mouse and a software
manual, one can obtain a principal components analysis, factor analysis, discriminant analysis,
multiple regression, and a host of other relatively theoretically advanced statistical techniques in a
matter of seconds. The advance of computers and especially easy-to-use software programs has made
performing statistical analyses seemingly quite easy because even a novice can obtain output from a
statistical procedure relatively quickly. One consequence of this however is that there seems to have
arisen a misunderstanding in some circles that “applied statistics” somehow equates with the idea of
“statistics without mathematics” or even worse, “statistics via software.”

The word “applied” in applied statistics should not be understood to necessarily imply the use of
computers. What “applied” should mean is that the focus on the writing is on how to use statistics in the
context of scientific investigation, oftentimes with demonstrations with real or hypothetical data.
Whether that data is analyzed “by hand” or through the use of software does not make one approach
more applied than the other. If analyzed via computer, what it does make it is more computational
compared to the by-hand approach. Indeed, there is a whole field of study known as computational
statistics that features a variety of software approaches to data analysis. For examples, see Dalgaard
(2008), Venables and Ripley (2002), and Friendly (1991, 2000) for an emphasis on data visualization.
Fox (2002) also provides good coverage of functions in S-Plus and R. And of course, computer sci-
ence and themachine-learning movement have contributed greatly to software development and our
ability to analyze data quickly and efficiently via algorithms, and implement new and classic proce-
dures that would be impossible otherwise.

On the opposite end of the spectrum, if a course in statistics is advertised as not being applied, then
most often what this implies is that the course is more theoretical or mathematical in nature with a focus
on proof and the justification of results. In essence, what this really means is that the course is usually
more abstract than what would be expected in an applied course. In such theoretical courses, very
seldom will one see applications to real data, and instead the course will feature proofs of essential
statistical theorems and the justification of analytical propositions. Hence, this is the true distinction
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between applied versus theoretical courses. The computer has really nothing to do with the distinc-
tion other than facilitating computation in either field.

REVIEW EXERCISES

1.1. Distinguish between rationalism versus empiricism in accounting for different types of
knowledge, and why being a rationalist or empiricist exclusively is usually quite unreasonable
and unrealistic.

1.2. Briefly discuss what is meant by a model in scientific research.

1.3. Compare and contrast the social versus so-called “hard” sciences. How are they similar? Dif-
ferent? In this context, discuss the statement “Social science is a courageous attempt.”

1.4. Compare and contrast a physical quantity such as weight to a psychological one such as intel-
ligence. How is one more “real” than the other? Can they be considered to be equally real? Why
or why not?

1.5. Why would some people say that an attribute such as intelligence is not measurable?

1.6. Discuss George Box’s infamous statement “All models are wrong, some are useful.”What are
the implications of this for your own research?

1.7. Consider an example from your own area of research in which two competing explanations, one
simple, and one complex, may equally well account for observed data. Then, discuss why the
simpler explanation may be preferable to the more complex. Are there instances where the
more complex explanation may be preferable to the simpler? Discuss.

1.8. Briefly discuss why using statistical methods to make causal statements about phenomena
may be unrealistic and in most cases unattainable. Should the word “cause” be used at all in
reference to nonexperimental social research?

1.9. Discuss why it is important to suspend one’s beliefs about a subject such as applied statistics or
mathematics in order to potentially learn more about it.

1.10. Statistical thinking is about relativity. Discuss what this statement means with reference to the
pilot example, then by making up an example of your own.

1.11. Distinguish between experimental versus statistical control, and why understanding the dis-
tinction between them is important when interpreting a statistical model.

1.12. Distinguish between statistical versus physical effects and how the effect of a medication treat-
ing a wound might be considered different in nature from the correlation between intelligence
and self-esteem.

1.13. Distinguish between the domains of applied versus theoretical statistics.

Further Discussion and Activities

1.14. William of Ockham (c. 1287–1347) is known for his infamous principle Ockham’s razor,
which essentially states that all things equal, given competing theories accounting for the same
data, the simpler theory is the better theory. In other words, complex explanations for phenom-
ena that could be explained by simpler means are not encouraged. Read Kelly (2007), and

14 PRELIMINARY CONSIDERATIONS



evaluate the utility of Ockham’s razor as it applies to statistical modeling. Do you agree that the
simpler statistical model is usually preferred over the more complex when it comes to modeling
social phenomena? Why or why not?

1.15. Read Kuhn (2012). Discuss what Kuhn means by normal science and the essence of what con-
stitute paradigm shifts in science.

1.16. As briefly discussed in this chapter, statistical control is not the same thing as experimental
control or that of a control group. Read Dehue (2005), and provide a brief commentary regard-
ing what constitutes a real control group versus the concept of statistical controls.

1.17. It was briefly discussed in the chapter potential problems with using the word cause or speaking
of causality at all when describing findings in the social and (often) natural sciences. The topic
of causality is a philosopher’s career and a scientist’s methodological nightmare. Epidemiol-
ogy, the study of diseases in human and other populations, has, like so many other disciplines,
had to grapple with the issue of causation. For example, if one is to make the statement smoking
causes cancer, one must be able to defend one’s philosophical position in advancing such a
claim. Not everyone who smokes gets cancer. Further, some who smoke the most never get
the disease, whereas some who smoke the least do. Tobacco companies have historically relied
on the fact that not everyone who smokes gets cancer as a means for challenging the smoking-
cancer “link.” As an introduction to these issues, as well as a brief history of causal interpreta-
tions, readMorabia (2005). Summarize the historical interpretations of causality, as well as how
epidemiology has generally dealt with the problem of causation.

1.18. Models are used across the sciences to help account for empirical observations. How to best
relate mathematical models to reality is not at all straightforward. Read Hennig (2009), and
discuss Hennig’s account of the relation between reality and mathematical models. Do you
agree with this account? What might be some problems with it?
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2
INTRODUCTORY STATISTICS

In spite of the immense amount of fruitful labour which has been expended in its practical applications, the
basic principles of this organ of science are still in a state of obscurity, and it cannot be denied that, during
the recent rapid development of practical methods, fundamental problems have been ignored and funda-
mental paradoxes left unresolved.

(Fisher, 1922a, p. 310)

Our statistics review includes topics that would customarily be seen in a first course in statistics at the
undergraduate level, but depending on the given course and what was emphasized by the instructor, our
treatment here may be at a slightly deeper level. We review these principles with demonstrations in
R and SPSS where appropriate. Should any of the following material come across as entirely
“new,” then a review of any introductory statistics text is recommended. For instance, Kirk (2008),
Moore, McCabe, and Craig (2014), Box, Hunter, and Hunter (1978) are relatively nontechnical
sources, whereas Degroot and Schervish (2002), Wackerly, Mendenhall III, and Scheaffer (2002)
along with Evans and Rosenthal (2010) are much deeper and technically dense. Casella and Berger
(2002), Hogg and Craig (1995) along with Shao (2003) are much higher-level theoretically oriented
texts targeted mainly at mathematical and theoretical statisticians. Other sources include Panik (2005),
Berry and Lindgren (1996), and Rice (2006). For a lighter narrative on the role of statistics in social
science, consult Abelson (1995).

Because of its importance in the interpretation of evidence, we close the chapter with an easy but
powerful demonstration of what makes a p-value small or large in the context of statistical significance
testing and the testing of null hypotheses. It is imperative that as a research scientist, you are knowl-
edgeable of this material before you attempt to evaluate any research findings that employ statistical
inference.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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2.1 DENSITIES AND DISTRIBUTIONS

When we speak of density as it relates to distributions in statistics, we are referring generally to the-
oretical distributions having area under their curves. There are numerous probability distributions or
density functions. Empirical distributions, on the other hand, rarely go by the name of densities. They
are in contrast “real” distributions of real empirical data. In some contexts, the identifier normal dis-
tribution may be given without reference as to whether one is referring to a density or to an empirical
distribution. It is usually evident by the context of the situation which we are referring to. We survey
only a few of the more popular densities and distributions in our discussion that follows.

The univariate normal density is given by:

f xi, μ, σ
2 =

1

2πσ2
e − xi − μ

2 2σ2

where,

• μ is the population mean for the given density,

• σ2 is the population variance,

• π is a constant equal to approximately 3.14,

• e is a constant equal to approximately 2.71,

• xi is a given value of the independent variable, assumed to be a real number.

When μ is 0 and σ2 is 1, which implies that the standard deviation σ is also equal to 1

(i.e., σ2 = σ = 1), the normal distribution is given a special name. It is called the standard normal
distribution and can be written more compactly as:
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(2.1)

Notice that in (2.1), e − xi − μ
2 2σ2 = e − xi − 0

2 2 1 where μ is now 0 and σ2 is now 1. Note as well that the
density depends only on the absolute value of xi, because both xi and −xi give the same value x2i ; the
greater is xi in absolute value, the smaller the density at that point, because the constant e is raised to the
negative power − x2i 2.

The standard normal distribution is the classic z-distribution whose areas under the curve are
given in the appendices of most statistics texts, and are more conveniently computed by software.
An example of the standard normal is featured in Figure 2.1.

Scores in research often come in their own units, with distributions having means and variances
different from 0 and 1. We can transform a score coming from a given distribution with mean μ
and standard deviation σ by the familiar z-score:

z =
xi − μ

σ

A z-score is expressed in units of the standard normal distribution. For example, a z-score of +1 denotes
that the given raw score lay one standard deviation above the mean. A z-score of −1 means that the
given raw score lay one standard deviation below the mean. In some settings (such as school psychol-
ogy), t-scores are also useful, having a mean of 50 and standard deviation of 10. In most contexts,
however, z-scores dominate.
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A classic example of the utility of z-scores typically goes like this. Suppose two sections of a sta-
tistics course are being taught. John is a student in section A and Mary is a student in section B. On the
final exam for the course, John receives a raw score of 80 out of 100 (i.e., 80%). Mary, on the other
hand, earns a score of 70 out of 100 (i.e., 70%). At first glance, it may appear that John was more
successful on his final exam. However, scores, considered absolutely, do not allow us a comparison
of each student’s score relative to their class distributions. For instance, if the mean in John’s class was
equal to 85% with a standard deviation of 2, this means that John’s z-score is:

z =
xi − μ

σ
=

80− 85
2

= − 2 5

Suppose that in Mary’s class, the mean was equal to 65% also with a standard deviation of 2. Mary’s z-
score is thus:

z =
xi − μ

σ
=

70− 65
2

= 2 5

As we can see, relative to their particular distributions, Mary greatly outperformed John. Assuming
each distribution is approximately normal, the density under the curve for a normal distribution with
mean 0 and standard deviation of 1 at a score of 2.5 is:

> dnorm(2.5, 0, 1)
[1] 0.017528

where dnorm is the density under the curve at 2.5. This is the value of f(x) at the score of 2.5.What then
is the probability of scoring 2.5 or greater? To get the cumulative density up to 2.5, we compute:

> pnorm(2.5, 0, 1)
[1] 0.9937903

The given area is represented in Figure 2.2. The area we are interested in is that at or above 2.5 (the
area where the arrow is pointing). Since we know the area under the normal density is equal to 1, we can
subtract pnorm(2.5, 0, 1) from 1:

> 1-pnorm(2.5, 0, 1)
[1] 0.006209665

–4 –3 –2 –1 0 1 2 3 4

FIGURE 2.1 Standard normal distribution with shaded area from −1 to +1 standard deviations from the mean.
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We can see then the percentage of students scoring higher than Mary is in the margin of approx-
imately 0.6% (i.e., multiply the proportion by 100).What proportion of students scored better than John
in his class? Recall that his z-score was equal to −2.5. Because we know the normal distribution is
symmetric, we already know the area lying below −2.5 is the same as that lying above 2.5. This means
that approximately 99.38% of students scored higher than John. Hence, we see that Mary drastically
outperformed her colleague when we consider their scores relative to their classes. Be careful to note
that in drawing these conclusions, we had to assume each score (that of John’s andMary’s) came from a
normal distribution. The mere fact that we transformed their raw scores to z-scores in no way nor-
malizes their raw distributions. Standardization standardizes, but it does not normalize.

One can also easily verify that approximately 68% of cases in a normal distribution lie within −1 and
+1 standard deviations, while approximately 95% of cases lie within −2 and +2 standard deviations.

2.1.1 Plotting Normal Distributions

We can plot normal densities in R by simply requesting the lower and upper limit on the abscissa:

> x <- seq(from = -3, to = +3, length.out = 100)
> plot(x, dnorm(x))
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Distributions (and densities) of a single variable typically go by the name of univariate distributions
to distinguish them from distributions of two (bivariate) or more variables (multivariate).

–4 –2 0 2 4

FIGURE 2.2 Shaded area under the standard normal distribution at a z-score of up to 2.5 standard deviations.
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For example, we consider some of Galton’s data on parent and child heights (the height of the chil-
dren were measured when they were adults, not actual toddlers). Some of Galton’s data appears below,
retrieved from the HistData package (Friendly, 2014) in R:

> install.packages(“HistData”)
> library(HistData)
> attach(Galton)

> Galton
parent child

1 70.5 61.7
2 68.5 61.7
3 65.5 61.7
4 64.5 61.7
5 64.0 61.7
6 67.5 62.2
7 67.5 62.2
8 67.5 62.2
9 66.5 62.2
10 66.5 62.2

We first install the package using the install.packages function. The library statement
loads the package HistData into R’s search path. From there, we attach the Galton data to insert
the object (dataframe) into the search list. We generate a histogram of parent height:

> hist(parent, main = "Histogram of Parent Height")
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One can overlay a normal density over an empirical plot to show how closely observed data match
that of a theoretical normal distribution, as was done by Fisher in 1925 displaying a distribution of the
heights of 1375 women (see Figure 2.3, taken from Classics in the History of Psychology1). R.A.
Fisher is usually regarded as the father of modern statistics and among his greatest contributions
was the publication of StatisticalMethods for ResearchWorkers in 1925 in which he discussed such
topics as tests of significance, correlation coefficients, and the analysis of variance.

1Classics in the History of Psychology is an on-line educational resource hosted by Christopher D. Green of York University in
Toronto, Canada. It contains a huge selection of milestone papers and articles in the history of psychology. It can be accessed via
http://psychclassics.yorku.ca/.
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We can see that the normal density serves as a close, and very convenient, approximation to empir-
ical data. Indeed, the normal density has figured prominent in the history of statistics largely because it
serves as a usefulmodel for many phenomena, and also because it provides a very convenient starting
point for much work in theoretical statistics. Oftentimes the assumption of normality will be invoked
in a derivation because it makes the problem simpler and easier to solve.

2.1.2 Binomial Distributions

The binomial distribution is given by:

p r =
n

r
pr 1− p n − r

=
n

r n − r
pr 1 − p n− r

where,
• p(r) is the probability of observing r occurrences out of n possible occurrences,2

• p is the probability of a “success” on any given trial, and

• 1 − p is the probability of a failure on any given trial, often simply referred to by “q” (i.e.,
q = 1 − p).

The binomial setting provides an ideal context to demonstrate the essentials of hypothesis-testing
logic, as we will soon see. In a binomial setting, the following conditions must hold:

• Thevariableunder studymustbebinary innature.That is, theoutcomeof theexperiment can result in
only one category or another. That is, the outcome categories aremutually exclusive. For instance,
the flipping of a coin has this characteristic, because the coin can either come up “head” or “tail” and
nothing else (yes,weare rulingout the possibility that it lands on its side, and I think it is safe todo so).

• The probability of a “success” on each trial remains constant (or stationary) from trial to trial. For
example, if the probability of head is equal to 0.5 on our first flip, we assume it is also equal to 0.5
on the second, third, fourth flips, and so on.

• Each trial is independent of each other trial. That is, the fact that we get a head on our first flip of
the coin in no way changes the probability of getting a head or tail on the next flip, and so on for
the other flips (i.e., no outcome is ever “due” to occur, as the gambler sometimes believes).

We can easily demonstrate hypothesis testing in a binomial setting using R. For instance, let us
return to the coin-flipping experiment. Suppose you would like to know the probability of obtaining
two heads on five flips of a fair coin, where each flip is assumed to have a probability of heads equal to
0.5. In R, we can compute this as follows:

> dbinom(2, size = 5, prob = 0.5)
[1] 0.3125

2We can also extend the binomial distribution to one in which instead of n trials giving rise to r occurrences, we have n trials
giving rise to outcomes in k categories:

p x = p x1, x2,…, xk =
n

x1 x2 xk
px11 p

x2
2 pxkk

where x is now a vector of random variables x = [x1, x2, …, xk] .
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where dbinom calls the “density for the binomial,” “2” is the number of successes we are specifying,
“size = 5” represents the number of trials we are taking, and “prob = 0.5” is the probability of success on
any given trial, which recall is assumed constant from trial to trial.

Suppose instead of two heads, we were interested in the probability of obtaining five heads:

> dbinom(5, size = 5, prob = 0.5)
[1] 0.03125

Notice that the probability of obtaining five heads out of five flips on a fair coin is quite a bit less
than that of obtaining two heads. We can continue to obtain the remaining probabilities and obtain the
complete binomial distribution for this experiment:

Heads 0 1 2 3 4 5

Prob 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125 1.0

A plot of this binomial distribution is given in Figure 2.4.
Suppose that instead of wanting to know the probability of getting two heads out of five flips,

we wanted to know the probability of getting two or more heads out of five flips. Because
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FIGURE 2.3 Fisher’s overlay of normal density on empirical observations. Source: Fisher (1925, 1934).
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FIGURE 2.4 Binomial distribution for the probability of the number of heads on a fair coin.
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the events 2 heads, 3 heads, 4 heads, and 5 heads are mutually exclusive events, we can add their

probabilities by the probability rule that says p ∞
i = 1Ai =

∞

i = 1
p Ai : 0.3125 + 0.3125 + 0.15625 +

0.03125 = 0.8125. Hence, the probability of obtaining two or more heads on a fair coin on five
flips is equal to 0.8125.

Binomial distributions are useful in a great variety of contexts in modeling a wide number of phe-
nomena. But again, remember that the outcome of the variable must be binary, meaning it must have
only two possibilities. If it has more than two possibilities or is continuous in nature, then the binomial
distribution is not suitable. Binomial data will be featured further in our discussion of logistic regres-
sion in Chapter 10.

One can also appreciate the general logic of hypothesis testing through the binomial. If our null
hypothesis is that the coin is fair, and we obtain five heads out of five flips, this result has only a
0.03125 probability of occurring. Hence, because the probability of this data is so low under the model
that the coin is fair, we typically decide to reject the null hypothesis and infer the statistical alternative
hypothesis that p(H) 0.5. Substantively, we might infer that the coin is not fair, though this substan-
tive alternative also assumes it is the coin that is to “blame” for it coming up five times heads. If the
flipper was responsible for biasing the coin, for instance, or a breeze suddenly came along that helped
the result occur in this particular fashion, then inferring the substantive alternative hypothesis of
“unfairness”may not be correct. Perhaps the nature of the coin is such that it is fair. Maybe the flipper
or other factors (e.g., breeze) are what are ultimately responsible for the rejection of the null. This is one
reason why rejecting null hypotheses is quite easy, but inferring the correct substantive alternative
hypothesis (i.e., the hypothesis that explains why the null was rejected) is much more challenging
(see Denis, 2001). As concluded by Denis, “Anyone can reject a null, to be sure. The real skill
of the scientist is arriving at the true alternative.”

The binomial distribution is also well-suited for comparing proportions. For details on how to run
this simple test in R, see Crawley (2013, p. 365). One can also use binom.test in R to test simple
binomial hypotheses, or the prop.test for testing null hypotheses about proportions. A useful test
that employs binomial distributions is the sign test (see Siegel and Castellan, 1988, pp. 80–87 for
details). For a demonstration of the sign test in R, see Denis (2020).

2.1.3 Normal Approximation

Many distributions in statistics can be regarded as limiting forms of other distributions. What this
statement means can be best demonstrated through an example of how the binomial and normal dis-
tributions are related. When the number of discrete categories along the x-axis grows larger and larger,
the areas under the binomial distribution more and more resemble the probabilities computed under the
normal curve. It is in this sense that for a large number of trials on the binomial, it begins to more
closely approximate the normal distribution.

As an example, consider once again the binomial distribution for n = 5, p = 0.5, but this time with a
normal density overlaying the binomial (Figure 2.5).

We can see that the normal curve “approximates” the binomial distribution, though perhaps not
tremendously well for only five trials. If we increase the number of trials, however, to say, 20, the
approximation is much improved. And when we increase the number of trials to 100, the binomial
distribution looks virtually like a normal density. That is, we say that the normal distribution is
the limiting form of the binomial distribution.

We can express this idea more formally. If the number of trials n in a binomial experiment is made
large, the distribution of the number of successes x will tend to resemble a normal distribution. That is,
the normal distribution is the limiting form of a binomial distribution as n ∞ for a fixed p (and where
q = 1 − p), where E(xi) is the expectation of the random variable xi (the meaning of “random variable”
will be discussed shortly):
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z =
xi − μ

σ
zm =

xi −E xi
σ

zm =
xi − np

npq

Notice that in a z-score calculation using the population mean μ, in the numerator, we are actually cal-
culating the difference between the obtained score and the expectation, E(xi). We can change this to a
binomial function by replacing the expectation μwith the expectation from a binomial distribution, that
is, np, where np is the mean of a binomial distribution. Similarly, we replace the standard deviation
from a normal distribution with the standard deviation from the binomial distribution, npq. As n
grows infinitely large, the normal and the binomial probabilities become identical for any standardized
interval.3

2.1.4 Joint Probability Densities: Bivariate and Multivariate Distributions

A univariate density expresses the probability of a single random variable within a specified interval of
values along the abscissa. A joint probability density, analogous to a joint probability, expresses the
probability of simultaneously observing two random variables over a given interval of values. The
bivariate normal density is given by:

f x1, x2 =
1

2πσ1σ2 1 − ρ2
exp −

1
2 1− ρ2

x1 − μ1
2

σ21
− 2ρ

x1 − μ1 x2 − μ2
σ1σ2

+
x2 − μ2

2

σ22

where ρ2 is the squared Pearson correlation coefficient between x1 and x2.
When plotted, the bivariate density resembles a pile of raked leaves in the Autumn. A plot generated

in R is given in Figure 2.6.
Empirical bivariate distributions (as opposed to bivariate densities) are those showing the joint

occurrence on two variables. For instance, again using Galton’s data, we plot parent height by child
height, in which we also fit both regression lines (see Chapter 7) using lm:

> plot(parent, child, main = "Bivariate Plot of Parent and Child Height")
> abline(lm(parent~child))
> abline(lm(child~parent))

0 01 2 3 4 5 5 10 15 20 20 40 60 80

FIGURE 2.5 Binomial distributions approximated by normal densities for 5 (far left), 20 (middle), and 100 trials
(far right).

3 For a more technical demonstration of how and why this convergence occurs, see Proschan (2008).
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Bivariate plot of parent and child height
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Note the relation between parent height and child height. Recall that a mathematical relation is a
subset of the Cartesian product. The Cartesian product in the plot consists of all theoretically possible
parent–child pairings. The fact that shorter than average parents tend to have shorter than average chil-
dren and taller than average parents tend to have taller than average children reveals the linear form of
the mathematical relation. In the plot are regression lines for child height as a function of parent height
and parent height as a function of child height. Computing both the mean of child and of parent, we
obtain:

> mean(child)
[1] 68.08847
> mean(parent)
[1] 68.30819
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FIGURE 2.6 Bivariate density. Source: Data from Plotting bivariate normal distributions, Mon Sep 1 2003.

25DENSITIES AND DISTRIBUTIONS



Notice that both regression lines, as they are required to do whatever the empirical data, pass
through the means of each variable. The reason for this will become clearer in Chapter 7.

Turning now to multivariate distributions, the multivariate density is given by:

g xi =
1

2π
p Σ 1 2

e − x−μ 'Σ − 1 x−μ 2

where p is the number of variables and Σ is the determinant of the population covariance matrix, which
can be taken as a measure of generalized variance since it incorporates both variances and covariances.
Refer to the Appendix for examples of computing covariance and correlation matrices. Multivariate dis-
tributions represent the joint occurrence of three or more variables, and thus are quite difficult to visualize.
One way, however, of representing a density in three dimensions is attempted in Figure 2.7.

Most multivariate procedures make some assumption regarding the multivariate normality of
sampling distributions. Evaluating such an assumption is intrinsically difficult due to the high dimen-
sionality of the data. The best researchers can usually do is attempt to verify univariate and bivariate
normality through such devices as histograms and scatterplots. Fortunately, as is the case for methods
assuming univariate normality, multivariate procedures are relatively robust, in most cases, to modest
violations. ThoughMardia’s test (Mardia, 1970) is favored by some (e.g., Romeu and Ozturk, 1993),
no single method for evaluating multivariate normality appears to be fully adequate. Visual inspections
of Q–Q plots (to be discussed) are usually sufficient for applied purposes.

In cases where rather severe departures of normality exist, one may also choose to perform data
transformations on the “offending” variables to better approximate normal distributions. However,
it should be kept in mind that sometimes a severely nonnormal distribution can be evidence more
of a scientific problem than symptomatic of a statistical issue. For example, if we asked individuals
in a sample how many car accidents they got into this month, the vast majority of our responses would
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Copyright © 2015, SAS Institute Inc., USA. All Rights Reserved. Reproduced with permission of SAS
Institute Inc, Cary, NC.

26 INTRODUCTORY STATISTICS

http://www.jmp.com/support/help/Scatterplot_3D_Platform_Options.shtml
http://www.jmp.com/support/help/Scatterplot_3D_Platform_Options.shtml


indicate a count of “0.” Is the distribution skewed? Yes, but this is not a statistical problem alone, it is
first and foremost a substantive one. We likely would not even have sufficient variability in our meas-
urement responses to conduct any meaningful analyses since probably close to 100% of our sample
will likely respond with “0.” If virtually everyone in your sample responds with a constant, then
one might say the very process ofmeasurementmay have been problematic, or at minimum, not very
meaningful for scientific purposes. The difficulties presented in subjecting that data to statistical ana-
lyses should be an afterthought, second in priority to the more pressing scientific issue.

2.2 CHI-SQUARE DISTRIBUTIONS AND GOODNESS-OF-FIT TEST

The chi-square distribution is given by:

f x =
1

2v 2Γ v 2
x v 2 − 1 e − x 2

for x > 0, where v are degrees of freedom and Γ is the gamma function.4 The chi-square distribution of a
random variable is also equal to the sum of squares of n independent and normally distributed z-scores
(Fisher, 1922b). That is,

χ2n =
n

i = 1

z2i =
n

i = 1

xi − μ
2

σ2

The chi-square distribution plays an important role in mathematical statistics and is associated with a
number of tests on model coefficients in a variety of statistical methods. The multivariate analog to the
chi-square distribution is that of the Wishart distribution (see Rencher, 1998, p. 53, for details).

The chi-square goodness-of-fit test is one such statistical method that utilizes the chi-square test
statistic to evaluate the tenability of a null hypothesis. Recall that such a test is suitable for categorical
data in which counts (i.e., instead of means, medians, etc.) are computed within each cell of the design.
The goodness-of-fit test is given by

χ2 =
r

i = 1

c

j = 1

Oi −Ei
2 Ei

4 For details on the gamma function, see Degroot and Schervish (2002, p. 295). A plot of the gamma function appears as follows
(see Crawley, 2013, p. 264, for the R code):
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where Oi and Ei represent observed and expected frequencies, respectively, summed across r rows
and c columns.

As a simple example, consider the hypothetical data (Table 2.1), where the frequencies of those
exposed to something adverse are related to whether a condition is present or absent. If you are a clin-
ical psychologist, then youmight define exposure as, perhaps, a variable such as combat exposure, and
condition as posttraumatic stress disorder (if you are not a psychologist, see if you can come up with
another example).

The null hypothesis is that the 50 counts making up the entire table are more or less randomly dis-
tributed across each of the cells. That is, there is no association between condition and exposure. We
can easily test this hypothesis in SPSS by weighting the relevant frequencies by cell total:

exposure condition freq

1.00 0.00 10.00
1.00 1.00 20.00
2.00 0.00 15.00
2.00 1.00 5.00

WEIGHT BY freq.
CROSSTABS

/TABLES=condition BY exposure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ
/CELLS=COUNT
/COUNT ROUND CELL.

The output follows in which it is first confirmed that we set up our data file correctly:

Exposure � Condition Crosstabulation

Count

Condition Total

1.00 0.00
Exposure 1.00 20 10 30

2.00 5 15 20
Total 25 25 50

We focus on the Pearson chi-square test value of 8.3 on a single degree of freedom. It is statistically
significant (p = 0.004), and hence we can reject the null hypothesis of no association between condition
and exposure group.

TABLE 2.1 Contingency Table for 2 × 2 Design

Condition Present (1) Condition Absent (0) Total

Exposure yes (1) 20 10 30
Exposure no (2) 5 15 20
Total 25 25 50
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Chi-square Tests

Value df
Asymp. Sig.
(two-sided)

Exact Sig.
(two-sided)

Exact Sig.
(one-sided)

Pearson chi-square 8.333a 1 0.004
Continuity correctionb 6.750 1 0.009
Likelihood ratio 8.630 1 0.003
Fisher’s exact test 0.009 0.004
Linear-by-linear association 8.167 1 0.004
No. of valid cases 50

a0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.00.
bComputed only for a 2 × 2 table.

In R, we can easily perform the chi-square test on this data. We first build the matrix of cell counts,
calling it diag.table:

> diag.table <- matrix(c(20, 5, 10, 15), nrow = 2)
> diag.table

[,1] [,2]
[1,] 20 10
[2,] 5 15

> chisq.test(diag.table, correct = F)

Pearson's Chi-squared test

data: diag.table
X-squared = 8.3333, df = 1, p-value = 0.003892

We see that the result in R agrees with what we obtained in SPSS. Note that specifying correct =
F (correction = false) negated what is known as Yates’ correction for continuity, which involves
subtracting 0.5 from positive differences in O − E and adding 0.5 to negative differences in O − E
in an attempt to better make the chi-square distribution approximate that of a multinomial distribution
(i.e., in a crude sense, to help make discrete probabilities more continuous). To adjust for Yates, we can
either specify correct = T or simply chisq.test(diag.table), which will incorporate the
correction. With the correction implemented, our p-value increases from 0.003 to 0.009 (not shown).
We notice that this adjustment parallels that made in SPSS by adjusting for continuity. When expected
counts per cell are relatively small (a working rule is that they should be at least five in each cell), one
can also request Fisher’s exact test (see Fisher, 1922a), which we note also mirrors the output gen-
erated by SPSS:

> fisher.test(diag.table)

Fisher's Exact Test for Count Data

data: diag.table
p-value = 0.008579
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

1.466377 26.597383
sample estimates:
odds ratio

5.764989
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Other useful statistics for contingency tables include the phi coefficient andCramer’s V. Phi, ϕ, is
a measure of association for 2 × 2 contingency tables, computed as

ϕ =
χ2

n

where χ2 is the chi-square statistic calculated on the 2 × 2 table, and n is the total sample size. The
maximum ϕ can attain is 1.0, indicating maximal association. ϕ can be computed in SPSS by /sta-
tistics = phi and is available in R in the psych package (Revelle, 2015). Cramer’s ϕc extends on
ϕ in that it allows for contingency tables of greater than 2 × 2. It is included in the /statistics =
phi command and also available in R’s psych package. It is given by:

ϕc =
χ2

n k − 1

where k is the minimum of the number of rows or columns. The relationship between ϕc and ϕ is easily
shown for k = 2:

ϕc =
χ2

n 2 − 1
=

χ2

n
= ϕ

2.2.1 Power for Chi-Square Test of Independence

We can estimate power5 and required sample size for the chi-square test of independence using the
package pwr in R:

> library(pwr)
> pwr.chisq.test (w = , N = , df = , sig.level = , power = )

where w is the anticipated or required effect size, estimated as:

w =
m

i = 1

p0i − p1i
2

p0i

and p0i and p1i are the probabilities in a given cell i under the null and alternative hypotheses, respec-
tively. We demonstrate by estimating power for w = 0.2:

> pwr.chisq.test(w = 0.2, N =, df = 5, sig.level = .05, power = 0.90)

Chi squared power calculation

w = 0.2
N = 411.7366

df = 5
sig.level = 0.05

power = 0.9
NOTE: N is the number of observations

5 Power will be discussed later in this chapter.
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R estimates that a total of approximately 411 subjects are required to achieve power set at 0.90. Such a
large sample is required because w = 0.2 constitutes a relatively small effect size (see Cohen (1988) for
details).

The reader may ask at this point how one might go about analyzing data for higher-dimensional
frequency tables. The example for the chi-square test of the data in Table 2.1 is only for that of a
2 × 2 layout. Suppose we added a third factor to our analysis, such as gender, making our contingency
table appear as in Table 2.2.

For data such as that in Table 2.2 featuring higher-dimensional frequency data, log-linear models
are a possibility (Agresti, 2002). Log-linear models are an option in the wider class of generalized
linear models, to be discussed further in Chapter 10, where we discuss in some detail a special case
of the generalized linear model called the logistic regression model.

2.3 SENSITIVITY AND SPECIFICITY

Sensitivity and specificity are measures historically used in diagnostic situations but can be applied to
other contexts as well. We can easily adapt the data in Table 2.1 to suit a brief discussion of these
measures. We keep the same cell frequencies, but modify variable names so the data become a bit more
applicable to a discussion of sensitivity and specificity (see Table 2.3).

The sensitivity of the diagnostic instrument is the probability that the test is positive given that the
individual has the disease. In the margins, we see that 30 people have the disease, of which 20 were
diagnosed with it. Thus, the sensitivity of the test is 20/30 = 0.66. The specificity of the diagnostic
instrument is the probability that the test is negative, given that the individual does not have the disease.
In the margins, we see that 20 people do not have the disease, of which 15 were diagnosed with not
having the disease. Hence, the specificity of the test is 15/20 = 0.75. The overall prevalence of the
disease is equal to 30/50 (i.e., 30 people have the disease out of 50). One can also compute what
are known as positive and negative predictive values from such tables. For these and other measures
useful for diagnostic situations, see Dawson and Trapp (2004).

2.4 SCALES OF MEASUREMENT: NOMINAL, ORDINAL, INTERVAL, RATIO

Recall that in our discussion of the so-called “soft” versus “hard” sciences in Chapter 1, we concluded
that a key principal difference between the two is not necessarily one of different statistical or analytical
methods used in drawing conclusions, but rather in the actual material that is subjected to measure-
ment. Though this book is not about measurement per se, we nonetheless wish to review the scales of
measurement as first proposed by S.S. Stevens in 1946 (Stevens, 1946).

TABLE 2.2 Contingency Table for 2 × 2 × 2 Design

Exposure Condition Absent (0) Condition Present (1) Total

Males Yes 10 20 30
No 15 5 20

Females Yes 13 17 30
No 12 8 20
Total 50 50 100

TABLE 2.3 Contingency Table for 2 × 2 Diagnostic Design

Diagnosis Yes Diagnosis No Total

Disease Yes 20 10 30
Disease No 5 15 20
Total 25 25 50
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Before we discuss these scales, it would do well to remind ourselves just what ismeasurement in the
first place. We propose the following workable definition:

Measurement is the systematic assignment of numbers to observations according to a well-defined set
of rules.

The job of the “rules” is to make good sense of the measurement process. For instance, if we simply
assignednumbers toobservationswithout a set of rules togovern the assignment, then even if Iweighmore
than you, I could be assigned 150 lbs and you 180 lbs. The requirement of having rules of measurement
avoids such meaningless and contradictory assignments. If I weigh more than you, rules of measurement
imply that my weight measurement will be larger than yours within the margin of measurement error.

2.4.1 Nominal Scale

Measurement at the nominal scale is hardly considered real measurement, because it is simply the
process of grouping objects or subjects into classes. Each class is usually represented by a number,
letter, name, etc. Other than naming these categories, no other properties are assumed or inferred, such
as distance between objects or magnitude.

A classic example of measurement at the nominal level is that of hockey jersey numbers. That the
number “99” is greater than the number “22” on the shirts of two hockey players does not imply any-
thing about magnitude (though Wayne Gretzky did in this case wear “99” and was perhaps the best
hockey player ever). The numbers 99 and 22 are simply “classes,” they are symbols used to identify
(or name) one class as different or distinct from the other. The fact that we use a rational system such as
the real numbers to identify these different classes of “99” versus “22” does not imply anything about
order or magnitude at the level of substantive measurement. Yes, to the mathematician, 99 is indeed
numerically greater than 22. That is, an order property is implied in the numbers. However, to the sci-
entist, nothing of order or magnitude needs to be implied when working with a nominal scale.

To briefly elaborate on this point, the concept of using numbers to represent classes makes for an
ideal example of the distinction between mathematical measurement versus scientific measurement. In
the mathematical measurement of the distance on the real line (e.g., the “length” between two real num-
bers), order is a necessary implication and differentiates any two numbers on the line. In scientific
measurement, though we may still use the “objects” (i.e., the numbers) of pure mathematics, whether
there exist order and magnitude in our empirical objects of study is for us to decide as scientists with
the aid of our measurement tools. It is not solely a mathematical or “abstract” consideration.

As an example, consider the following objects:

∗ $ # %

Though we can say, at minimum, that nominal level measurement has been achieved (the objects
have different symbols, that is, different names), we cannot say anything more about either the distance
or magnitude between the objects, unless we decide to impose an order relation on the above objects.
For instance, if we decide, based on our rules of measurement, that $ is greater than ∗, then not only
have we measurement at the nominal level, we also have measurement at the ordinal level.

2.4.2 Ordinal Scale

In addition to categorizing objects into classes, measurement at the ordinal level imposes an order
relation between objects. For instance, if $ is greater than ∗ for some characteristic that these symbols
represent, then we have measurement at the ordinal level. The imposition of an order relation is fun-
damental to any sort of true measurement. Consider that if your measurement system does not even
allow you to say one thing has more of a characteristic than another, what could be the purpose of
even measuring?
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Ordinal measurement, however, does not say anything about the precise amount of magnitude
between objects. For example, first place, second place, and third place in a race constitute measure-
ment at the ordinal level, but that you finished second does not immediately tell us the distance
between first and second, or the distance between second and third. To speak of distances between
objects, we require measurement at the interval level.

2.4.3 Interval Scale

Measurement at the interval level possesses all the features of measurement of both nominal and ordi-
nal scales, but with the extra requirement that distances between measured objects are quantifiable,
and that distances between successive measuring points on the scale are equal in magnitude. For
instance, consider the measurement of temperature in degrees Fahrenheit. The change in temperature
from 10 degrees to 20 degrees essentially contains the same “amount” of temperature change as that
from 20 to 30 degrees. That is, the intervals between measurement points are meaningful and represent
an equal distance in the “thing” (i.e., temperature, in this case) we are measuring.

Is intelligence measurable on an interval scale? What would it mean for it to be measurable at the
interval level?Well, supposing we base our measurements on a reputable standardized test, for IQ to be
measurable at the interval scale would imply that the distance in the thing called “IQ” is equivalent
from say, 90 to 100 as it is from 100 to 110. At first glance, this might appear an easy condition to
satisfy, after all, the real number distance in each interval is equal to 10. However, recall that that
is a distance of real numbers, not necessarily of IQ. As William James put it, we must not confuse
the phenomena we study with the abstractions we use to study them. The real numbers are the abstrac-
tion. The IQ is the phenomenon. That we used a real line to measure these distances does not neces-
sarily imply that the actual true distances in terms of “IQ substance” corresponds one-to-one (or even at
all) to our measurement tool. It is entirely possible that 90 to 100 represents a greater increase in IQ than
does 100 to 110, making the relation between our measurement of IQ versus “true IQ,” nonlinear. Our
measurement of IQ is simply not that precise to make such statements. Numerical length in this case
may not translate to the substantive length of the difference under study.

2.4.4 Ratio Scale

The most sophisticated scale of measurement is that of the ratio scale. It is the most sophisticated
because it is the only scale for which we can speak meaningfully about ratios between competing
measurement intervals. By “ratio,” we simply mean we have the power to make such statements as
“object a is twice as large as object b.” Up to now, no other scale has allowed us to make such state-
ments. For instance, in the interval scale, concluding that a is any factor greater than b made no sense.
We did not have a starting point to base such conclusions. An IQ of zero did not necessarily mean the
absence of intelligence. Rather, it was simply an arbitrary point on the IQ scale presumably denoting a
particular quantity of IQ (even if, in all probability, very small).

What gives us license to make statements of ratios? The element of the ratio scale that permits us to
make such statements is the fact that the ratio scale has at its origin a true zero point. When something
is deemed measurable at the ratio scale, a measurement of zero actually means zero of the thing that
is beingmeasured. Was this fact true of the interval scale? No, because zero degrees Fahrenheit did not
equate to there being zero temperature. “Zero”was simply an arbitrary value on the scale. However, the
fact that I have zero coins in my pocket actually means that I have zero coins. “Zero” is said to be, in
this case, “absolute,” meaning that there is truly nothing there.

Physical quantities such as weight, distance, velocity, motion, are all measurable at the ratio level.
Variables such as reaction time in sensation experiments are also measurable at the ratio level. Phe-
nomena such as intelligence, anxiety, attitude, are generally not. More often we deem themmeasurable

33SCALES OF MEASUREMENT: NOMINAL, ORDINAL, INTERVAL, RATIO



at the interval level or less, and when we really get critical, it is even a stretch at times to consider the
ordinal level of measurement as being satisfied for such variables. Then again, if we decided to oper-
ationally define anxiety by beats per minute of one’s heart, then theoretically at least, one could con-
clude that an individual has zero anxiety if that individual has zero beats per minute (though of course,
this could make for an awkward definition for the absence of anxiety!).

2.5 MATHEMATICAL VARIABLES VERSUS RANDOM VARIABLES

When we speak of amathematical variable (or simply, variable), we mean a symbol that at any point
could be replaced by values contained in a specified set. For instance, consider the mathematical var-
iable yi. By the subscript i is indicated the fact that yi stands for a set of values, not all equal to the same
number (otherwise y would be a constant) such that at any point in time any of these values in the set
could serve as a temporary “replacement” for the symbol.

Of course, social and natural sciences are all about variables. Here are some examples:

• Height of persons in the world is a variable because persons of the world have different heights.
However, height would be considered a constant if 10 people in a room were of the exact same
height (and those were the only people we were considering).

• Blood pressure is a variable because persons, animals, and other living creatures have different
blood pressure measurements.

• Intelligence (IQ) of human beings (difficult to measure to be sure, though psychology has devel-
oped instruments in an attempt to assess such things) is a variable because presumably people
have differing intellectual capacities.

• Earned run average (ERA) of baseball players is a variable because players do not all have the
same ERA.

A random variable is a mathematical variable that is associated with a probability distribution.
That is, as soon as we assign probabilities to values of the variable, we have a random variable. More
formally, we can say that a random variable is a function from a sample space into the real numbers
(Casella and Berger, 2002), which essentially means that elements in the set (i.e., sample space) have
probabilities associated with them (Dowdy, Wearden, and Chilko, 2004).

Consider a simple comparison between a mathematical variable and a discrete random variable in
Table 2.4.

Notice that for the mathematical variable, probability does not enter the picture, it is not of any con-
sideration. For the discrete random variable, each value of the variable has a probability associated with
it. Note as well that the probabilities must sum to 1.0 for it to be a legitimate probability distribution
(i.e., 0.20 + 0.50 + 0.30 = 1.0). How the given probabilities are assigned is a matter to be governed by
the specific context of the problem. Recall as well that variables can be classified as discrete or con-
tinuous (see Appendix for a review). This same distinction can be applied to random variables as to
ordinary mathematical variables. In Table 2.4 features a discrete random variable. For continuous

TABLE 2.4 Mathematical versus Discrete Random Variable

Mathematical Variable yi Random Variable yi

y1 = 1 y1 = 1 (p = 0.20)
y2 = 3 y2 = 3 (p = 0.50)
y3 = 5 y3 = 5 (p = 0.30)
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random variables, since the probability of any particular value in a continuous distribution is theoret-
ically zero, instead of associating probabilities with particular values, probabilities are associated with
areas under the curve computed by way of integration in calculus.

The distinction between mathematical and random variables is important when we discuss such
things as means, variances, and covariances. A reader first learning about random variables, having
already mastered the concept of sample or population variance (to be discussed shortly), can be some-
what taken aback when encountering the variance of a random variable, given as

σ2 = E yi − μ
2

and then attempting to compare it to the more familiar variance of a population:

σ2 =

n

i = 1
yi − μ

2

n

Realize, however, that both expressions are essentially similar, they both account for squared devia-
tions from the mean. However, the variance of a random variable is stated in terms of its expectation,
E. Throughout this book, we will see the operator E at work.What is an expectation? The expectation E
of a random variable is the mean of that random variable, which amounts to it being a probability-
weighted average (Gill, 2006). The operator E occurs several times throughout this book because
in theoretical statistics, long-run averages of a statistic are of especial interest. As noted by Feller
(1968, p. 221), should an experiment be repeated n times under identical conditions, the average of
such trials should be close to expectation. Perhaps less formally, the operator E then tells us what
we might expect to see in the long run for large n. Theoretical statisticians love taking expectations,
because the short run of a variable is seldom of interest at a theoretical level. It is the long (probability)
run that is often of most theoretical interest. As a crude analogy, on a personal level, youmay be “up” or
“down” now, but if your expectation E pointed to a favorable long-run endpoint, then perhaps that is
enough to convince you that though “on the way” is a rough tumbly road, in the end, as the spiritual
would say, we “arrive” at our expectation (which perhaps some would denote as an afterlife of sorts).

The key point is that when we are working with expectations, we are working with probabilities.

Thus, instead of summing squared deviations of the kind
n

i = 1
yi − μ

2 as one does in the sample or

population variance for which there is specified n, one must rather assign to these squared deviations
probabilities, which is what is essentially being communicated by the notation “E(yi − μ)2.” We can
“unpack” this expression to read

p yi yi − μ
2

where p(yi) is the probability of the given deviation, (yi − μ), for in this case, a discrete random variable.

2.6 MOMENTS AND EXPECTATIONS

When we speak ofmoments of a distribution or of a random variable, we are referring to such things as
the mean, variance, skewness, and kurtosis.

The first moment of a distribution is its mean. For a discrete random variable yi, the expectation is
given by:
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E yi =
n

i = 1

yip yi

where yi is the given value of the variable, and p(yi) is its associated probability.When yi is a continuous
random variable, the expectation is given by:

E yi =
∞

− ∞
yip yi dy

Notice again that in both cases, whether the variable is discrete or continuous, we are simply summing
products of values of the variable with its probability, or density if the variable is continuous. In the
case of the discrete variable, the products are “explicit” in that our notation tells us to take each value of
y (i.e., yi) and multiply by the probability of that given value, p(yi). In the case of a continuous variable,
the products are a bit more implicit one might say, since the “probability” of any particular value in a
continuous density is equal to 0. Hence, the product yip(yi) is equal to the given value of yimultiplied by
its corresponding density.

The arithmetic mean is a point such that
n

i = 1
yi − y = 0. That is, the sum of deviations around the

mean is always equal to 0 for any data set we may consider. In this sense, we say that the arithmetic
mean is the center of gravity of a distribution, it is the point that “balances” the distribution (see
Figure 2.8).

2.6.1 Sample and Population Mean Vectors

We often wish to analyze data simultaneously on several response variables. For this, we require vector
and matrix notation to express our responses. The matrix operations presented here are surveyed more
comprehensively in the Appendix and in any book on elementary matrix algebra.

FIGURE 2.8 Because the sum of deviations about the arithmetic mean is always zero, it can be conceptualized
as a balance point on a scale.
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Consider the following vector:

y =

y1
y2

yn

where y1 is observation 1 up to observation yn.
We can write the sample mean vector y for several variables y1 through yp as

y =
1
n

n

i = 1

yi =

y1
y2

yp

where yp is the mean of the pth variable.
The expectation of individual observations within each vector is equal to the population mean μ, of

which the expectation of the sample vector y is equal to the population vector, μ. This is simply an
extension of scalar algebra to that of matrices:

E y = E

y1
y2

yn

=

E y1
E y2

E yn

=

μ1
μ2

μn

= μ

Likewise, the expectations of individual sample means y1, y2,… yp are equal to their population coun-
terparts, μ1, μ2, … μp. The expectation of the sample mean vector y is equal to the population mean
vector, μ:

E y = E

y1
y2

yp

=

E y1
E y2

E yp

=

μ1
μ2

μp

= μ

We note also that y is an unbiased estimator of μ since E y = μ.
Recall that we said that the mean is the first moment of a distribution. We discuss the second

moment of a distribution, that of the variance, shortly. Before we do so, a brief discussion of estimation
is required.
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2.7 ESTIMATION AND ESTIMATORS

The goal of statistical inference is, in general, to estimate parameters of a population. We distinguish
between point estimators and interval estimators. A point estimator is a function of a sample and is
used to estimate a parameter in the population. Because estimates generated by estimators will vary
from sample to sample, and thus have a probability distribution associated with them, estimators
are also often random variables. For example, the sample mean y is an estimator of the population
mean μ. However, if we sample a bunch of y from a population for which μ is the actual population
mean, we know, both from experience and statistical theory, that y will vary from sample to sample.
This is why the estimator y is often a random variable, because its values will each have
associated with them a given probability (density) of occurrence. When we use the estimator to obtain
a particular number, that number is known as an estimate. An interval estimator provides a range of
values within which the true parameter is hypothesized to exist within some probability. A popular
interval estimator is that of the confidence interval, a topic we discuss later in this chapter.

More generally, if T is some statistic, then we can use T as an estimator of a population parameter θ.
Whether the estimator T is any good depends on several criteria, which we survey now.

On average, in the long run, the statistic T is considered to be an unbiased estimator of θ if

E T = θ

That is, an estimator is considered unbiased if its expected value is equal to that of the parameter it
is seeking to estimate. The bias of an estimator is measured by howmuch E(T) deviates from θ. When
an estimator is biased, then E(T) θ, or, we can say E(T) − θ 0. Since the bias will be a positive
number, we can express this last statement as E(T) − θ > 0.

Good estimators are, in general, unbiased. The most popular example of an unbiased estimator is
that of the arithmetic sample mean since it can be shown that:

E y = μ

An example of an estimator that is biased is the uncorrected sample variance, as we will soon discuss,
since it can be shown that

E S2 σ2

However, S2 is not asymptotically biased. As sample size increases without bound, E(S2) converges to
σ2. Once the sample variance is corrected via the following, it leads to an unbiased estimator, even for
smaller samples:

E s2 = σ2

where now,

s2 =

n

i = 1
yi − y

2

n − 1

Consistency6 of an estimator means that as sample size increases indefinitely, the variance of the esti-
mator approaches zero. That is, σ2T 0 as n ∞. We could also write this using a limit concept:

lim
n ∞

σ2T = 0

6Though in this text we define consistency of an estimator quite simply, further distinctions exist between weak and strong
consistency. See Shao (2003, pp. 132–133).
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which reads “the variance of the estimator T as sample size n goes to infinity (grows without bound) is
equal to 0.” Fisher called this the criterion of consistency, informally defining it as “when applied to
the whole population the derived statistic should be equal to the parameter” (Fisher, 1922a, p. 316). The
key to Fisher’s definition is whole population, which means, theoretically at least, an infinitely large
sample, or analogously, n ∞. More pragmatically, σ2T 0 when we have the entire population.

An estimator is regarded as efficient the lower is its mean squared error. Estimators with lower var-
iance are more efficient than estimators with higher variance. Fisher called this the criterion of effi-
ciency, writing “when the distributions of the statistics tend to normality, that statistic is to be chosen
which has the least probable error” (Fisher, 1922a, p. 316). Efficient estimators are generally preferred
over less efficient ones.

An estimator is regarded as sufficient for a given parameter if the statistic “captures” everything we
need to know about the parameter and our knowledge of the parameter could not be improved if we
considered additional information (such as a secondary statistic) over and above the sufficient estima-
tor. As Fisher (1922a, p. 316) described it, “the statistic chosen should summarize the whole of the
relevant information supplied by the sample.” More specifically, Fisher went on to say:

If θ be the parameter to be estimated, θ1 a statistic which contains the whole of the information as to the
value of θ, which the sample supplies, and θ2 any other statistic, then the surface of distribution of pairs of
values of θ1 and θ2, for a given value of θ, is such that for a given value of θ1, the distribution of θ2 does not
involve θ. In other words, when θ1 is known, knowledge of the value of θ2 throws no further light upon the
value of θ. (Fisher, 1922a, pp. 316–317)

2.8 VARIANCE

Returning to our discussion of moments, the variance is the second moment of a distribution. For the
discrete case, variance is defined as:

σ2 =
n

i = 1

yi −E yi
2p yi

while for the continuous case,

σ2 =
∞

− ∞
yi −E yi

2p yi dy

Since E(yi) = μ, it stands that we may also write E(yi) as μ. We can also express σ2 as E y2i − μ2 since,
when we distribute expectations, we obtain:

σ2 = E yi − μ
2

= E yi − μ yi − μ

= E y2i − yiμ− yiμ + μ2

= E y2i −E yi μ−E yi μ + μ2

= E y2i − μμ− μμ + μ2

= E y2i − μ2 − μ2 + μ2

= E y2i − μ2
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Recall that the uncorrected and biased sample variance is given by:

S2 =

n

i = 1
yi − y

2

n

As earlier noted, taking the expectation of S2, we find that E(S2) σ2. The actual expectation of S2 is
equal to:

E S2 = n− 1 n σ2

which implies the degree to which S2 is biased is equal to:

− σ2

n

We have said that S2 is biased, but youmay have noticed that as n increases, (n − 1)/n approaches 1, and
so E(S2) will equal σ2 as n increases without bound. This was our basis for earlier writing
lim

n ∞
E S2 = σ2. That is, we say that the estimator S2, though biased for small samples, is asymptot-

ically unbiased because its expectation is equal to σ2 as n ∞.
When we lose a degree of freedom in the denominator and rename S2 to s2, we get

s2 =

n

i = 1
yi − y

2

n − 1

Recall that when we take the expectation of s2, we find that E(s2) = σ2 (see Wackerly, Mendenhall, and
Scheaffer (2002, pp. 372–373) for a proof ).

The population standard deviation is given by the positive square root of σ2, that is, σ2 = σ .

Analogously, the sample standard deviation is given by s2 = s.
Recall the interpretation of a standard deviation. It tells us on average how much scores deviate

from the mean. In computing a measure of dispersion, we initially squared deviations so as to avoid
our measure of dispersion always equaling zero for any given set of observations, since the sum of
deviations about the mean is always equal to 0. Taking the average of this sum of squares gave us
the variance, but since this is in squared units, we wish to return them to “unsquared” units. This is
how the standard deviation comes about. Studying the analysis of variance, the topic of the following
chapter, will help in “cementing” some of these ideas of variance and the squaring of deviations, since
ANOVA is all about generating different sums of squares and their averages, which go by the name of
mean squares.

The variance and standard deviation are easily obtained in R. We compute for parent in Gal-
ton’s data:

> var(parent)
[1] 3.194561

> sd(parent)
[1] 1.787333

One may also wish to compute what is known as the coefficient of variation, which is a ratio of the
standard deviation to the mean. We can estimate this coefficient for parent and child respectively
in Galton’s data:
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> cv.parent <- sd(parent)/mean(parent)
> cv.parent

[1] 0.02616573

> cv.child <- sd(child)/mean(child)
> cv.child

[1] 0.03698044

Computing the coefficient of variation is a way of comparing the variability of competing distribu-
tions relative to each distribution’s mean. We can see that the dispersion of child relative to its mean
(0.037) is slightly larger than that of the dispersion of parent relative to its mean (0.026).

2.9 DEGREES OF FREEDOM

In our discussion of variance, we saw that if we wanted to use the sample variance as an estimator of the
population variance, we needed to subtract 1 from the denominator. That is, S2 was “corrected” into s2:

s2 =

n

i = 1
yi − y

2

n − 1

We say we lost a degree of freedom in the denominator of the statistic. But what are degrees of free-
dom? They are the number of independent units of information in a sample that are relevant to the
estimation of some parameter (Everitt, 2002). In the case of the sample variance, s2, one degree of
freedom is lost since we are interested in using s2 as an estimator of σ2. We are losing the degree of

freedom because the numerator,
n

i = 1
yi − y

2, is not based on n independent pieces of information since

μ had to be estimated by y. Hence, a degree of freedom is lost. Why? Because values of yi are not
independent of what y is, since y is fixed in terms of the given sample data. In general, when we

estimate a parameter, it “costs” a degree of freedom. Had we μ, such that
n

i = 1
yi − μ

2, we would have

not lost a degree of freedom, since μ is a known (not estimated) parameter.
A conceptual demonstration may prove useful in understanding the concept of degrees of freedom.

Imagine you were asked to build a triangle such that there was to be no overlap of lines on either side of
the triangle. In other words, the lengths of the sides had to join neatly at the vertices. We shall call this
the “Beautiful Triangle” as depicted in Figure 2.9. You are now asked to draw the first side of the
triangle. Why did you draw this first side the length that you did? You concede that the length of
the first side is arbitrary, you were free to draw it whatever length you wished. In drawing the second
length, you acknowledge you were also free to draw it whatever length you wished. Neither of the first
two lengths in any way violated the construction of a beautiful triangle with perfectly adjoining
vertices.

However, in drawing the third length, what length did you choose? Notice that to complete the tri-
angle, you were not free to determine this length arbitrarily. Rather, the length was fixed given the con-
straint that the triangle was to be a beautiful one. In summary then, in building the beautiful triangle, you
lost 1 degree of freedom, in that two of the lengths were of your free choosing, but the third was fixed.
Analogously, in using s2 as an estimator of σ2, a single degree of freedom is lost. If y is equal to 10,
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for instance, and the sample is based on five observations, then y1, y2, y3, y4 are freely chosen, but the
fifth data point, y5 is not freely chosen so long as the mean must equal 10. The fifth data point is fixed.
We lost a single degree of freedom.

Degrees of freedom occur throughout statistics in a variety of statistical tests. If you understand this
basic example, then while working out degrees of freedom for more advanced designs and tests may
still pose a challenge, you will nonetheless have a conceptual base from which to build your
comprehension.

2.10 SKEWNESS AND KURTOSIS

The third moment of a distribution is its skewness. Skewness of a random variable generally refers to
the extent to which a distribution lacks symmetry. Skewness is defined as:

γ =
E yi − μ

3

E yi − μ
2

3 2

• Skewness for a normal distribution is equal to 0, just as skewness for a rectangular distribution is
also equal to 0 (one does not necessarily require a bell-shaped curve for skewness to equal 0)

• Skewness for a positively skewed distribution is greater than 0; these distributions have tails that
stretch out into values on the abscissa of greatest value

• Skewness for a negatively skewed distribution is less than 0; these distributions have tails that
stretch out to values on the abscissa of least value

An example of a positively skewed distribution is that of the typical F density, given in Figure 2.10.
The fourth moment of a distribution is its kurtosis, generally referring to the peakness of a

distribution (Upton and Cook, 2002), but also having much to do with a distribution’s tails
(DeCarlo, 1997):

k =
E yi − μ

4

E yi − μ
2 2

FIGURE 2.9 The “Beautiful Triangle” as a way to understanding degrees of freedom.
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With regard to kurtosis, distributions are defined:

• mesokurtic if the distribution exhibits kurtosis typical of a bell-shaped normal curve

• platykurtic if the distribution exhibits lighter tails and is flatter toward the center than a normal
distribution

• leptokurtic if the distribution exhibits heavier tails and is generally more narrow in the center than
a normal distribution, revealing that it is somewhat “peaked”

We can easily compute moments of empirical distributions in R or SPSS. Several packages in R are
available for this purpose. We could compute skewness for parent on Galton’s data by:

> library(psych)
> skew(parent)
[1] -0.03503614

The psych package (Revelle, 2015) also provides a range of descriptive statistics:

> library(psych)
> describe(Galton)

vars n mean sd median trimmed mad min max range skew kurtosis
parent 1 928 68.31 1.79 68.5 68.32 1.48 64.0 73.0 9 -0.04 0.05
child 2 928 68.09 2.52 68.2 68.12 2.97 61.7 73.7 12 -0.09 -0.35

se
parent 0.06
child 0.08

The skew for child has a value of −0.09, indicating a slight negative skew. This is confirmed by
visualizing the distribution (and by a relatively close inspection in order to spot the skewness):

> hist(child)

2 4 6

FIGURE 2.10 F distribution on 2 and 5 degrees of freedom. It is positively skewed since the tail stretches out to
numbers of greater value.
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2.11 SAMPLING DISTRIBUTIONS

Sampling distributions are at the cornerstone of statistical inference. The sampling distribution of a
statistic is a theoretical probability distribution of that statistic. As defined by Degroot and Scher-
vish (2002), “the sampling distribution of a statistic tells us what values a statistic is likely to assume
and how likely it is to assume those values prior to observing our data” (p. 391).

As an example, we will generate a theoretical sampling distribution of the mean for a given pop-
ulation with mean μ and variance, σ2. The distribution we will create is entirely idealized in that it does
not exist in nature anywhere. It is simply a statistical theory of how the distribution of means might
look if we were able to take an infinite number of samples of a given size from a given population, and
on each of these samples, calculate the sample mean statistic.

When we derive sampling distributions for a statistic, we are asking the following question:

If we were to draw an infinite number of samples of size n from this population and calculate the
sample mean on each sample, what would the distribution of sample means look like?

If we can specify this distribution, then we can evaluate obtained sample means relative to it. That
is, we will be able to compare our obtained means (i.e., the ones we obtain in real empirical research) to
the theoretical sampling distribution of means, and answer the question:

If my obtained samplemean really did come from this population, what is the probability of obtaining
a mean such as this?

If the probability is low, you might then decide to reject the assumption that the sample mean you
obtained arose from the population in question. It could have, to be sure, but it probably did not. For
continuous measures, our interpretation above is slightly informal, since the probability of any par-
ticular value of the sample mean in a continuous distribution is essentially equal to 0 (i.e., in the limit,
the probability equals 0). Hence, the question is usually posed such that we seek to know the proba-
bility of obtaining a mean such as the one we obtained or more extreme.

2.11.1 Sampling Distribution of the Mean

Since we regularly calculate and analyze sample means in our data, we are often interested in the sam-
pling distribution of the mean. If we regularly computed medians, we would be equally as interested in
the sampling distribution of the median.

44 INTRODUCTORY STATISTICS



Recall that when we consider any distribution, whether theoretical or empirical, we are usually espe-
cially interested in knowing two things about that distribution: a measure of central tendency and a
measure of dispersion or variability. Why do we want to know such things? We want to know these
two things because they help summarize our observations, so that instead of looking at each individual
data point to get an adequate description of the objects under study, we can simply request the mean and
standard deviation as telling the story (albeit an incomplete one) of the obtained observations. Simi-
larly, when we derive a sampling distribution, we are interested in the mean and standard deviation of
that theoretical distribution of a statistic.

We already know how to calculate means and standard deviations for real empirical distributions.
However, we do not know how to calculate means and standard deviations for sampling distributions.
It seems reasonable that the mean and standard deviation of a sampling distribution should depend in
some way on the given population fromwhich we are sampling. For instance, if we are sampling from a
population that has a mean μ = 20.0 and population standard deviation σ = 5, it seems plausible that the
sampling distribution of the mean should look different than if we were sampling from a population
with μ = 10.0 and σ = 2. It makes sense that different populations should give rise to different
theoretical sampling distributions.

What we need then is a way to specify the sampling distribution of the mean for a given population.
That is, if we draw sample means from this population, what does the sampling distribution of the mean
look like for this population? To answer this question, we need both the expectation of the sampling
distribution (i.e., its mean) as well as the standard deviation of the sampling distribution (i.e., its stand-
ard error (SE)). We know that the expectation of the sample mean y is equal to the population mean μ.
That is, E y = μ. For example, for a sample mean y = 20 0, the expected value of the sample mean is
equal to the population mean μ of 20.0.

To understand why E y = μ should be true, consider first how the sample mean is defined:

y =
y1 + y2 + + yn

n

Incorporating this into the expectation for y, we have:

E y = E
y1 + y2 + + yn

n

There is a rule of expectations that says that the expectation of the sum of random variables is equal
to the sum of individual expectations. This being the case, we can write the expectation of the sample
mean y as:

E y =
E y1 + y2 + + yn

n

=
E y1 + E y2 + + E yn

n

Since the expectation of each y1 through yn is E(y1) = μ, E(y2) = μ, … E(yn) = μ, we can write

E y =
μ + μ + + μ

n

E y =
nμ

n
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We note that the n values in numerator and denominator cancel, and so we end up with

E y = μ

Using the fact that E(yi) = μ, we can also say that the expected value of a sampling distribution of the
mean is equal to the mean of the population from which we did the theoretical sampling. That is, μy = μ
is true, since given E y = μ, it stands that if we have say, five sample means y1, y2, y3, y4, y5, the expec-
tation of each of these means should be equal to μ, from which we can easily deduce μy = μ. That is, the
mean of all the samples we could draw is equal to the population mean.

We now need a measure of the dispersion of a sampling distribution of the mean. At first glance, it
may seem reasonable to assume that the variance of the sampling distribution of means should equal the
variance of the population from which the sample means were drawn. However, this is not the case.
What is true is that the variance of the sampling distribution of means will be equal to only a fraction of
the population variance. It will be equal to 1

nof it, where n is equal to the size of samples we are collect-
ing for each sample mean. Hence, the variance of means of the sampling distribution is equal to

1
n

σ2

or simply,

σ2

n

The mathematical proof of this statistical fact is in most mathematical statistics texts. A version of the
proof can also be found in Hays (1994). The idea, however, can be easily and perhaps even more intu-
itively understood by recourse to what happens as n changes. We consider first the most trivial and
unrealistic of examples to strongly demonstrate the point. Suppose that we calculate the sample mean
from a sample size of n = 1, sampled from a population with μ = 10.0 and σ2 = 2.0. Suppose the sample
mean we obtain is equal to 4.0. Therefore, the sampling variance of the corresponding sampling dis-
tribution is equal to:

σ2

n
=

2
1
= 2

That is, the variance in means that you can expect to see if you sampled an infinite number of means
based on samples of size n = 1 repeatedly from this population is equal to 2. Notice that 2 is exactly
equal to the original population variance. In this case, the variance in means is based on only a single
data point.

Consider now the case where n > 1. Suppose we now sampled a mean from the population based
on sample size n = 2, yielding

σ2

n
=

2
2
= 1

What has happened? What has happened is that the variance in sample means has decreased by 1/2 of
the original population variance (i.e., 1/2 of 2 is 1). Why is this decrease reasonable? It makes sense,
because we already know from the law of large numbers that as the sample size grows larger, one gets
closer and closer to the true probability in estimating a parameter. That is, for a consistent estimator, our
estimate of the true population mean (i.e., the expectation) should get better and better as sample size
increases. This is exactly what happens as we increase n, our precision of that which is being estimated
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increases. In other words, the sampling variance of the estimator decreases. It’s less variable, it doesn’t
“bounce around as much” on average from sample to sample.

Analogous to how we defined the standard deviation as the square root of the variance, it is also
useful to take the square root of the variance of means:

σ2

n
=

σ

n

which we call the standard error of the mean, σM. The standard error of the mean is the standard
deviation of the sampling distribution of the mean. Lastly, it is important to recognize that σ

n
is not

“the” standard error. It is merely the standard error of the mean. Other statistics will have different SEs.

2.12 CENTRAL LIMIT THEOREM

It is not an exaggeration to say that the central limit theorem, in one form or another, is probably the
most important and relevant theorem in theoretical statistics, which translates to it being quite relevant
to applied statistics as well.

We borrow our definition of the central limit theorem from Everitt (2002):

If a random variable y has a population mean μ and population variance σ2, then the sample mean, y, based

on n observations, has an approximate normal distribution with mean μ and variance
σ2

n
, for sufficiently

large n. (p. 64)

Asymptotically, the distribution of a normal random variable converges to that of a normal distri-
bution as n ∞. A multivariate version of the theorem can also be given (e.g., see Rencher,
1998, p. 53).7

The relevance and importance of the central limit theorem cannot be overstated: it allows one to
know, at least on a theoretical level, what the distribution of a statistic (e.g., sample mean) will look
like for increasing sample size. This is especially important if one is drawing samples from a population
for which the shape is not known or is known a priori to be nonnormal. Normality of the sampling
distribution, for adequate sample size, is still assured even if samples are drawn from nonnormal
populations. Why is this relevant? It is relevant because if we knowwhat the distribution of means will
look like for increasing sample size, then we know we can compare our obtained statistic to a normal
distribution in order to estimate its probability of occurrence. Normality assumptions are also typically
required for assuming independence between y and s2 in univariate contexts (Lukacs, 1942), and y
(mean vector) and S (covariance matrix) in multivariate ones. When such estimators can be assumed
to arise from normal or multivariate normal distributions (i.e., in the case of y and S) we can generally
be assured one is independent of the other.

2.13 CONFIDENCE INTERVALS

Recall that a goal of statistical inference is to estimate functions of parameters, whether a single param-
eter, a difference of parameters (for instance, in the case of population differences), or some other func-
tion of parameters. Though the sample mean y is an unbiased estimator of μ, the probability that y is

7We can also distinguish between weaker vs. stronger forms of the theorem. For details, see Casella & Berger
(2002, pp. 236–238).
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equal to μ in any given sample, for a continuous measure, converges to zero (Hays, 1994). For this
reason, and to build some flexibility in estimation overall, the idea of interval estimation in the form
of confidence intervals was developed. Confidence intervals provide a range of values for which we
can be relatively certain lay the true parameter we are seeking to estimate. In what follows, we provide a
brief review of 95 and 99% confidence intervals.

We can say that over all samples of a given size n, the probability is 0.95 for the following event
to occur:

− 1 96σM < y − μ < 1 96σM (2.2)

How was (2.2) obtained? Recall the calculation of a z-score for a mean:

z =
y− μ

σM

Suppose now that we want to have a 0.025 area on either side of the normal distribution.
This value corresponds to a z-score of 1.96, since the probability of a z-score of ±1.96 is
2(1 – 0.9750021) = 0.0499958, which is approximately 5% of the total curve. So, from the z-score,
we have

z =
y − μ

σM

± 1 96 =
y − μ

σM

We can modify the equality slightly to get the following:

y − 1 96σM < μ < y + 1 96σM (2.3)

We interpret (2.3) as follows:

Over all possible samples, the probability is 0.95 that the range between y− 1 96σM and y + 1 96σM
will include the true mean, μ.

Very important to note regarding the above statement is that μ is not the random variable. The part
that is random is the sample on which is computed the interval. That is, the probability statement is not
about μ but rather is about samples. The population mean μ is assumed to be fixed. The 95% confi-
dence interval tells us that if we continued to sample repeatedly, and on each sample computed a
confidence interval, then 95% of these intervals would include the true parameter.

The 99% confidence interval for the mean is likewise given by:

y − 2 58σM < μ < y + 2 58σM (2.4)

Notice that the only difference between (2.3) and (2.4) is the choice of different critical values on either
side of μ (i.e., 1.96 for the 95% interval and 2.58 for the 99% interval).

Though of course not very useful, a 100% confidence interval, if constructed, would be defined as:

y − ∞ σM < μ < y + ∞ σM
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If you think about it carefully, the 100% confidence interval should make perfect sense. If you would
like to be 100% “sure” that the interval will cover the true population mean, then you have to extend
your limits to negative and positive infinity, otherwise, you could not be fully confident. Likewise, on
the other extreme, a 0% interval would simply have y as the upper and lower limits:

y < μ < y

That is, if you want to have zero confidence in guessing the location of the population mean, μ, then
guess the sample mean y. Though the sample mean is an unbiased estimator of the population mean, the
probability that the sample mean covers the population mean exactly, as mentioned, essentially con-
verges to 0 for a truly continuous distribution (Hays, 1994). As an analogy, imagine coming home and
hugging your spouse. If your arms are open infinitely wide (full “bear hug”), you are 100% confident to
entrap him or her in your hug because your arms (limits of the interval) extend to positive and negative
infinity. If you bring your arms in a little, then it becomes possible to miss him or her with the hug (e.g.,
95% interval). However, the precision of the hug is a bit more refined (because your arms are closing
inward a bit instead of extending infinitely on both sides). If you approach your spouse with hands
together (i.e., point estimate), you are sure to miss him or her, and would have 0% confidence of your
interval (hug) entrapping your spouse. An inexact analogy to be sure, but useful in visualizing the
concept of confidence intervals.

2.14 MAXIMUM LIKELIHOOD

When we speak of likelihood, we mean the probability of some sample data or set of observations
conditional on some hypothesized parameter or set of parameters (Everitt, 2002). Conditional proba-
bility statements such as p(D/H0) can very generally be considered simple examples of likelihoods,
where typically the set of parameters, in this case, may be simply μ and σ2. A likelihood function
is the likelihood of a parameter given data (see Fox, 2016).

When we speak of maximum-likelihood estimation, we mean the process of maximizing a like-
lihood subject to certain parameter conditions. As a simple example, suppose we obtain 8 heads on
10 flips of a presumably fair coin. Our null hypothesis was that the coin is fair, meaning that the prob-
ability of heads is p(H) = 0.5. However, our actual obtained result of 8 heads on 10 flips would suggest
the true probability of heads to be closer to p(H) = 0.8. Thus, we ask the question:

Which value of θ makes the observed result most likely?

If we only had two choices of θ to select from, 0.5 and 0.8, our answer would have to be 0.8, since
this value of the parameter θ makes the sample result of 8 heads out of 10 flips most likely. That is the
essence of how maximum-likelihood estimation works (see Hays, 1994, for a similar example). ML is
the most common method of estimating parameters in many models, including factor analysis, path
analysis, and structural equation models to be discussed later in the book. There are very good reasons
why mathematical statisticians generally approve of maximum likelihood. We summarize some of
their most favorable properties.

Firstly, ML estimators are asymptotically unbiased, which means that bias essentially vanishes as
sample size increases without bound (Bollen, 1989). Secondly, ML estimators are consistent
and asymptotically efficient, the latter meaning that the estimator has a small asymptotic variance rel-
ative to many other estimators. Thirdly, ML estimators are asymptotically normally distributed, mean-
ing that as sample size grows, the estimator takes on a normal distribution. Finally, ML estimators
possess the invariance property (see Casella and Berger, 2002, for details).
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2.15 AKAIKE’S INFORMATION CRITERIA

A measure of model fit commonly used in comparing models that uses the log-likelihood is Akaike’s
information criteria, or AIC (Sakamoto, Ishiguro, and Kitagawa, 1986). This is one statistic of the
kind generally referred to as penalized likelihood statistics (another is the Bayesian information
criterion, or BIC). AIC is defined as:

− 2Lm + 2m

where Lm is the maximized log-likelihood and m is the number of parameters in the given model.
Lower values of AIC indicate a better-fitting model than do larger values. Recall that the more
parameters fit to a model, in general, the better will be the fit of that model. For example, a model that
has a unique parameter for each data point would fit perfectly. This is the so-called saturated model.
AIC jointly considers both the goodness of fit as well as the number of parameters required to obtain
the given fit, essentially “penalizing” for increasing the number of parameters unless they contribute
to model fit. Adding one or more parameters to a model may cause −2Lm to decrease (which is a
good thing substantively), but if the parameters are not worthwhile, this will be offset by an increase
in 2m.

The Bayesian information criterion, or BIC (Schwarz, 1978) is defined as −2Lm +m log(N),
where m, as before, is the number of parameters in the model and N the total number of observations
used to fit the model. Lower values of BIC are also desirable when comparing models. BIC typically
penalizes model complexity more heavily than AIC. For a comparison of AIC and BIC, see Burnham
and Anderson (2011).

2.16 COVARIANCE AND CORRELATION

The covariance of a random variable is given by:

cov xi, yi = σxy = E xi − μx yi − μy

where E[(xi − μx)(yi − μy)] is equal to E(xiyi) − μxμy since

σxy = E xi − μx yi − μy

= E xiyi − xiμy − yiμx + μxμy

= E xiyi −E xi μy −E yi μx + μxμy

= E xiyi − μxμy − μyμx + μxμy

= E xiyi − μxμy
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The concept of covariance is at the heart of virtually all statistical methods. Whether one is running
analysis of variance, regression, principal component analysis, etc. covariance concepts are central to
all of these methodologies and even more broadly to science in general.

The sample covariance is a measure of relationship between two variables and is defined as:

cov =

n

i = 1
xi − x yi − y

n
(2.5)

The numerator of the covariance,
n

i = 1
xi − x yi − y , is the sum of products of respective deviations of

observations from their respective means. If there is no linear relationship between two variables in a
sample, covariance will equal 0. If there is a negative linear relationship, covariance will be a negative
number, and if there is a positive linear relationship covariance will be positive. Notice that to measure
covariance between two variables requires there to be variability on each variable. If there is no var-
iability in xi, then xi − x will equal 0 for all observations. Likewise, if there is no variability in yi, then
yi − y will equal 0 for all observations on yi. This is to emphasize the essential fact that when measur-
ing the extent of relationship between two variables, one requires variability on each variable to moti-
vate a measure of relationship in the first place.

The covariance of (2.5) is a perfectly reasonable one to calculate for a sample if there is no intention
of using that covariance as an estimator of the population covariance. However, if one wishes to use it
as an unbiased estimator, similar to how we needed to subtract 1 from the denominator of the variance,
we lose 1 degree of freedom when computing the covariance:

cov =

n

i = 1
xi − x yi − y

n − 1

It is easy to understand more of what the covariance actually measures if we consider the trivial case of
computing the covariance of a variable with itself. In such a case for variable xi, we would have

cov =

n

i = 1
xi − x xi − x

n − 1

But what is this covariance? If we rewrite the numerator as xi − x
2 instead of xi − x xi − x , it becomes

clear that the covariance of a variable with itself is nothing more than the usual variance for that var-
iable. Hence, to better understand the covariance, it is helpful to start with the variance, and then realize
that instead of computing the cross-product of a variable with itself, the covariance computes the cross-
product of a variable with a second variable.

We compute the covariance between parent height and child height in Galton’s data:

> attach(Galton)
> cov(parent, child)
[1] 2.064614

We have mentioned that the covariance is a measure of linear relationship. However, sample cov-
ariances from data set to data set are not comparable unless one knows more of what went into each
specific computation. There are actually three things that can be said to be the “ingredients” of the
covariance. The first thing it contains is a measure of the cross-product, which represents the degree

51COVARIANCE AND CORRELATION



to which variables are linearly related. This is the part in our computation of the covariance that we are
especially interested in. However, other than concluding a negative, zero, or positive relationship, the
size of the covariance does not by itself tell us the degree to which two variables are linearly related.

The reason for this is that the size of covariance will also be impacted by the degree to which there
is variability in xi and the degree to which there is variability in yi. If either or both variables contain size-
able deviations of the sort xi − x or yi − y , then the corresponding cross-products xi − x yi − y will

also be quite sizeable, along with their sum,
n

i = 1
xi − x yi − y . However, we do not want our measure

of relationship to be small or large as a consequence of variability on xi or variability on yi. We want our
measure of relationship to be small or large as an exclusive result of covariability, that is, the extent to
which there is actually a relationship between xi and yi. To incorporate the influences of variability in xi
and yi (one may think of it as “purifying”), we divide the average cross-product (i.e., the covariance) by
the product of standard deviations of each variable. The standardized sample covariance is thus:

r =

n

i = 1
xi − x yi − y

n − 1

s2xi s
2
yi

=
cov

s2xi s
2
yi

The standardized covariance is known as the Pearson product-moment correlation coefficient, or
simply r, which is a biased estimator of its population counterpart, ρxy, except when ρxy is exactly equal
to 0. The bias of the estimator r can be minimized by computing an adjustment found in Rencher (1998,
p. 6), originally proposed by Olkin and Pratt (1958):

r∗ = r 1 +
1− r2

2 n− 3

Because the correlation coefficient is standardized, we can place lower and upper bounds on it. The
minimum the correlation can be for any set of data is −1.0, representing a perfect negative relationship.
The maximum the correlation can be is +1.0, representing a perfect positive relationship. A correlation
of 0 represents the absence of a linear relationship. For further discussion on how the Pearson corre-
lation can be a biased estimate under conditions of nonnormality (and potential solutions), see Bishara
and Hittner (2015).

One can gain an appreciation for the upper and lower bound of r by considering the fact that the
numerator, which is an average cross-product, is being divided by another product, that of the standard
deviations of each variable. The denominator thus can be conceptualized to represent the total amount
of cross-product variation possible, that is, the “base,” whereas the numerator represents the total
amount of cross-product variation actually existing between the variables because of a linear relation-

ship. The extent to which covxy accounts for all of the possible “cross-variation” in s2xi s
2
yi
is the extent

to which rwill approximate a value of |1| (either positive or negative, depending on the direction of the
relationship). It thus stands that covxy cannot be greater than the “base” to which it is being compared

(i.e., s2xi s
2
yi
). In the language of sets, covxy must be a subset of the larger set represented by s2xi s

2
yi
.

It is important to emphasize that a correlation of 0 does not necessarily represent the absence of a
relationship. What it does represent is the absence of a linear one. Neither the covariance or Pearson’s r
capture nonlinear relationships, and so it is possible to have very strong relations in a sample or pop-
ulation yet still obtain very low values (even zero) for the covariance or Pearson r. Always plot your
data to see what is going on before drawing any conclusions. Correlation coefficients should
never be presented without an accompanying plot to characterize the form of the relationship.
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We compute the Pearson correlation coefficient on Galton’s data between child and parent:

> cor(child, parent)
[1] 0.4587624

We can test it for statistical significance by using the cor.test function:

> cor.test(child, parent)

Pearson's product-moment correlation

data: child and parent
t = 15.7111, df = 926, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4064067 0.5081153

sample estimates:
cor

0.4587624

We can see that observed t is statistically significant with a computed 95% confidence interval hav-
ing limits 0.41 to 0.51, indicating that we can be 95% confident that the true parameter lies approx-
imately between the limits of 0.41 and 0.51. Using the package ggplot2 (Wickham, 2009), we plot
the relationship between parent and child (with a smoother):

> library(ggplot2)
> qplot(child, parent, data = Galton, geom = c("point", "smooth"))
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One drawback of such a simple plot is that the frequency of data points in the bivariate space cannot
be known by inspection of the plot alone. Jittering is a technique that allows one to visualize the den-
sity of points at each parent–child pairing. By jittering, we can see where most of the data fall in the
parent–child scatterplot (i.e., points are concentrated toward the center of the plot):

> qplot(child, parent, geom = "jitter")
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2.17 PSYCHOMETRIC VALIDITY, RELIABILITY:
A COMMON USE OF CORRELATION COEFFICIENTS

Correlation coefficients, specifically the Pearson correlation, are employed in virtually all fields of
study, and without the invention or discovery of correlation, most modern-day statistics would simply
not exist. This is especially true for the field of psychometrics, which is the science that deals with the
measurement of psychological qualities such as intelligence, self-esteem, motivation, among others.
Psychometrics features the development of psychometric tests purported to measure the construct
of interest. For an excellent general introduction to psychometrics, consult McDonald (1999).

When developing psychometric instruments, two statistical characteristics of these tests are espe-
cially important: (1) validity, and (2) reliability. Validity of a test takes many forms, including face
validity, criterion validity, andmost notably, construct validity. Construct validity attempts to assess
whether a purported psychometric test actually measures what it was designed to measure, and one
way of evaluating construct validity is to correlate the newly developed measure with that of an existing
measure that is already known to successfully measure the construct.

For example, in the area of depression assessment, the Beck Depression Inventory (BDI) is a pop-
ular self-report measure often used in evaluating one’s level or symptoms of depression. Now, if we
were to develop a new test, in order to learn whether that new test measures something called
“depression,” we may wish to compute a Pearson correlation of that measure with the BDI. To the
extent that the correlation is relatively high, we might tentatively conclude that the new measure is
assessing the same (or at least a similar) construct as that of the BDI. Not surprisingly, these correla-
tions in this context often go by the name of validities in the psychometric literature. If a test lacks
construct validity, then there is little guarantee that it is measuring the construct under investigation.
Fields such as psychology depend on such construct validation to gain some sense of certainty that their
measures are tapping into what they are most interested in. Clinical psychology, especially, depends
on the strength of such things as construct validity to secure a sense of sureness that their diagnostic
tests are measuring what they are thought to measure. Without psychometrics, clinical testing in this

54 INTRODUCTORY STATISTICS



way would be no more advanced than folk or “pop” psychology tests we often find on the internet,
which are usually wholly unscientific.

The second area of concern, that of reliability, is just as important. Two popular and commonly
used forms of reliability in psychometrics are those of test–retest and internal consistency reliability.
Test–retest reliability evaluates the consistency of test scores across one or more measurement time
points. For example, if I measured your IQ today, and the test was worth its salt, I should expect that a
measurement of your IQ a month from now should, within a reasonable margin of error, generate a
similar score, assuming it was administered under standardized conditions both times. If not, we might
doubt the test’s reliability. The Pearson correlation coefficient is commonly used to evaluate test–retest
reliability, where a higher-than-not coefficient between testings is desirable. In addition to test–retest,
we often would like a measure of what is known as the internal consistency of a measure, which,
though having potentially several competing meanings (e.g., see Tang et al., 2014), can be considered
to assess how well items on a scale “hang together,” which is informal language for whether or not
items on a test are interrelated (Schmitt, 1996). For this assessment, we can compute Cronbach’s
alpha, which we will now briefly demonstrate in SPSS.

As a very small-scale example, suppose we have a test having only five items (items 1 through 5 in
the SPSS data view), and would like to assess the internal consistency of the measure using Cronbach’s
alpha. Suppose the scores on the items are as follows:

Item_1 Item_2 Item_3 Item_4 Item_5

1 10.00 12.00 15.00 11.00 12.00
2 12.00 18.00 12.00 12.00 1.00
3 8.00 16.00 14.00 14.00 4.00
4 6.00 8.00 16.00 8.00 6.00
5 4.00 7.00 8.00 7.00 5.00
6 6.00 6.00 3.00 7.00 3.00
7 3.00 4.00 6.00 5.00 8.00
8 7.00 3.00 7.00 9.00 9.00
9 8.00 9.00 4.00 10.00 10.00
10 9.00 5.00 6.00 11.00 12.00

To compute a Cronbach’s alpha, and obtain a handful of statistics useful for conducting an item
analysis, we code in SPSS:

RELIABILITY
/VARIABLES=Item_1 Item_2 Item_3 Item_4 Item_5
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR
/SUMMARY=TOTAL.

The MODEL = ALPHA statement requests SPSS to compute a Cronbach’s alpha. Select output now
follows:
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Reliability Statistics

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized Items No of Items

0.633 0.691 5

Item Statistics

Mean Std. Deviation N

Item_1 7.3000 2.71006 10
Item_2 8.8000 5.05085 10
Item_3 9.1000 4.74810 10
Item_4 9.4000 2.71621 10
Item_5 7.0000 3.80058 10

Inter-Item Correlation Matrix

Item_1 Item_2 Item_3 Item_4 Item_5

Item_1 1.000 0.679 0.351 0.827 0.022
Item_2 0.679 1.000 0.612 0.743 −0.463
Item_3 0.351 0.612 1.000 0.462 −0.129
Item_4 0.827 0.743 0.462 1.000 −0.011
Item_5 0.022 −0.463 −0.129 −0.011 1.000

We can see that SPSS reports a raw reliability coefficient of 0.633 and 0.691 based on standardized
items. SPSS also reports item statistics, which include the mean and standard deviation of each item, as
well as the inter-item correlation matrix, which, not surprisingly, has values of 1.0 down the main diag-
onal (i.e., the correlation of an item with itself is equal to 1.0).

Next, SPSS features Item-Total Statistics, which contains useful information for potentially drop-
ping items and seeking to ameliorate reliability:

Item-Total Statistics

Scale Mean if
Item Deleted

Scale Variance if
Item Deleted

Corrected
Item-Total
Correlation

Squared
Multiple
Correlation

Cronbach’s
Alpha if Item
Deleted

Item_1 34.3000 108.900 0.712 0.726 0.478
Item_2 32.8000 80.400 0.558 0.841 0.476
Item_3 32.5000 88.278 0.512 0.448 0.507
Item_4 32.2000 104.844 0.796 0.776 0.445
Item_5 34.6000 164.267 −0.228 0.541 0.824

The most relevant column of the above is the last one on the far right, “Cronbach’s Alpha if Item
Deleted.”What this reports is how much alpha would change if the given item were excluded. We can
see that for all items, alpha would decrease if the given itemwere excluded, but for item 5, alpha would
increase. If we drop item 5 then, we should expect alpha to increase. We recompute alpha after remov-
ing item 5:

RELIABILITY
/VARIABLES=Item_1 Item_2 Item_3 Item_4
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR
/SUMMARY=TOTAL.
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Reliability Statistics

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized Items Not Items

0.824 0.863 4

As we can see, alpha indeed did increase to 0.824 as indicated it would based on our previous out-
put. Hence, according to coefficient alpha, dropping item 5 may be worthwhile in the hopes of improv-
ing the instrument and making its items a bit more interrelated.

Though we have provided an easy demonstration of Cronbach’s alpha, it would be negligent at this
point to not issue a few cautions and caveats regarding its everyday use. According to Green and Yang
(2009), the regular employment of coefficient alpha for assessing reliability should be discouraged
based on the fact that assumptions for the statistic are rarely ever met, and hence the statistic can exhibit
a high degree of bias. What is more, according to a now classic paper by Schmitt (1996), alpha should
not be used to conclude anything about unidimensionality of a test, and thus should not be interpreted
as such. Confirmatory factor analysis models (Chapter 15) are typically better suited for assessing
and establishing the dimensionality of a set of items. What is more, cut-offs for alpha regarding what is
low versus high internal consistency can be very difficult to define, and as argued by Schmitt, low
levels of alpha may still be useful. Hence, though easily computable in SPSS and other software,
the reader should be cautious about the unrestricted employment of alpha in their work. For more
details on how it should be used, in addition to the aforementioned sources, Cortina (1993) and Miller
(1995) are very informative readings and should be read before you readily and regularly adopt alpha in
your everyday statistical toolkit.

2.18 COVARIANCE AND CORRELATION MATRICES

Having reviewed the concept of covariance, we need a way to account for the covariance of many
variables. For this, we write the sample covariance in matrix form:

S = sjk =

s11 s12 … s1p
s21 s22 … s2p

…

…

sp1 sp2 … spp

where sjk are the covariances for variables j by k. The population covariance matrix Σ can be analo-
gously defined:

= σjk =

σ11 σ12 … σ1p

σ21 σ22 … σ2p

…

…

σp1 σp2 … σpp
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where along the main diagonal of the covariance matrix are variances σ11, σ22, etc., for variables 1, 2,
etc., up to σpp, the variance of the p

th variable.
When we standardize the covariance matrix, dividing each of its elements by respective products of

standard deviations, we obtain the correlation matrix:

R = rjk =

1 r12 … r1p
r21 1 … r2p

rp1 rp2 … 1

where r12 is the correlation between variables 1 and 2, etc., and r1p is the correlation between variable 1
and the pth variable.

An example of a correlation matrix (Heston, 1948) is that between different tests on the GRE
(Graduate Record Examination):

Intercorrelations Among The G.R.E. Tests Of General Education

Math P.S. B.S. Soc. Lit. Arts Exp. Voc.
Mathematics .55 .44 .51 .36 .35 .52 .38
Physical Science .55 .49 .43 .20 .40 .32 .29
Biological Science .44 .49 .57 .42 .42 .46 .50
Social Studies .51 .43 .57 .54 .40 .61 .59
Literature .36 .20 .42 .54 .39 .53 .54
Arts .35 .40 .42 .40 .39 .42 .52
Effecive Expression .52 .32 .46 .61 .53 .42 .66
Vocabulary .38 .29 .50 .59 .54 .52 .66

From the matrix, we can see that most correlations are low to moderate, with the correlation between
Effective Expression and Vocabulary relatively large at a value of 0.66. The correlation between Phys-
ical Science and Vocabulary is relatively small, equaling 0.29.

2.19 OTHER CORRELATION COEFFICIENTS

It often happens that once we hear of Pearson’s r, this becomes the only correlation coefficient in one’s
vocabulary, and too often the concept, rather than calculation, of a correlation is automatically linked
to Pearson’s r. Pearson r is but one of many correlation coefficients available at one’s disposal in
applied research. Recall that Pearson r captures linear relationships between (typically) continuous
variables. If the relationship is not linear, or one or more variables are not continuous, or again if
the data are in the form of ranks, then other correlation coefficients are generally more suitable.
We briefly review Spearman’s rho, although a host of other correlation coefficients exist that are
well-suited for a variety of particular types of data.8

8 For an overview of alternative correlation coefficients such as the biserial, point-biserial and tetrachoric coefficients, see Howell
(2002) or Warner (2013).
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Spearman’s rs (“rho”), named after Charles Spearman who developed the coefficient in 1904,9 is a
correlation coefficient suitable for data on two variables that are expressed in terms of ranks rather than
actual measurements on a continuous scale. Mathematically, the Spearman correlation coefficient is
equivalent to a Pearson r when the data are ranked. There are important differences between these
two coefficients. Spearman’s rs can be defined as:

rs = 1 −
6 Rx −Ry

2

n n2 − 1
= 1 −

6 d2i
n n2 − 1

where Rx and Ry are the ranks on xi and yi for the i
th individual in the data, d2i are squared rank devia-

tions, and n is the number of pairs of ranks (Kirk, 2008). When we compute rs on the Galton data, we
obtain:

> cor.test(parent, child, method = "spearman")

Spearman's rank correlation rho

data: parent and child
S = 76569964, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.4251345

We see that rs of 0.425 is slightly less than was Pearson r of 0.459.
To understand why Spearman’s rank correlation and Pearson coefficient differ, consider data

(Table 2.5) on the rankings of favorite movies for two individuals. In parentheses are subjective scores
of “favorability” of these movies, scaled 1–10, where 1 = least favorable and 10 = most favorable.

From the table, we can see that Bill very much favors Star Wars (rating of 10) while least likes
Batman (rating of 2.1). Mary’s favorite movie is Scarface (rating of 9.7) while her least favorite movie
is Batman (rating of 7.6). We will refer to these subjective scores in a moment. For now, we focus only
on the ranks. For instance, Bill’s ranking of Scarface is third, while Mary’s ranking of Star Wars
is third.

TABLE 2.5 Favorability of Movies for Two Individuals in Terms of Ranks

Movie Bill Mary

Batman 5 (2.1) 5 (7.6)
Star Wars 1 (10.0) 3 (9.0)
Scarface 3 (8.4) 1 (9.7)
Back to the Future 4 (7.6) 4 (8.5)
Halloween 2 (9.5) 2 (9.6)

Actual scores on the favorability measure are in parentheses.

9 The coefficient appears in Spearman, C. (1904). The proof and measurement of association between two things. American
Journal of Psychology, 15, 72–101.
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To compute Spearman’s rs in R the “long way,” we generate two vectors that contain the respective
rankings:

> bill <- c(5, 1, 3, 4, 2)
> mary <- c(5, 3, 1, 4, 2)

Because the data are already in the form of ranks, both Pearson r and Spearman rho will agree:

> cor(bill, mary)
[1] 0.6

> cor(bill, mary, method = “spearman”)
> 0.6

Note that by default, R returns the Pearson correlation coefficient. One has to specify method =
“spearman” to get rs. Consider now what happens when we correlate, instead of rankings, the actual
subjective favorability scores corresponding to the respective ranks. When we plot the favorability
data, we obtain:

> bill.sub <- c(2.1, 7.6, 8.4, 9.5, 10.0)
> mary.sub <- c(7.6, 8.5, 9.0, 9.6, 9.7)
> plot(mary.sub, bill.sub)

10

8

6

4

2

8.0 8.5 9.0 9.5

mary.sub

b
ill

.s
u
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Note that though the relationship is not perfectly linear, each increase in Bill’s subjective score is
nonetheless associated with an increase in Mary’s subjective score. When we compute Pearson’s r on
this data, we obtain:

> cor(bill.sub, mary.sub)
[1] 0.9551578

However, when we compute rs, we get:

> cor(bill.sub, mary.sub, method = "spearman")
[1] 1
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Spearman’s rs is equal to 1.0 because the rankings of movie preferences are perfectly monotoni-
cally increasing (i.e., for each increase in movie preference along the abscissa corresponds an increase
in movie preference along the ordinate). In the case of Pearson’s, the correlation is less than 1.0 because
r captures the linear relationship among variables and not simply a monotonically increasing one.
Hence, a high magnitude coefficient for Spearman’s essentially tells us that two variables are “moving
together,” but it does not necessarily imply the relationship is a linear one. A similar test that measures
rank correlation is that of Kendall’s rank-order correlation. See Siegel and Castellan (1988, p. 245) for
details.

2.20 STUDENT’S t DISTRIBUTION

The density for Student’s t is given by (Shao, 2003):

f t =
Γ v + 1 2
vπ Γ v 2

1 +
t2

v

− v + 1 2

where Γ is the gamma function and v are degrees of freedom. For small degrees of freedom v, the t
distribution is quite distinct from the standard normal. However, as degrees of freedom increase,
the t distribution converges to that of a normal density (Figure 2.11). That is, in the limit, f(t)
f(z), or a bit more formally, lim

v ∞
f t = f z .

The fact that t converges to z for large degrees of freedom but is quite distinct from z for small
degrees of freedom is one reason why t distributions are often used for small sample problems. When
sample size is large, and so consequently are degrees of freedom, whether one treats a random variable
as t or z will make little difference in terms of computed p-values and decisions on respective null
hypotheses. This is a direct consequence of the convergence of the two distributions for large degrees
of freedom. For a historical overview of how t-distributions came to be, consult Zabell (2008).

2.20.1 t-Tests for One Sample

When we perform hypothesis testing using the z distribution, we assume we have knowledge of the
population variance σ2. Having direct knowledge of σ2 is the most ideal and preferable of circum-
stances. When we know σ2, we can compute the standard error of the mean directly as

σM =
σ

n

–4 –4–2 –20 02 24 4 –4 –2 0 2 4

FIGURE 2.11 Student’s t versus normal densities for 3 (left), 10 (middle), and 50 (right) degrees of freedom. As
degrees of freedom increase, the limiting form of the t distribution is the z distribution.
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Recall that the form of the one-sample z test for the mean is given by

zM =
y− μ0

σ
n

where the numerator y − μ0 represents the distance between the sample mean and the population mean
μ0 under the null hypothesis, and the denominator σ

n
is the standard error of the mean.

In most research contexts, from simple to complex, we usually do not have direct knowledge of σ2.
When we do not have knowledge of it, we use the next best thing, an estimate of it. We can obtain an
unbiased estimate of σ2 by computing s2 on our sample. When we do so, however, and use s2 in place of
σ2, we can no longer pretend to “know” the standard error of the mean. Rather, we must concede that
all we are able to do is estimate it. Our estimate of the standard error of the mean is thus given by:

σM =
s

n

When we use s2 (where s2 = s) in place of σ2, our resulting statistic is no longer a z statistic. That is,
we say the ensuing statistic is no longer distributed as a standard normal variable (i.e., z). If it is not
distributed as z, then what is it distributed as? Thanks to William Sealy Gosset who in 1908 worked for
Guinness Breweries under the pseudonym “Student” (Zabell, 2008), the ratio

t =
y −E y

σM
=

y −E y
s
n

was found to be distributed as a t statistic on n − 1 degrees of freedom. Again, the t distribution is most
useful for when sample sizes are rather small. For larger samples, as mentioned, the t distribution con-
verges to that of the z distribution. If you are using rather large samples, say approximately 100 or more,
whether you evaluate your null hypothesis using a z or t distribution will not matter much, because the
critical values for z and t for such degrees of freedom (99 for the one-sample case) will be relatively
alike, that practically at least, the two test statistics can be consideredmore or less equal. For even larger
samples, the convergence is that much more fine-tuned.

The concept of convergence between z and t can be easily illustrated by inspecting the variance of
the t distribution. Unlike the z distribution where the variance is set at 1.0 as a constant, the variance of
the t distribution is defined as:

σ2t =
v

v− 2

where v are the degrees of freedom. For small degrees of freedom, such as v = 5, the variance of the t
distribution is equal to:

σ2t =
5

5− 2
=

5
3
≈ 1 67

Note what happens as v increases, the ratio v
v − 2 gets closer and closer to 1.0, which is the precise

variance of the z distribution. For example, v = 20 yields:

σ2t =
20

20− 2
=

20
18

≈ 1 11
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which is already quite close to the variance of a standardized normal variable z (i.e., 1.0). Hence, we can
say more formally

lim
v ∞

v

v − 2
= 1 0

That is, as v increases without bound, the variance of the t distribution equals that of the z distribution,
which is equal to 1.0.

We demonstrate the use of the one-sample t-test using SPSS. Consider the following small, hypo-
thetical data on IQ scores on five individuals:

IQ

105
98

110
105
95

Suppose that the hypothesized mean IQ in the population is equal to 100. The question we want to
ask is—Is it reasonable to assume that our sampled data could have arisen from a population
with mean IQ equal to 100?We assume we have no knowledge of the population standard deviation,
and hence must estimate it from our sample data. To perform the one-sample t-test in SPSS, we
compute:

T-TEST
/TESTVAL=100
/MISSING=ANALYSIS
/VARIABLES=IQ
/CRITERIA=CI(.95).

The line /TESTVAL = 100 inputs the test value for our hypothesis test, which for our null hypoth-
esis is equal to 100. We have also requested a 95% confidence interval for the mean difference.

One-Sample Statistics

N Mean SD SE Mean

IQ 5 102.6000 6.02495 2.69444

We confirm from the above that the size of our sample is equal to 5, and the mean IQ for our sample
is equal to 102.60 with standard deviation 6.02. The standard error of the mean reported by SPSS of
2.69 is actually not the true standard error of the mean. It is the estimated standard error of the mean,
since recall that we did not have knowledge of the population variance (otherwise we would have been
performing a z-test instead of a t-test).

One-Sample Test

Test Value = 100

95% Confidence Interval of the Difference

t Df Sig. (2-tailed) Mean Difference Lower Upper
IQ 0.965 4 0.389 2.60000 −4.8810 10.0810
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We note from the above output:

• Our obtained t-statistic is equal to 0.965 and is evaluated on four degrees of freedom (i.e.,
n − 1 = 5 − 1 = 4). We lose a degree of freedom because recall that in estimating the population
variance σ2 with s2, we had to compute a sample mean y and hence this value is regarded as
“fixed” as we carry on with our t-test. Hence, we lose a single degree of freedom.

• The two-tailed p-value is equal to 0.389, which, assuming we had set our criteria for rejection at
α = 0.05, leads us to the decision to not reject the null hypothesis. The two-tailed (as opposed to
one-tailed or directional) nature of the statistical test in this example means that we allow for a
rejection of the null hypothesis in either direction from the value stated under the null. Since our
null hypothesis is μ0 = 100, it means we were prepared to reject the null hypothesis for observed
values of the sample mean that deviate “significantly” either greater than or less than 100. Since
our significance level was set at 0.05, this means that we have 0.05/2 = 0.025 area in each end of
the t distribution to specify as our rejection region for the test. The question we are asking of our
sample mean is—What is the probability of observing a sample mean that falls much greater
ORmuch less than 100? Because the observed sample mean can only fall in one tail or the other
on any single trial (i.e., we are conducting a single “trial” when we run this experiment a single
time), this implies these two events aremutually exclusive, which by the addition rule for mutu-
ally exclusive events, we can add them. When we add their probabilities, we get 0.025 +
0.025 = 0.05, which, of course, is our significance level for the test.

• The actual mean difference observed is equal to 2.60, which was computed by taking the mean of
our sample, that of 102.6 and subtracting the mean hypothesized under the null hypothesis, that of
100 (i.e., 102.6 – 100 = 2.60).

• The 95% confidence interval of the difference is interpreted to mean that with 95% confidence, the
interval with lower bound −4.8810 and upper bound 10.0810 will capture the true parameter,
which in this case is the population mean difference. We can see that 0 lies within the limits
of the confidence interval, which again confirms why we were unable to reject the null hypothesis
at the 0.05 level of significance. Had zero lay outside of the confidence interval limits, this would
have been grounds to reject the null at a significance level of 0.05 (and consequently, we would
have also obtained a p-value of less than 0.05 for our significance test). Recall that the true mean
(i.e., parameter) is not the random component. Rather, the sample is the random component, on
which the interval is then computed. It is important to emphasize this distinction when interpreting
the confidence interval.

We can easily generate the same t-test in R. We first generate the vector of data then carry on with
the one-sample t-test, which we notice mirrors the findings obtained in SPSS:

> iq <- c(105, 98, 110, 105, 95)
> t.test(iq, mu = 100)

One Sample t-test

data: iq
t = 0.965, df = 4, p-value = 0.3892
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:

95.11904 110.08096
sample estimates:
mean of x

102.6
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2.20.2 t-Tests for Two Samples

Just as the t-test for one sample is a generalization of the z-test for one sample, for which we use s2 in
place of σ2, the t-test for two independent samples is a generalization of the z-test for two independent
samples. Recall the z-test for two independent samples:

zM =
E y1 −E y2

σ21
n1

+
σ22
n2

=
μ1 − μ2

σ21
n1

+
σ22
n2

where E y1 and E y2 denote the expectations of the sample means y1 and y2 respectively (which are
equal to μ1 and μ2).

When we do not know the population variances σ21 and σ22, we shall, as before, obtain estimates
of them in the form of s21 and s22. When we do so, because we are using these estimates instead of
the actual variances, our new ratio is no longer distributed as z. Just as in the one-sample case, it is
now distributed as t:

t =
E y1 −E y2

s21
n1

+
s22
n2

=
μ1 − μ2

s21
n1

+
s22
n2

(2.6)

on degrees of freedom v = n1 − 1 + n2 − 1 = n1 + n2 − 2.
The formulization of t in (2.6) assumes that n1 = n2. If sample sizes are unequal, then pooling var-

iances is recommended. To pool, we weight the sample variances by their respective sample sizes and
obtain the following estimated standard error of the difference in means:

σdiff = σ2pooled
1
n1

+
1
n2

=
n1 − 1 s21 + n2 − 1 s22

n1 + n2 − 2
n1 + n2
n1n2

which can also be written as

σdiff = σ2pooled
1
n1

+
1
n2

=
σ2pooled
n1

+
σ2pooled
n2

Notice that the pooled estimate of the variance
n1 − 1 s21 + n2 − 1 s22

n1 + n2 − 2
is nothing more than an

averaged weighted sum, each variance being weighted by its respective sample size. This idea of
weighting variances as to arrive at a pooled value is not unique to t-tests. Such a concept forms the
very fabric of how MS error is computed in the analysis of variance as we shall see further in
Chapter 3 when we discuss the ANOVA procedure in some depth.

2.20.3 Two-Sample t-Tests in R

Consider the following hypothetical data on pass-fail grades (“0” is fail, “1” is pass) for a seminar
course with 10 attendees:
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grade studytime
0 30
0 25
0 59
0 42
0 31
1 140
1 90
1 95
1 170
1 120

To conduct the two-sample t-test, we generate the relevant vectors in R then carry out the test:

> grade.0 <- c(30, 25, 59, 42, 31)
> grade.1 <- c(140, 90, 95, 170, 120)
> t.test(grade.0, grade.1)

Welch Two Sample t-test

data: grade.0 and grade.1
t = -5.3515, df = 5.309, p-value = 0.002549
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-126.00773 -45.19227

sample estimates:
mean of x mean of y

37.4 123.0

Using aWelch adjustment for unequal variances (Welch, 1947) automatically generated by R, we
conclude a statistically significant difference betweenmeans (p = 0.003).With 95% confidence, we can
say the true mean difference lies between the lower limit of approximately −126.0 and the upper limit
of approximately −45.2. As a quick test to verify the assumption of equal variances (and to confirm in a
sense whether theWelch adjustment was necessary), we can use var.testwhich will produce a ratio
of variances and evaluate the null hypothesis that this ratio is equal to 1 (i.e., if the variances are equal,
the numerator of the ratio will be the same as the denominator):

> var.test(grade.0, grade.1)

F test to compare two variances

data: grade.0 and grade.1
F = 0.1683, num df = 4, denom df = 4, p-value = 0.1126
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.01752408 1.61654325

sample estimates:
ratio of variances

0.1683105

The var.test yields a p-value of 0.11, which under most circumstances would be considered
insufficient reason to doubt the null hypothesis of equal variances. Hence, the Welch adjustment
on the variances was probably not needed in this case as there was no evidence of an inequality of
variances to begin with.
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Carrying out the same test in SPSS is straightforward by requesting (output not shown):

t-test groups = grade(0 1)
/variables = studytime.

A classic nonparametric equivalent to the independent-samples t-test is the Wilcoxon rank-sum
test. It is a useful test to run when either distributional assumptions are known to be violated or when
they are unknown and sample size too small for the central limit theorem to come to the “rescue.” The
test compares rankings across the two samples instead of actual scores. For a brief overview of how the
test works, see Kirk (2008, Chapter 18) and Howell (2002, pp. 707–717), and for a more thorough
introduction to nonparametric tests in general, see the following chapter on ANOVA in this book,
or consult Denis (2020) for a succinct chapter and demonstrations using R. We can request the test
quite easily in R:

> wilcox.test(grade.0, grade.1)

Wilcoxon rank sum test

data: grade.0 and grade.1
W = 0, p-value = 0.007937
alternative hypothesis: true location shift is not equal to 0

We see that the obtained p-value still suggests we reject the null hypothesis, though the p-value is
slightly larger than for the Welch-corrected parametric test.

2.21 STATISTICAL POWER

Power, first and foremost, is a probability. Power is the probability of rejecting a null hypothesis given
that the null hypothesis is false. It is equal to 1 − β (i.e., 1 minus the type II error rate). If the null hypoth-
esis were true, then regardless of howmuch power one has, one would still not be able to reject the null.
Wemay think of it somewhat in terms of the sensitivity of a statistical test for detecting the falsity of the
null hypothesis. If the test is not very sensitive to departures from the null (i.e., in terms of a particular
alternative hypothesis), we will not detect such departures. If the test is very sensitive to such depar-
tures, then we will correctly detect these departures and be able to infer the statistical alternative
hypothesis in question.

A useful analogy for understanding power is to think of a sign on a billboard that reads “H0 is false.”
Are you able to detect such a sign with your current glasses or contact lenses that you are wearing? If
not, you lack sufficient power. That is, you lack the sensitivity in your instrument (your reading
glasses) to correctly detect the falsity of the null hypothesis, and in doing, be in a position to reject
it. Alternatively, if you have 20/20 vision, you will be able to detect the false null with ease, and reject
it with confidence. A key point to note here is that ifH0 is false, it is false regardless of your ability to
detect it, analogous to a virus strain being present but biomedical engineers lacking a powerful enough
microscope to see it. If the null is false, the only question that remains is whether or not you will have a
powerful enough test to detect its falsity. If the null were not false on the other hand, then regardless of
your degree of power, you will not be able to detect its falsity (because it is not false to begin with).

Power is a function of four elements, all of which will be featured in our discussion of the p-value
toward the conclusion of this chapter:
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1. The value hypothesized under the statistical alternative hypothesis, H1. All else equal, a greater
distance between H0 and H1 means greater power. Though “distance” in this regard is not a one-
to-one concept with effect size, the spirit of the two concepts is the same. The greater the sci-
entific effect, the more power you will have to detect that effect. This is true whether we are
dealing with mean differences in ANOVA-type models or testing a null hypothesis of the sort
H0 : R

2 = 0 in regression. In all such cases, we are seeking to detect a deviation from the null
hypothesis.

2. The significance level, or type I error rate (α) at which you set your test. All else equal, a more
liberal setting such as 0.05 or 0.10 affords more statistical power than amore conservative setting
such as 0.01 or 0.001, for instance. It is easier to detect a false null if you allow yourself more of a
risk of committing a type I error. Since we usually want to minimize type I error, we typically
want to regard α as fixed at a nominal level (e.g., 0.05 or 0.01) and consider it not amenable to
adjustment for the purpose of increasing power. Hence, when it comes to boosting power,
researchers usually do not want to “mess with” the type I error rate.

3. Population variability, σ2, often unknown but estimated by s2. All else equal, the greater the
variance of objects studied in the population, the less sensitive the statistical test, and the less
power you will have. Why is this so? As an analogy, consider a rock thrown into the water. The
rock will make a definitive particular “splash” in that it will displace a certain amount of water
when it hits the surface. This can be considered to be the “effect size” of the splash. If the water is
noisy with wind and waves (i.e., high population variability), it will be difficult to detect the
splash. If, on the other hand, the water is calm and serene (i.e., low population variability),
you will more easily detect the splash. Either way, the rock made a particular splash of a given
size. Themagnitude of the splash is the same regardless of whether the waters are calm or tur-
bulent. Whether we can detect the splash or not is in part a function of the variance in the
population.

4. Applying this concept to research settings, if you are sampling from “noisy” populations, it is
harder to see the effect of your independent variable than if you are sampling from less noisy and
thus, less variable, populations. This is why research using lab rats or other equally controllable
objects can usually detect effects with relatively few animals in a sample, whereas research
studying humans on variables such as intelligence, anxiety, attitudes, etc., usually requires many
more subjects in order to detect effects. A good way to boost power is to study populations that
have relatively low variability before your treatment is administered. If your treatment works,
you will be able to detect its efficacy with fewer subjects than if dealing with a highly variable
population. Another approach is to covary out one or two factors that are thought to be related to
the dependent variable through a technique such as the analysis of covariance (Keppel and
Wickens, 2004), discussed and demonstrated later in the book.

5. Sample size, n. All else equal, the greater the sample size, the greater the statistical power. Boost-
ing sample size is a common strategy for increasing power. Indeed, as will be discussed at the
conclusion of this chapter, for any significance test in which there is at least some effect (i.e.,
some distance between the null and alternative), statistical significance is assured for a large-
enough sample size. Obtaining large samples is a good thing (since after all, the most ideal goal
would be to have the actual population), but as sample size increases, the p-value becomes an
increasingly poor indicator or measure of experimental effect. Effect sizes should always be
reported alongside any significance test.
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2.21.1 Visualizing Power

Figure 2.12, adapted from Bollen (1989), depicts statistical power under competing values for detect-
ing the population parameter θ. Note carefully in the figure that the critical value for the test remains
constant as a result of our desire to keep the type I error rate constant. It is the distance from θ = 0 to
θ = C1 or θ = C2 that determines power (the shaded region in distributions (b) and (c)).

Statistical power matters so long as we have the inferential goal of rejecting null hypotheses. A study
that is underpowered risks not being able to reject null hypotheses even if such null hypotheses are in
reality false. A failure to reject a null hypothesis under the condition of minimal power could either
mean a lack of inferential support for the obtained finding, or it could simply suggest an underpowered
(and consequently poorly designed) experiment or study. Ensuring adequate statistical power before
one engages in a research study or experiment is mandatory (Cohen, 1988).

2.22 POWER ESTIMATION USING R AND G�POWER

To demonstrate the estimation of power using software, we first use pwr.r.test (Champely, 2014)
in R to estimate required sample size for a Pearson r correlation coefficient. As an example, we estimate
required sample size for a population correlation coefficient of ρ = 0.10 at a significance level set to
0.05, with desired power equal to 0.90. Note that in the code that follows, we purposely leave n empty
so R can estimate this figure for us:

> install.packages(“pwr”)
> library(pwr)
> pwr.r.test(n = , r = .10, sig.level = .05, power = .90)

θ = 0

θ = C
1

θ = C
2

0
Critical

value

Critical

value

Critical
value

Power

Power

Test

statistic

(a)

(b)

(c)

Test
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α

C
1

C
2

FIGURE 2.12 Power curves for detecting parameters C1 and C2. Source: Bollen (1989). Reproduced with
permission from John Wiley & Sons, Inc.
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approximate correlation power calculation (arctangh transformation)
n = 1046.423
r = 0.1

sig.level = 0.05
power = 0.9

alternative = two.sided

We see that to detect a correlation coefficient of 0.10 at a desired level of power equal to 0.9, a
sample size of 1046 is required. We could round up to 1047 for a slightly more conservative estimate.
It is a more conservative estimate because 1047 is slightly more “generous” of a sample than R is
reporting is necessary (1046). Now, in this case, the difference is extremely slight, but in general, when
you provide your analysis with more subjects than what may be necessary for a given level of power,
you are guarding against the possibility of obtaining smaller effects than what you believe are “out
there” in your population. If in doubt, larger samples are always preferable to smaller ones, and
thus rounding “up” on sample size requirements is usually a good idea.

Estimating in G∗Power,10 we obtain that given in Figure 2.13.
Note that our power estimate using G∗Power is identical to that using R (i.e., power of 0.90 requires a

sample size of 1046 for an effect size of ρ = 0.10). G∗Power also allows us to draw the corresponding
power curve. A power curve is a simple depiction of required sample size as a function of power and
estimated effect size. What is nice about power curves is that they allow one to see how estimated sample
size requirements and power increase or decrease as a function of effect size. For the estimation of esti-
mated sample size for detecting ρ = 0.10, G∗Power generates the curve in Figure 2.14 (top curve).

10

5

–0.05 0.05 0.150.1

critical r = 0.0606181

2
αα

ββ
0

0

FIGURE 2.13 G∗Power output for estimating required sample size for r = 0.10.

10G∗Power is a user-friendly statistical program that can be downloaded for free at: https://www.psychologie.hhu.de/
arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html.
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Especially for small hypothesized values of ρ, the required sample size for even poor to modest
levels of statistical power is quite large. For example, reading off the plot in Figure 2.14, to detect
ρ = 0.10, at even a relatively low power level of 0.60, one requires upward of almost 500 participants.
This might explain why many studies that yield relatively small effect sizes never get published. They
often have insufficient power to reject their null hypotheses. As effect size increases, required sam-
ple size drops substantially. For example, to attain a modest level of power such as 0.68 for a correlation
coefficient of 0.5, one requires only 21.5 participants, as can be more clearly observed from Table 2.6
which corresponds to the power curves in Figure 2.14 for power ranging from 0.60 to 0.69.

Hence, one general observation from this simple power analysis for detecting ρ is that size of effect
(in this case, ρ) plays a very important role in determining estimated sample size. As a general rule,
across virtually all statistical tests, if the effect you are studying is large, a much smaller sample size
is required than if the effect is weak. Drawing on our analogy of the billboard sign that reads “H0 is
false,” all else equal, if the sign is in large print (i.e., strong effect), you require less “power” in your
prescription glasses to detect such a large sign. If the sign is in small print (i.e., weak effect), you require
much more “power” in your lenses to detect it.

2.22.1 Estimating Sample Size and Power for Independent Samples t-Test

For an independent-samples t-test, required sample size can be estimated through R using pwr.
t.test:

> pwr.t.test (n =, d =, sig.level =, power =, type = c(“two.sample”, “one.
sample”, “paired”))

where, n = sample size per group, d = estimate of standardized statistical distance between means
(Cohen’s d), sig.level = desired significance level of the test, power = desired power level,
and type = designation of the kind of t-test you are performing (for our example, we are performing
a two-sample test).

Exact - Correlation: Bivariate normal model

Tail(s) = Two, Correlation ρ H0 = 0, α err prob = 0.05
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FIGURE 2.14 Power curves generated by G∗Power for detecting correlation coefficients of ρ = 0.10 to 0.50.
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It would be helpful at this point to translate Cohen’s d values into R2 values to learn how much
variance is explained by differing d values. To convert the two, we apply the following transformation:

d =
4r2

1− r2

Table 2.7 contains conversions for r increments of 0.10, 0.20, 0.30, etc.
To get a better feel for the relationship between Cohen’s d and r2, we obtain a plot of their values

(Figure 2.15).
As can be gleamed from Figure 2.15, the relationship between the two effect size measures is not

exactly linear and increases rather sharply for rather large values (the curve is somewhat exponential).
Suppose a researcher would like to estimate required sample size for a two-sample t-test, for a rel-

atively small effect size, d = 0.41 (equal to r of 0.20), at a significance level of 0.05, with a desired
power level of 0.90. We compute:

> pwr.t.test (n =, d =0.41, sig.level =.05, power =.90, type = c(“two.sample”))

Two-sample t test power calculation

n = 125.9821
d = 0.41

sig.level = 0.05
power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

Thus, the researcher would require a sample size of approximately 126. As R emphasizes, this sam-
ple size is per group, so the total sample size required is 126(2) = 252.

TABLE 2.6 Power Estimates as a Function of Sample Size and Estimated Magnitude Under Alternative
Hypothesis

Exact – Correlation: Bivariate Normal Model
Tail(s) = Two, Correlation ρ H0 = 0, α err prob = 0.05

Correlation
ρ H1 = 0.1

Correlation
ρ H1 = 0.2

Correlation
p HI = 0.3

Correlation
ρ HI = 0.4

Correlation
ρ HI = 0.5

# Power(1-β
err prob)

Total Sample
Size

Total Sample
Size

Total Sample
Size

Total Sample
Size

Total Sample
Size

1 0.600000 488.500 121.500 53.5000 29.5000 18.5000
2 0.610000 500.500 124.500 54.5000 30.5000 18.5000
3 0.620000 511.500 126.500 55.5000 30.5000 19.5000
4 0.630000 523.500 129.500 56.5000 31.5000 19.5000
5 0.640000 535.500 132.500 58.5000 32.5000 19.5000
6 0.650000 548.500 135.500 59.5000 32.5000 20.5000
7 0.660000 561.500 138.500 60.5000 33.5000 20.5000
8 0.670000 574.500 142.500 62.5000 34.5000 21.5000
9 0.680000 587.500 145.500 63.5000 34.5000 21.5000
10 0.690000 601.500 148500 64.5000 35.5000 22.5000
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2.23 PAIRED-SAMPLES t-TEST: STATISTICAL TEST FOR MATCHED-PAIRS
(ELEMENTARY BLOCKING) DESIGNS

Oftentimes in research, we are able to sample observations that arematched on one or more variables
or characteristics. For instance, consider the hypothetical data in Table 2.8.

TABLE 2.7 Conversions for r r2 d.11

r r2 d

0.10 0.01 0.20
0.20 0.04 0.41
0.30 0.09 0.63
0.40 0.16 0.87
0.50 0.25 1.15
0.60 0.36 1.50
0.70 0.49 1.96
0.80 0.64 2.67
0.90 0.81 4.13
0.99 0.98 14.04

14

Cohen’s d as a function of R-squared

12

10

8

d

6

4

2

0
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r2

FIGURE 2.15 Relationship between Cohen’s d and R-squared.

11> r <- c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99)
> r_squared <- r^2
> r_squared
[1] 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600 0.4900 0.6400 0.8100 0.9801

> d <- sqrt((4*r^2)/(1-r^2))
> d
[1] 0.2010076 0.4082483 0.6289709 0.8728716 1.1547005 1.5000000
[7] 1.9603921 2.6666667 4.1294832 14.0358479
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About Table 2.8:

• In each block (1 through 5), participants within blocks are assumed to be more homogeneous on
one or more variables than participants between blocks.

• Participants are randomly assigned to condition (i.e., treatment 1 versus treatment 2) within
each block.

• Whether the blocks are naturally occurring or our sampling scheme is designed purposely to cre-
ate the blocks, we can exploit the homogeneity of participants within each block by including this
source in our statistical analysis as to potentially reduce the error term of our statistical test.

• Thematched-pairs design is a simpler version of the full-blown randomized block design in which
onecanhavemore than just two levelsof the independentvariable (e.g., treatment1versus treatment2
versus treatment 3). However, the principle behind the matched-pairs design and that of randomized
block designs is the same, that of exploiting the covariance between conditions and removing it from
the error term of the test statistic (t in matched-pairs, F in randomized block designs).

• In more advanced analyses such as repeated measures, longitudinal, and mixed effects modeling,
we will say that subjects are nested within block. A nesting structure simply implies that sub-
jects within a block share similarity compared to subjects between blocks. Good statistical
analyses will attempt to account for this similarity, remove it from respective error terms for tests,
and hence make the statistical test for effects more sensitive (i.e., more powerful).

As an example of a matched-pairs situation, suppose we are interested in evaluating the effects of
melatonin12 dose on average hours of sleep.However,weknow that due to age, somepeoplewill naturally
sleep longer thanothers irrespective of howmuchmelatonin they receive.Wedonotwant thisnatural sleep
tendency due to age to confound the effect we are actually interested in studying (i.e., that of melatonin
dose), and so we will match participants on their age level, or perhaps even crudely on age group (e.g.,
young, middle-aged, old), and carry out our study within each age group. Then, when we perform sta-
tistical analyses, wewill be able to extract this variation due to age out of the error term of the analysis, and
hence boost statistical power for estimating the effect we are actually interested in (melatonin dosage).

When we sample observations in pairs, as was true for the independent samples t-test, the expec-
tation of the difference between sample means is given by:

E y1 − y2 = μ1 − μ2

However, because observations are sampled (or “matched”) in pairs, we naturally expect there to be a
covariance different from zero between pairs. We can exploit this covariance and remove it from the
error term of our statistical test. As given in Hays (1994, p. 339), the variance of the difference becomes

σ2diff = σ2M1
+ σ2M2

− 2cov y1, y2

TABLE 2.8 Matched-Pairs Design

Treatment 1 Treatment 2

Block 1 10 8
Block 2 15 12
Block 3 20 14
Block 4 22 15
Block 5 25 24

12Melatonin is sometimes used as a non-prescription sleep aid.
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with standard error equal to

σdiff = σ2diff = σ2M1
+ σ2M2

− 2cov y1, y2

Notice that we have subtracted 2cov y1, y2 from the denominator of our statistic. Assuming the covar-
iance between pairs is unequal to 0, this will serve to lower the standard error of our statistic, and hence,
boost statistical power. In practice, this is accomplished by conducting a t-test on the difference scores
between samples. As Hays (1994, p. 339) notes, “the matching and the consequent dependencewithin
the pairs changes the standard error of the difference between the sample means.”

In the classic between-subjects design where participants are not matched, the expectation is that
covariance between treatments is equal to 0, and hence, we would have:

σ2diff = σ2M1
+ σ2M2

− 2cov y1, y2

= σ2M1
+ σ2M2

− 2 0

= σ2M1
+ σ2M2

The matched-pairs design is a very important concept in statistics and design of experiments, because
this simple design is the starting point to understanding more complicated designs and modeling such
as mixed effects and hierarchical models.

We analyze the hypothetical data in Table 2.8 using a paired samples t-test in R by requesting
paired = TRUE:

> treat <- c(10, 15, 20, 22, 25)
> control <- c(8, 12, 14, 15, 24)
> t.test(treat, control, paired = TRUE)

Paired t-test

data: treat and control
t = 3.2827, df = 4, p-value = 0.03042
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.5860324 7.0139676

sample estimates:
mean of the differences

3.8

The obtained p-value of 0.03 is statistically significant at a 0.05 level of significance. We reject the
null hypothesis and conclude the population means for the treatment conditions to be different.

As a nonparametric test, the Wilcoxon rank-sum test featured earlier can be adapted to incorporate
paired observations. For our data, we have:

> wilcox.test(treat, control, paired = TRUE)

Wilcoxon signed rank test

data: treat and control
V = 15, p-value = 0.0625
alternative hypothesis: true location shift is not equal to 0
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We notice that the obtained p-value is somewhat greater for the nonparametric test than for the par-
ametric one. In terms of significance tests, this emphasizes the fact that there is usually a cost to not
being able to make parametric assumptions.

2.24 BLOCKING WITH SEVERAL CONDITIONS

We have said that in a blocking design, between treatment conditions we expect the covariance to be
unequal to 0. Now, consider a design in which, once again we block, but this time on more than two
treatment levels. The layout for such a design is given in Table 2.9.

Now, here is the trick to understanding advanced modeling, including a primary feature of mixed
effects modeling. We know that we expect the covariance between treatments to be unequal to 0. This
is analogous to what we expected in the simple matched-pairs design. It seems then that a reasonable
assumption to make for the data in Table 2.9 is that the covariances between treatments are equal, or at
minimum, follow some hypothesized correlational structure. In multilevel and hierarchical models,
attempts are made to account for the correlation between treatment levels instead of assuming these
correlations to equal 0 as is the case for classical between-subjects designs. In Chapter 6, we elaborate
on these ideas when we discuss randomized block and repeated measures models.

2.25 COMPOSITE VARIABLES: LINEAR COMBINATIONS

In many statistical techniques, especially multivariate ones, statistical analyses take place not on indi-
vidual variables, but rather on linear combinations of variables. A linear combination in linear algebra
can be denoted simply as:

ℓi = a1y1 + a2y2 + … + apyp
= a'y

where a ’ = (a1, a2, …, ap). These values are scalars, and serve to weight the respective values of y1
through yp, which are the variables.

Just as we did for “ordinary” variables, we can compute a number of central tendency and dispersion
statistics on linear combinations. For instance, we can compute the mean of a linear combination ℓi as

ℓ =
1
n

n

i = 1

ℓi = a'y

We can also compute the sample variance of a linear combination:

s2
ℓ
=

n

i = 1
ℓi − ℓ

2

n − 1
= a'Sa

TABLE 2.9 Randomized Block Design

Treatment 1 Treatment 2 Treatment 3

Block 1 10 9 8
Block 2 15 13 12
Block 3 20 18 14
Block 4 22 17 15
Block 5 25 25 24
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for ℓi = a y, i = 1, 2,…, n, and where S is the sample covariance matrix. Though the form a Sa for the
variance may be difficult to decipher at this point, it will become clearer when we consider techniques
such as principal components later in the book.

For two linear combinations,

ℓ1 = a1y1 + a2y2 + … + apyp = a'y

and

ℓ2 = b1y1 + b2y2 + … + bpyp = b'y

we can obtain the sample covariance between such linear combinations as follows:

covℓ1,ℓ2 =

n

i = 1
ℓi1 − ℓ1 ℓi2 − ℓ2

n− 1
= a'Sb

The correlation of these linear combinations (Rencher and Christensen, 2012, p. 76) is simply the stan-
dardized version of covℓ1,ℓ2 :

rℓ1,ℓ2 =
covℓ1,ℓ2

s2
ℓ1
s2
ℓ2

=
a'Sb

a'Sa b'Sb

As we will see later in the book, if rℓ1,ℓ2 is themaximum correlation between linear combinations on
the same variables, it is called the canonical correlation, discussed in Chapter 12. The correlation
between linear combinations plays a central role in multivariate analysis. Substantively, and geomet-
rically, linear combinations can be interpreted as “projections” of one or more variables onto new
dimensions. For instance, in simple linear regression, the fitting of a least-squares line is such a pro-
jection. It is the projection of points such that it guarantees that the sum of squared deviations from the
given projected line or “surface” (in the case of higher dimensions) is kept to a minimum.

If we can assume multivariate normality of a distribution, that is, Y N[μ, Σ], then we know linear
combinations of Y are also normally distributed, as well as a host of other useful statistical properties
(see Timm, 2002, pp. 86–88). In multivariate methods especially, we regularly need to make assump-
tions about such linear combinations, and it helps to know that so long as we can assume multivariate
normality, we have some idea of how such linear combinations will be distributed.

2.26 MODELS IN MATRIX FORM

Throughout the book, our general approach is to first present models in their simplest possible form
using only scalars. We then gently introduce the reader to the corresponding matrix counterparts and
extensions. The requirement of matrices for such models is to accommodate numerous variables and
dimensions. Matrix algebra is the vehicle by which multivariate analysis is communicated, though
most of the concepts of statistics can be communicated using simpler scalar algebra. Knowing matrix
algebra for its own sake will not necessarily equate to understanding statistical concepts. Indeed, hiding
behind the mathematics of statistics are the philosophically “sticky” issues that mathematics or statis-
tics cannot, on their own at least, claim to solve. These are often the problems confronted by researchers
and scientists in their empirical pursuits and attempts to draw conclusions from data. For instance, what
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is the nature of a “correct” model? Do latent variables exist, or are they only a consequence of gen-
erating linear combinations? The nature of a latent variable is not necessarily contingent on the linear
algebra that seeks to define it. Such questions are largely philosophical, and if such interest you, you are
strongly encouraged to familiarize yourself with the philosophy of statistics and mathematics (you
may not always find answers to your questions, but you will appreciate the complexity of such ques-
tions, as they are beyond our current study here). For a gentle introduction to the philosophy of sta-
tistics, see Lindley (2001).

As an example of howmatrices will be used to develop more complete and general models, consider
the multivariate general linear model in matrix form:

Y = XB + E (2.7)

whereY is an n xmmatrix of n observations onm response variables,X is the model or “design”matrix
whose columns contain k regressors which includes the intercept term, B is a matrix of regression coef-
ficients, and E is a matrix of errors. Many statistical models can be incorporated into the framework of
(2.7). As a relatively easy application of this general model, consider the simple linear regression model
(featured in Chapter 7) in matrix form:

Y =

yi = 1

yi = 2

yi = 3

yi = n

X =

1 xi = 1

1 xi = 2

1 xi = 3

1 xi = n

B =
α

β
ε =

ε1

ε2

ε3

εn

where yi = 1 to yi = n are observed measurements on some dependent variable, X is the model matrix
containing a constant of 1 in the first column to represent the common intercept term (i.e., “common”
implying there is one intercept that represents all observations in our data), xi = 1 to xi = n are observed
values on a predictor variable, α is the fixed intercept parameter, β is the slope parameter, which we also
assume to be fixed, and ε is a vector of errors ε1 to εn (we use ε here instead of E).

Suppose now we want to add a second response variable. Because of the generality of (2.7), this can
be easily accommodated:

Y =

yi = 1,1, yi = 1,2

yi = 2,1, yi = 2,2

yi = 3,1, yi = 3,2

yi = n,1, yi = n,2
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where now, a second response variable is represented in Y by a second column. That is, yi = 1, 2 cor-
responds to individual 1 on response variable 2, yi = 2, 2 is individual 2 on response variable 2, etc. We
will at times refer to matrix representations throughout the book.

2.27 GRAPHICAL APPROACHES

Performing inferential tests to help draw conclusions about population parameters is useful, but ulti-
mately the findings of a statistical analysis should make their way into a graph or other visualization.
Data visualization is a field in itself, and with the advent of modern computing power, possibilities
exist today that could only be dreamt of in the past. Simple visualizations such a histograms, boxplots,
scatterplots, etc., can be useful in depicting findings but also in helping to verify assumptions that
underlay the statistical model one is using. For example, since many tests of normality and equality
of variances (and covariances) are relatively sensitive to the types of data to which they are applied,
oftentimes researchers will generate simple plots in order to detect potential gross violations of such
assumptions. We feature such techniques throughout the book.

For graphical displays meant to communicate findings (rather than test assumptions), Friendly
(2000) puts the field into context:

Designing good graphics is surely an art, but as surely, it is one that ought to be informed by science…
In this view, an effective graphical display, like goodwriting, requires an understanding of its purpose
– what aspects of the data are to be communicated to the viewer. In writing, we communicate most
effectively when we know our audience and tailor the message appropriately. (p. 8)

In high-dimensional space, the challenge of graphical approaches is to summarize data into lower
dimensions, while still retaining most of the information in the original data. We feature some such
plots in later chapters. For a thorough account of data visualization, see datavis.ca (Friendly, 2020).
For sophisticated graphics using R, consult Wickham (2009).

For now, it is useful to briefly review some basic plots for which the reader is likely already familiar.

2.27.1 Box-and-Whisker Plots

The boxplot was a contribution of John Tukey (1977) in the spirit of what is called exploratory data
analysis, or “EDA” which encouraged scientists to spend more of their energy on descriptive techni-
ques instead of focusing exclusively on confirmatory statistical tests. Boxplots of parent heights from
Galton’s data appear below:

> attach(Galton)
> boxplot(parent)
> library(lattice)
> bwplot(parent)
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The boxplot provides what is generally known as a five-number summary of a distribution, of
which we can obtain most of the numbers we need by the summary function in R:

> summary(parent)
Min. 1st Qu. Median Mean 3rd Qu. Max.

64.00 67.50 68.50 68.31 69.50 73.00

Recall that themedian is the point in the ordered data that divides the data set into two equal parts.
The location of the median is computed by (n + 1)/2. In Galton’s data, there are 928 observations, and
so the location of the median is at 464.5th (i.e., (928 + 1)/2) point in the ordered data set. For parent, this
value is equal to 68.50. The first and third quartiles represent the 25th and 75th percentiles and are
67.50 and 69.50 respectively. We can also compute the range as

> range(parent)
[1] 64 73

We can also generate boxplots by category. Throughout the book, we use Fisher’s iris data (Fisher,
1936) in which flower characteristics such as sepal and petal length are categorized by species of
flower. We plot sepal length by species:

> library(lattice)
> attach(iris)
> bwplot(Sepal.Length ~ Species)
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Data points falling beyond the whiskers of the plots may reveal the presence of outliers, and should
be investigated (though of course, not necessarily deleted, see Section 7.23 for a discussion). If you are
completely unfamiliar with boxplots, see Denis (2020) for an overview.

Stem-and-leaf plots are also easily produced. These visual displays are kind of “naked histograms,”
because they reveal the actual observations in the data while also providing information about their
frequency of occurrence. In 1710, John Arbuthnot analyzed data on the ratios of males to female births
in London from 1629 to 1710 and in so doing made an argument for these births being a function of a
“divine being” (Arbuthnot, 1710; Shoesmith, 1987). One of his variables was the number of male chris-
tenings (i.e., baptisms) over the period 1629–1710. We generate a stem-and-leaf plot in R of these male
christenings using package aplpack (Wolf and Bielefeld, 2014), for which the “leaves” are corre-
sponding hundreds. For example, in the following plot, the first value of 2|8 would appear to represent
a value of 2800 but is rounded down from the actual value in the data (which is also the minimum) of
2890. The maximum in the data is actually equal to 8426, but is represented by 8400 (i.e., 8|0012334):

> install.packages(“aplpack”)
> library(aplpack)
> library(HistData)
> attach(Arbuthnot)
> stem.leaf(Males)

1 | 2: represents 1200
leaf unit: 100

n: 82
1 2. | 8

10 3* | 011222334
15 3. | 66777
18 4* | 014
25 4. | 6777899
36 5* | 01112233444
38 5. | 56

(11) 6* | 00001122444
33 6. | 5555899
26 7* | 244
23 7. | 5555666666778999
7 8* | 0012334
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2.28 WHAT MAKES A p-VALUE SMALL? A CRITICAL OVERVIEW AND
PRACTICAL DEMONSTRATION OF NULL HYPOTHESIS SIGNIFICANCE TESTING

The workhorse for establishing statistical evidence in the social and natural sciences is the method of
null hypothesis significance testing (or, “NHST” for short). However, since its inception with R.A.
Fisher in the early 1900s, the significance test has been the topic of much debate, both statistical and
philosophical. Throughout much of this book, NHST is regularly used to evaluate null hypotheses in
methods such as the analysis of variance, regression, and various multivariate procedures. Indeed, the
procedure is universally used in most statistical methods.

It behooves us then, before embarking on all of these methodologies, to discuss the nature of the null
hypothesis significance test, and clearly demonstrate what it actually means, not only in a statistical
context but also in how it should be interpreted in a research or substantive context.

The purpose of this final section of the present chapter is to provide a clear and concise demonstra-
tion and summary of the factors that influence the size of a computed p-value in virtually every sta-
tistical significance test. Understanding why statements such as “p < 0.05” can be reflective of even the
smallest and trivial of effects is critical for the practitioner or researcher to appreciate if he or she is to
assess and appraise statistical evidence in an intelligent and thoughtful manner. It is not an exaggeration
to say that if one does not understand the make-up of a p-value and the factors that directly influ-
ence its size, one cannot properly evaluate statistical evidence, nor should one even make the
attempt to do so. Though these arguments are not new and have been put forth by even the very best
of methodologists (e.g., see Cohen, 1990; Meehl, 1978) there is evidence to suggest that many practi-
tioners and researchers do not understand the factors that determine the size of a p-value (Gigerenzer,
2004). To emphasize once again—understanding the determinants of a p-value and what makes p-
values distinct from effect sizes is not simply “fashionable.” Rather, it is absolutely mandatory for
any attempt to properly evaluate statistical evidence in a research report. Does the paper you’re reading
provide evidence of a successful treatment for cancer? If you do not understand the distinctions
between p-values and effect sizes, you will be unable to properly assess the evidence. It is that
important. As we will see, stating a result as “statistically significant” does not in itself tell you
whether the treatment works or does not work, and in some cases, tells you very little at all from a
scientific vantage point.

2.28.1 Null Hypothesis Significance Testing (NHST): A Legacy of Criticism

Criticisms targeted against null hypothesis significance testing have inundated the literature since at
least the time Berkson in 1938 brought to light how statistical significance can be easily achieved
by simple manipulations of sample size:

I believe that an observant statistician who has had any considerable experience with applying the
chi-square test repeatedly will agree with my statement that, as a matter of observation, when the
numbers in the data are quite large, the P’s tend to come out small. (p. 526)

Since Berkson, the very best and renown of methodologists have remarked that the significance test
is subject to gross misunderstanding and misinterpretation (e.g., see Bakan, 1966; Carver, 1993;
Cohen, 1990; Estes, 1997; Loftus, 1991; Meehl, 1978; Oakes, 1986; Shrout, 1997; Wilson, Miller,
and Lower, 1967). And though it can be difficult to assess or evaluate whether the situation has
improved, there is evidence to suggest that it has not. Few describe the problem better than Gigerenzer
in his articleMindless statistics (Gigerenzer, 2004), in which he discusses both the roots and truths of
hypothesis testing, as well as how its “statistical rituals” and practices have become far more of a soci-
ological phenomenon rather than anything related to good science and statistics.
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Other researchers have found that misinterpretations and misunderstandings about the significance
test are widespread not only among students but also among their instructors (Haller and Krauss, 2002).
What determines statistical significance and what is it a function of? This is an extremely important
question. An unawareness of the determinants of statistical significance leaves the door open to mis-
understanding and misinterpretation of the test, and the danger to potentially draw false conclusions
based on its results. Too often and for too many, the finding “p < 0.05” simply denotes a “good thing”
of sorts, without ever being able to pinpoint what is so “good” about it.

Recall the familiar one-sample z-test for a mean discussed earlier:

zM =
y− μ0

σ
n

where the purpose of the test was to compare an obtained sample mean y to a population mean μ0 under
the null hypothesis that μ = μ0. Sigma, σ, recall is the standard deviation of the population from which
the sample was presumably drawn. Recall that in practice, this value is rarely if ever known for certain,
which is why in most cases an estimate of it is obtained in the form of a sample standard deviation s.
What determines the size of zM, and therefore, the smallness of p? There are three inputs that determine
the size of p, which we have already featured in our earlier discussion of statistical power. These three
factors are y− μ0, σ and n. We consider each of these once more, then provide simple arithmetic demon-
strations to emphasize how changing any one of these necessarily results in an arithmetical change in
zM, and consequently, a change in the observed p-value.

As a first case, consider the distance y − μ0. Given constant values of σ and n, the greater the
distance between y and μ0, the larger zM will be. That is, as the numerator y − μ0 grows larger,
the resulting zM also gets larger in size, which as a consequence, decreases p in size. As a simple exam-
ple, assume for a given research problem that σ is equal to 20 and n is equal to 100. This means that the
standard error is equal to 20/ 100, which is equal to 20/10 = 2. Suppose the obtained sample mean y
were equal to 20, and the mean under the null hypothesis, μ0, were equal to 18. The numerator of zM
would thus be 20 – 18 = 2. When 2 is divided by the standard error of 2, we obtain a value for zM of 1.0,
which is not statistically significant at p < 0.05.

Now, consider the scenario where the standard error of the mean remains the same at 2, but that
instead of the sample mean y being equal to 20, it is equal to 30. The difference between the sample
mean and the population mean is thus 30 – 18 = 12. This difference represents a greater distance
between means, and presumably, would be indicative of a more “successful” experiment or study.
Dividing 12 by the standard error of 2 yields a zM value of 6.0, which is highly statistically significant
at p < 0.05 (whether for a one- or two-tailed test).

Having the value of zM increase as a result of the distance between y and μ0 increasing is of course
what we would expect from a test statistic if that test statistic is to be used in any sense to evaluate the
strength of the scientific evidence against the null. That is, if our obtained sample mean y turns out to
be very different than the population mean under the null hypothesis, μ0, we would hope that our test
statistic would measure this effect, and allow us to reject the null hypothesis at some preset significance
level (in our example, 0.05). If interpreting test statistics were always as easy as this, there would be no
misunderstandings about the meaning of statistical significance and the misguided decisions to auto-
matically attribute “worth” to the statement “p < 0.05.” However, as we discuss in the following cases,
there are other ways to make zM big or small that do not depend so intimately on the distance between y
and μ0, and this is where interpretations of the significance test usually run awry.

Consider the case now for which the distance between means, y − μ0 is, as before, equal to 2.0 (i.e.,
20 – 18 = 2.0). As noted, with a standard error also equal to 2.0, our computed value of zM came out to
be 1.0, which was not statistically significant. However, is it possible to increase the size of zM without
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changing the observed distance between means? Absolutely. Consider what happens to the size of zM
as we change the magnitude of either σ or n, or both. First, we consider how zM is defined in part as a
function of σ. For convenience, we assume a sample size still of n = 100. Consider now three hypo-
thetical values for σ: 2, 10, and 20. Performing the relevant computations, observe what happens to the
size of zM in the case where σ = 2:

zM =
y − μ0

σ
n

=
20− 18

2
100

=
2
0 2

= 10

The resulting value for zM is quite large at 10. Consider nowwhat happens if we increase σ from 2 to 10:

zM =
y− μ0

σ
n

=
20− 18

10
100

=
2
1
= 2

Notice that the value of zM has decreased from 10 to 2. Consider now what happens if we increase σ
even more to a value of 20 as we had originally:

zM =
y− μ0

σ
n

=
20− 18

20
100

=
2
2
= 1

When σ = 20, the value of zM is now equal to 1, which is no longer statistically significant at p < 0.05.
Be sure to note that the distance between means y− μ0 has remained constant. In other words, and this is
important, zM did not decrease in magnitude by altering the actual distance between the sample
mean and the population mean, but rather decreased in magnitude only by a change in σ.

What this means is that given a constant distance between means y− μ0, whether or not zM will or
will not be statistically significant can be manipulated by changing the value of σ. Of course, a
researcher would never arbitrarily manipulate σ directly. The way to decrease σ would be to sample
from a population with less variability. The point is that decisions regarding whether a “positive” result
occurred in an experiment or study should not be solely a function of whether one is sampling from a
population with small or large variance!

Suppose now we again assume the distance between means y− μ0 to be equal to 2. We again set the
value of σ at 2.With these values set and assumed constant, consider what happens to zM as we increase
the sample size n from 16 to 49 to 100. We first compute zM assuming a sample size of 16:

zM =
y − μ0

σ
n

=
20− 18

2
16

=
2
0 5

= 4

With a sample size of 16, the computed value for zM is equal to 4. When we increase the sample size to
49, again, keeping the distance between means constant, as well as the population standard devi-
ation constant, we obtain:

zM =
y − μ0

σ
n

=
20− 18

2
49

=
2

0 29
= 6 9

We see that the value of zM has increased from 4 to 6.9 as a result of the larger sample size. If we
increase the sample size further, to 100, we get
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zM =
y − μ0

σ
n

=
20− 18

2
100

=
2
0 2

= 10

and see that as a result of the even larger sample size, the value of zM has increased once again, this time
to 10. Again, we need to emphasize that the observed increase in zM is occurring not as a result of
changing values for y− μ0 or σ, as these values remained constant in our above computations. Rather,
the magnitude of zM increased as a direct result of an increase in sample size, n, alone. In many
research studies, the achievement of a statistically significant result may simply be indicative that
the researcher gathered a minimally sufficient sample size that resulted in zM falling in the tail of
the z distribution. In other cases, the failure to reject the null may in reality simply indicate that the
investigator had insufficient sample size. The point is that unless one knows how n can directly increase
or decrease the size of a p-value, one cannot be in a position to understand, in a scientific sense, what
the p-value actually means, or intelligently evaluate the statistical evidence before them.

2.28.2 The Make-Up of a p-Value: A Brief Recap and Summary

The simplicity of these demonstrations is surpassed only by their profoundness. In our simple example
of the one-sample z-test for a mean, we have demonstrated that the size of zM is a direct function of three
elements: (1) distance y− μ0, (2) population standard deviation σ, and (3) sample size n. A change in
any of these while holding the others constant will necessarily, through nothing more than the con-
sequences of how the significance test is constructed and functionally defined, result in a change in
the size of zM. The implication of this is that one can make zM as small or as large as one would like
by choosing to do a study or experiment such that the combination of y− μ0, σ, and n results in a zM
value that meets or exceeds a pre-selected criteria of statistical significance.

The important point here is that a large value of zM does not necessarily mean something of any
practical or scientific significance occurred in the given study or experiment. This fact has been reit-
erated countless times by the best of methodologists, yet too often researchers fail to emphasize this
extremely important truth when discussing findings:

A p-value, no matter how small or large, does not necessarily equate to the success or failure of
a given experiment or study.

Too often a statement of “p < 0.05” is recited to an audience with the implication that somehow this
necessarily constitutes a “scientific finding” of sorts. This is entirely misleading, and the practice needs
to be avoided. The solution, as we will soon discuss, is to pair the p-value with a report of the effect size.

2.28.3 The Issue of Standardized Testing: Are Students in Your School Achieving More
Than the National Average?

To demonstrate how adjusting the inputs to zM can have a direct impact on the obtained p-value, con-
sider the situation in which a school psychologist practitioner hypothesizes that as a result of an inten-
sified program implementation in her school, she believes that her school’s students, on average, will
have a higher achievement mean compared to the national average of students in the same grade. Sup-
pose that the national average on a given standardized performance test is equal to 100. If the school
psychologist is correct that her students are, on average, more advanced performance-wise than the
national average, then her students should, on average, score higher than the national mark of 100.
She decides to sample 100 students from her school and obtains a sample achievement mean of
y = 101. Thus, the distance between means is equal to 101 – 100 = 1. She computes the estimated
population standard deviation s equal to 10. Because she is estimating σ2 with s2, she computes a
one-sample t-test rather than a z-test. Her computation of the ensuing t is:
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t =
y − μ0

s
n

=
101 − 100

10
100

=
1
1
= 1

On degrees of freedom equal to n − 1 = 100 – 1 = 99, for a two-tailed test, we require a t statistic of ±
1.984 for the result to be statistically significant at a level of significance of 0.05. Hence, the obtained
value of t = 1 is not statistically significant. That the result is not statistically significant is hardly sur-
prising, since the sample mean of the psychologist’s school is only 101, a single mean point higher than
the national average of 100. It would seem then that the computation of t is telling us a story that is
consistent with our intuition, that there is no reason to believe that the school’s performance is higher
than that of the national average in the population from which these sample data were drawn.

Now, consider what would have happened had the psychologist collected a larger sample, suppose
n = 500. Using our new sample size, and still assuming an estimated population standard deviation s
equal to 10 and a distance between means equal to 1, we repeat the computation for t:

t =
y − μ0

s
n

=
101− 100

10
500

=
1

0 45
= 2 22

What happened? The obtained value of t increased from 1 to 2.22 simply as a result of collecting a
larger sample, nothing more. The actual distance between means remained the same (101−100 = 1).
The degrees of freedom for the test have changed and are now equal to 499 (i.e., n − 1 = 500 − 1 = 499).
Since our obtained t of 2.22 exceeds critical t, our statistic is deemed statistically significant at p < 0.05.
What is important to realize is that we did not change the difference between the sample mean yand the
population mean μ0, it remained extremely small at only a single mean achievement point (i.e.,
101 – 100 = 1). Even with the same distance between means, the obtained t of 2.22 and it being sta-
tistically significant at p < 0.05 now means we will reject the null hypothesis, and infer the alternative
hypothesis that μ μ0. And because scientists have historically considered the infamous statement
“p < 0.05” to be automatically and necessarily equivalent to something meaningful or important,
the obvious danger is that the rejection of the null hypothesis at p < 0.05 is considered by some (or
even most) a “positive” result. When in reality, the difference, in this case, is nothing short of trivial.

The problem is not that the significance test is not useful and therefore should be banned. The prob-
lem is that too few are aware that the statement “p < 0.05,” in itself, scientifically (as opposed to sta-
tistically) may have little meaning in a given research context, and at worst, may be entirely misleading
if automatically assigned any degree of scientific importance by the interpreter.

2.28.4 Other Test Statistics

The factors that influence the size of a p-value are, of course, not only relevant to z- and t-tests, but are at
work in essentially every test of statistical significance we might conduct. For instance, as we will see
in the following chapter, the size of the F-ratio in traditional one-way ANOVA is subject to the same
influences. Taken as the ratio of MS between to MS error, the three determining influences for the size
of p are (1) size of MS between, which is a reflection of the extent to which means are different from
group to group, (2) size of MS error, which is in part a reflection of the within-group variability, and (3)
sample size (when computing MS error, we divide the sum of squares for error by degrees of freedom,
in which the degrees of freedom are determined in large part by sample size). Hence, a large F-stat does
not necessarily imply thatMS between is absolutely large, no more than a large t necessarily implies the
size of y − μ0. A small p-value associated with a computed F could be a result of small within-
group variation and/or a large sample size. It does not necessarily mean that group-to-group
mean differences are substantial, which was presumably the goal of the study or experiment
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by the investigator. That is, the goal was not to simply obtain small within-group variation. The
goal was to demonstrate mean differences between groups.

These ideas for significance tests apply in even the most advanced of modeling techniques, such as
structural equation modeling (see Chapter 15). The typical measure of model fit is the chi-square sta-
tistic, χ2, which as reported by many (e.g., see Bollen, 1989; Hoelter, 1983) suffers the same interpre-
tational problems as t and F regarding how its magnitude can be largely a function of sample size. That
is, one can achieve a small or large χ2 simply because one has used a small or large sample. If a
researcher is not aware of this fact, he or she may decide that a model is well-fitting or poor-fitting
based on a small or large chi-square value, without awareness of its connection with n. This is in part
why other measures, as we will see, have been proposed for interpreting the fit of SEMmodels (e.g., see
Browne and Cudeck, 1993).

2.28.5 The Solution

The solution to episodes of misunderstanding the significance test is not to drop or ban it, contrary to
what some have recommended (e.g., Hunter, 1997). Rather, the solution is to supplement it with a
measure that accounts for the actual distance between means and serves to convey the magnitude
of the actual scientific finding, as opposed to statistical finding, should there be one. Measures of
effect size, interpreted in conjunction with significance tests, help to communicate whether something
has “happened” or “not happened” in the given study or experiment. The reader interested in effect
sizes can turn to a multitude of sources (Cortina and Nouri, 1999; Rosenthal, Rosnow, and Rubin,
2000). For our purposes, it suffices to review the principle of an effect size measure rather than catalog
the wealth of possibilities for effect sizes available. Perhaps the easiest andmost straightforward way of
conceptualizing an effect size is to consider a measure of standardized statistical distance, or Cohen’s
d, already featured in our computations of power.

2.28.6 Statistical Distance: Cohen’s d

For a one-sample z-test, Cohen’s d (Cohen, 1988) is defined as the absolute distance between the
observed sample mean and the population mean under the null hypothesis, divided by the population
standard deviation:

d =
y− μ0
σ

In the above, since y is serving as the estimate of μ, the numerator can also be given as μ − μ0.
However, using y instead of μ above is a reminder of where this mean is coming from. It is coming
from our sample data, and we wish to compare that sample mean to the population mean μ0 under the
null hypothesis.
As an example, where y = 20, μ0 = 18, and σ = 2 Cohen’s d is computed as:

d =
20− 18

2
= 1 0

Cohen offered the guidelines of 0.20, 0.50, and 0.80 as representing small, medium, and large effects
respectively (Cohen, 1988). However, relying on effect size guidelines to indicate the absolute size of
an experimental or nonexperimental effect should only be done in the complete and absolute absence of
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all other information for the research area. In the end, it is the researcher, armed with knowledge of
the history of the phenomenon under study, who must evaluate whether an effect is small or
large. For instance, referring to the achievement example discussed earlier, Cohen’s d would be equal
to:

d =
101− 100

10
= 0 1

The effect size of 0.1 is small according to Cohen’s guidelines, but more importantly, also small sub-
stantively, since a difference in means of 1 point is, by all accounts, likely trivial. In this case, both
Cohen’s guidelines and the actual substantive evaluation of the size of effect coincide. However, this is
not always the case. In physical or biological experiments, for instance, one can easily imagine exam-
ples for which an effect size of even 0.8 might be considered “small” relative to the research area under
investigation, since the degree of control the investigator can impose over his or her subjects is much
greater. In such cases, it may very well be that Cohen’s d values in the neighborhood of two or three
would be required for an effect to be considered “large.” The point is that only in the complete absence
of information regarding an area of investigation is it appropriate to use “rules of thumb” to evaluate the
size of effect. Cohen’s d, or effect size measures in general, should always be used in conjunction with
statements of statistical significance, since they tell the researcher what she is actually wanting to know,
that of the estimated separation between sample data (often in the form of a sample mean) and the null
hypothesis under investigation. Oftentimes meta-analysis, which is a study of the overall measure of
effect for a given phenomenon, can be helpful in comparing new research findings to the “status quo” in
a given field. For a thorough user-friendly overview of the methodology, consult Shelby and
Vaske (2008).

2.28.7 What Does Cohen’s d Actually Tell Us?

Writing out a formula and plugging in numbers, unfortunately, does not necessarily give us a feeling
for what the formula actually means. This is especially true with regard to Cohen’s d. We now discuss
the statistic in a bit more detail, pointing out why it is usually interpreted as the standardized differ-
ence between means.

Imagine you have two independent samples of laboratory rats. To one sample, you provide normal
feeding and observe their weight over the next 30 days. To the other sample, you also feed normally,
but also give them regular doses of a weight-loss drug. You are interested in learning whether your
weight-loss drug works or not. Suppose that after 30 days, on average, a mean difference of 0.2 pounds
is observed between groups. How big is a difference of 0.2 pounds for these groups? If the average
difference in weight among rats in the population were very large, say, 0.8 pounds, then a mean dif-
ference of 0.2 pounds is not that impressive. After all, if rats weigh very differently from one rat to the
next, then really, finding a mean difference of 0.2 between groups cannot be that exciting. However, if
the average weight difference between rats were equal to 0.1 pounds, then all of a sudden, a mean
difference of 0.2 pounds seems more impressive, because that size of difference is atypical relative
to the population. What is “typical?” This is exactly what the standard deviation reveals. Hence,
when we are computing Cohen’s d, we are in actuality producing a ratio of one deviation relative
to another, similar to how when we compute a z-score, we are comparing the deviation of y − μ with
the standard deviation σ. The extent to which observed differences are large relative to “average” dif-
ferences will be the extent to which d will be large in magnitude.
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2.28.8 Why and Where the Significance Test Still Makes Sense

At this point, the conscientious reader may very well be asking the following question: If the signif-
icance test is so misleading and subject to misunderstanding and misinterpretation, how does it
evenmake sense as a test of anything? It would appear to be a nonsensical test and should forever
be forgotten. The fact is that the significance test doesmake sense, only that the sense that it makes is
not necessarily always scientific. Rather, it is statistical. To a pure theoretical statistician or mathe-
matician, a decreasing p-value as a function of an increasing sample size makes perfect sense—as
we snoop a larger part of the population, the random error we expect typically decreases, because with
each increase in sample size we are obtaining a better estimate of the true population parameter. Hence,
that we achieve statistical significance with a sample size of 500 and not 100, for instance, is well
within that of statistical “good sense.” That is, the p-value is functioning as it should, and likewise
yielding the correct statistical information.

However, statistical truth does not equate to scientific truth (Bolles, 1962). Statistical conclu-
sions should never be automatically equated with scientific ones. They are different and distinct things.
When we arrive at a statistical conclusion (e.g., when deciding to reject the null hypothesis), one can
never assume that this represents anything that is necessarily or absolutely scientifically meaningful.
Rather, the statistical conclusion should be used as a potential indicator that something scientifically
interesting may have occurred, the evidence for which must be determined by other means, which
includes effect sizes, researcher judgment, and putting the obtained result into its proper interpretive
context.

2.29 CHAPTER SUMMARY AND HIGHLIGHTS

• To understand advanced statistical procedures, it is necessary to have a firm grasp on the
foundations of introductory statistics. Advanced procedures are typically extensions of first
principles.

• Densities are theoretical probability distributions. The normal univariate density is an example.

• The standard normal distribution has a mean μ of 0 and a variance σ2 of 1.

• z-scores are useful for comparing raw scores emanating from different distributions. Standard-
ization transforms raw scores to a common scale, allowing for comparison between scores.

• Binomial distributions are useful in modeling experiments in which the outcome can be concep-
tualized as a “success” or “failure.” The outcome of the experiment must be binary in nature for
the binomial distribution to apply.

• The normal distribution can be used to approximate the binomial distribution. In this regard, we
say that the limiting form of the binomial distribution is the normal distribution.

• The bivariate normal density expresses the probability of the joint occurrence of two variables.
• The multivariate normal density expresses the probability of the joint occurrence of three or
more variables.

• The mean, variance, skewness, and kurtosis are all moments of a distribution.
• The mean (arithmetic), the first moment of a distribution, either of a mathematical variable or a
random variable, can be regarded as the center of gravity of the distribution such that the sum of
deviations from the mean for any distribution is equal to zero.

• The variance, the second moment of a distribution, can be computed for either a mathematical
variable or a random variable. It expresses the degree to which scores, on average, deviate from
the mean in squared units.
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• The sample variance with n in the denominator is biased. To correct for the bias, a single degree
of freedom is subtracted so that the new denominator is n − 1.

• The expectation of the uncorrected version of the sample variance is not equal to σ2. That is,
E(S2) σ2. However, the corrected version of the sample variance (with n − 1 in the denominator)
is equal to σ2. That is, E(s2) = σ2.

• Skewness, the third moment of a distribution, reflects the extent to which a distribution lacks
symmetry.

• Kurtosis, the fourth moment of a distribution, reflects the extent to which a distribution is peaked
or flat and also having much to do with a distribution’s tails.

• Covariance and correlation are defined for both empirical variables and random variables. Both
measure the extent to which two variables are linearly related. Pearson r is the standardized ver-
sion of the covariance, and is dimensionless, meaning that its value is not dependent on the var-
iance in each variable. Pearson r ranges from −1 to +1 in value.

• One popular use of correlation is in establishing reliability and validity of psychometric
measures.

• In multivariable contexts, covariance and correlation matrices are used in place of single
coefficients.

• There are numerous other correlation coefficients available other than Pearson r. One such coef-
ficient is Spearman’s rs, which capturesmonotonically increasing (or decreasing) relationships.
Monotonic relationships do not necessarily have to be linear.

• The issue of measurement should be carefully considered before data is collected. S.S. Stevens
proposed four scales of measurement, nominal, ordinal, interval, and ratio. The most sophis-
ticated level of measurement is that of the ratio scale where a value of zero on the scale truly means
an absence of the attribute under study.

• A random variable is a mathematical variable that is associated with a probability distribution.
More formally, it is a function from a sample space into the real numbers.

• An estimator is a function of a sample used to estimate a parameter in the population.

• An interval estimator provides a range of values within which the true parameter is hypothesized
to exist.

• An unbiased estimator is one in which its expectation is equal to the corresponding population
parameter. That is, E(T) = θ.

• An estimator is consistent if as sample size increases without bound, the variance of the estimator
approaches zero.

• An estimator is efficient if it has a relatively low mean squared error.

• An estimator is sufficient for a given parameter if the statistic tells us everything we need to know
about the parameter and our knowledge of it could not be improved if we considered additional
information (e.g., such as a secondary statistic).

• The concept of a sampling distribution is at the heart of statistical inference. A sampling distri-
bution of a statistic is a theoretical probability distribution of that statistic. It is idealized, and
hence not ordinarily empirically derived.

• The sampling distribution of the mean is of great importance because so many of our inferences
feature means.

• As a result of E y = μ, we can say that μy = μ, that is, themean of all possible sample meanswe
could draw from some specified population is equal to the mean of that population.
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• The variance of the sampling distribution of the mean is equal to 1
n of the original population

variance. That is, it is equal to σ2

n .

• The square root of the sampling variance for the mean is equal to the standard error, σ2
n = σ

n
.

• The central limit theorem is perhaps the most important theorem in all of statistics. Though there
are different forms of the theorem, in general, it states that the sum of random variables approx-
imates a normal distribution as the size upon which each sample is based increases without bound.

• Confidence intervals provide a range of values for which we can be relatively certain to lay the
true parameter we are seeking to estimate. Key to understanding confidence intervals is to rec-
ognize that it is the sample upon which the interval is computed that is the random component,
and not the parameter we are seeking to estimate. The parameter is typically assumed to be fixed.

• Student’s t distribution, derived by William Gosset (or “Student”) in 1908, is useful when σ2 is
unknown and must be estimated from the sample. Because in the limit f(t) = f(z) (i.e.,
lim
v ∞

f t = f z ), for large samples, whether one uses z or t will make little difference in terms

of whether or not the null hypothesis is rejected.

• The t-test for one sample compares an obtained sample mean to a population mean and evaluates
the null hypothesis that the sample mean could have reasonably been drawn from the given
population.

• As degrees of freedom increase, the variance of the t-distribution approaches 1, which is the
same as that for a standardized normal variable. That is, lim

v ∞

v
v − 2 = 1 0.

• The t-test for two samples tests the null hypothesis that both samples were selected from the same
population. A rejection of the null hypothesis suggests the samples arose from populations with
different means.

• Power is the probability of rejecting a null hypothesis given that it is false. It is equal to 1 − β (i.e.,
1 – type II error rate). Power is a function of four elements: (1) hypothesized value under H1, (2)
significance level, or type I error rate, α, (3) variance, σ2, in the population, and (4) sample size.

• Experiments or studies suffering from insufficient power make it difficult to ascertain why the
null hypothesis failed to be rejected.

• The paired-samples t-test is useful for matched-pairs (elementary blocking) designs.

• The paired-samples t-test usually results in an increase in statistical power because the covar-
iance between measurements is subtracted from the error term. In general, anything that makes the
error term smaller helps to boost statistical power.

• The paired-samples t-test and the matched design which it serves provides a good entry point into
the discussion of the randomized block design, the topic of Chapter 6.

• Inmultivariable contexts, linear combinations of variables are generated of the form ℓi = a1y1 +
a2y2 +… + apyp. Means and variances of linear combinations can be obtained, as well as the
covariance and correlation between linear combinations.

• Representing statistical models in matrix form is required in statistical analyses of higher dimen-
sions than 1 (e.g., multiple regression, multivariate analysis of variance, principal components
analysis, etc.). The fundamental general linear model can be given by Y = XB +E.

• Understanding what makes a p-value small or large is essential if a researcher is to intelligently
interpret statistical evidence is his or her field. The history of null hypothesis significance testing
(NHST) is plagued with controversy, and a solid understanding of the difference between statis-
tical significance and effect size (e.g., Cohen’s d) is necessary before one attempts to interpret
any research findings.

91CHAPTER SUMMARY AND HIGHLIGHTS



REVIEW EXERCISES

2.1. Distinguish between a density and an empirical distribution. How are they different? How are
they similar?

2.2. Consider the univariate normal density:

f xi, μ, σ2 = 1
2πσ2

e − xi − μ
2 2σ2

Show that for a standard normal distribution, the above becomes f xi, μ, σ2 =
e −

1
2x

2
i

2π
.

2.3. Explain the nature of a z-score, z =
xi − μ

σ
Why is it also called a standardized score?

2.4. Using R, compute the probability of observing a standardized score of 1.0 or greater. What is
then the probability of observing a score less than 1.0 from such a distribution?

2.5. Think up a research example in which the binomial distributionwould be useful in evaluating
a null hypothesis.

2.6. Rafael Nadal, a professional tennis player, as of 2020 had won the French Open tennis cham-
pionship a total of 13 times in the past 16 tournaments. If we set the probability of him winning
each time at 0.5, determine the probability of winning 13 times out of 16. Make a statistical
argument that Nadal is an exceptional tennis player at the French Open. What if we set the
probability of a win at 0.1? Does this make Nadal’s achievements less or more impressive?
Why? Explain.

2.7. Give an example using the binomial distribution in which the null hypothesis would not be
rejected even if observing 9 out of 10 heads on flips of a coin.

2.8. On a fair coin, what is the probability of observing 0 heads or 5 heads? How did you arrive at
this probability, and which rules of probability did you use in your computation?

2.9. Discuss what a limiting form of a distribution means, and how the limiting form of the binomial
distribution is that of the normal distribution.

2.10. Consider the multivariate density:

g xi =
1

2π
p
Σ 1 2

e
− x−μ 'Σ−1 x−μ 2

All else constant, what effect does an increasing value of the determinant ( Σ ) have on the
density, and how does this translate when using real variables?

2.11. What is meant by the expectation of a random variable?

2.12. Compare these two products, and explain how and why they are different from one another
when taking expectations: yip(yi) versus yip(yi)dy

2.13. Why is it reasonable that the arithmetic mean is the center of gravity of a distribution?

2.14. What is an unbiased estimator of a population mean vector?

2.15. Discuss what it means to say that E(S2) σ2, and the implications of this. What is E(S2)
equal to?
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2.16. Even though E(S2) σ2, how can it be true nonetheless that lim
n ∞

E S2 = σ2? Explain.

2.17. Explain why the following form of the sample variance is considered to be an unbiased esti-
mator of the population variance:

s2 =

n

i = 1

yi − y
2

n − 1

2.18. Draw a distribution that is positively skewed. Now draw one that is negatively skewed.

2.19. Compare and contrast the covarianceof a randomvariable: cov(xi, yi) =σxy=E[(xi − μx) (yi − μy)]

with that of the sample covariance: cov =

n

i = 1

xi − x yi − y

n− 1 How are they similar? How are they
different? What in their definitions makes them different from one another?

2.20. What effect (if any) does increasing sample size n have on the magnitude of the covariance? If
it does not have any effect, explain why it does not.

2.21. Explain or show how the variance of a variable can be conceptualized as the covariance of a
variable with itself.

2.22. Cite three reasons why the covariance is not a pure or dimensionless measure of relationship
between two variables.

2.23. Why is Pearson r not suitable for measuring relationships that are nonlinear? What is an alter-
native coefficient (one of many) that may be computed that is more appropriate for relationships
that are nonlinear?

2.24. What does it mean to say the relationship between two variables ismonotonically increasing?

2.25. What does a correlation matrix have along its main diagonal that a covariance matrix does
not? What is along the main diagonal of a covariance matrix?

2.26. Define, in general, what it means to measure something.

2.27. Explain why it is that something measurable at the ratio level of measurement is also meas-
urable at the interval, ordinal, and nominal levels as well.

2.28. Is something such as intelligence measurable on a ratio scale? Why or why not?

2.29. Distinguish between a mathematical variable and a random variable.

2.30. Distinguish between an estimator and an estimate.

2.31. Define what is meant by an interval estimator.

2.32. Define what is meant by the consistency of an estimator and what

lim
n ∞

σ2T = 0

means in this context.

2.33. Compare the concepts of efficiency versus sufficiency with regard to estimators. How are they
different?

2.34. The sampling distribution of the mean is an idealized distribution. However, discuss how one
would generate the sampling distribution of the mean empirically.
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2.35. Discuss why for a higher level of confidence, all else equal, a confidence intervalwidens rather
than narrows.

2.36. Define what is meant by a maximum-likelihood estimator.

2.37. Discuss the behavior of the t distribution for increasing degrees of freedom. What is the lim-
iting form of the t distribution?

2.38. In a research setting, under what condition(s) is a t-test usually preferred over a z-test?

2.39. Verbally interpret the nature of pooling in the independent-samples t-test. Under what
condition(s) do we pool variances? Under what condition(s) should we not pool?

2.40. Discuss why an estimate of effect size is required for estimating power.

2.41. Using R, estimate required sample size for detecting a population correlation coefficient of
0.30 at a significance level of 0.01, with power equal to 0.80.

2.42. Repeat exercise 2.41, this time using G�Power.

2.43. Using R, estimate power for an independent samples t-test for a sample size of 100 per group
and Cohen’s d equal to 0.20.

2.44. For a value of r2 = 0.70, compute the corresponding value for d.

2.45. Discuss how the paired-samples t-test can be considered a special case of the wider and more
general blocking design.

2.46. Define what is meant by a linear combination.

2.47. Define and describe each term in the multivariate general linear model Y = XB + E.

2.48. Discuss the key determinants of the p-value in a significance test.

2.49. A researcher collects a sample of n = 10, 000 observations and tells you that with such a large
sample size, he is guaranteed to reject the null hypothesis. Explain why the researcher’s claim
is false.

2.50. A researcher collects a sample size of n = 5, computes zM and rejects the null hypothesis. Argue
on the one hand for why this might be impressive scientifically, then argue why it may not be.

2.51. Consider once more Galton’s data on heights (only the first 10 observations are shown):

> library(HistData)
> attach(Galton)
> Galton

parent child
1 70.5 61.7
2 68.5 61.7
3 65.5 61.7
4 64.5 61.7
5 64.0 61.7
6 67.5 62.2
7 67.5 62.2
8 67.5 62.2
9 66.5 62.2
10 66.5 62.2
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(a) Compute a histogram of parent height, as well as an index of skewness and kurtosis.
What do your measures of skewness and kurtosis suggest about the distribution?

(b) Transform the distribution of child heights to z-scores. What effect did such a transfor-
mation have on the mean and variance of the original distribution? Second, did it change
its shape at all? Why or why not?

(c) Compute the covariance between parent height and child height. Does the sign of the
covariance suggest a positive or negative relationship?

(d) Standardize the covariance by computing Pearson r. Interpret the obtained correlation
coefficient, and test it for statistical significance using either SPSS or R.

2.52. Consider the following data on whether a student passed or failed a mathematics course
(grade = 0 is “failed” and grade = 1 is “passed”), along with that student’s study time for
the course, in average minutes per day for the duration of the course:

grade studytime
0 30
0 25
0 59
0 42
0 31
1 140
1 90
1 95
1 170
1 120

Conduct an independent-samples t-test on this data using SPSS and R. Verify that the assump-
tion of homogeneity of variances is met in SPSS.

2.53. A researcher is interested in conducting a two-sample t-test between a treatment group and a
control group. The researcher anticipates an effect size of approximately d = 1.5 and wishes to
test the null hypothesis μ1 = μ2 at a significance level of 0.05. Estimate required sample size
assuming the researcher wishes to attain power of at least 0.90 for her test of the null
hypothesis.

Further Discussion and Activities

2.54. As discussed in this chapter, null hypothesis significance testing (NHST) has been critically
evaluated and dissected as a means for drawing scientific inferences in the social and natural
sciences. Rozeboom (1960) quite nicely summarized the main criticisms in The Fallacy of the
Null-Hypothesis Significance Test. Read the article and discuss Rozeboom’s distinction
between decisions versus degrees of belief. Why is such a distinction important for a scientist
to understand the difference between statistical versus scientific inference? Rozeboom’s arti-
cle can be downloaded from Christopher D. Green’s Classics in the History of Psychology
website: http://psychclassics.yorku.ca/Rozeboom/
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2.55. R.A. Fisher, the modern “father of statistics” wrote in 1956:

“… no scientific worker has a fixed level of significance at which from year to
year, and in all circumstances, he rejects hypotheses; he rather gives his mind to
each particular case in the light of his evidence and his ideas.”

Many writers and researchers, however, have found that since the inception of the significance
test in the early 1900s, scientists, both social and otherwise, routinely employ the 0.05 level of
significance in rejecting null hypotheses. Read Mindless Statistics by Gigerenzer (2004), and
discuss the dangers and risks, both practical and theoretical, of allowing the “null ritual” to dom-
inate in science.
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3
ANALYSIS OF VARIANCE: FIXED
EFFECTS MODELS

The prime objective of this book is to put into the hands of researchworkers, [sic] and especially of
biologists, the means of applying statistical tests accurately to numerical data accumulated in their own
laboratories or available in the literature. Such tests are the result of solutions of problems of distribution,
most of which are but recent additions to our knowledge and have so far only appeared in specialised [sic]
mathematical papers.

(Fisher, 1925, p. 4, Statistical Methods for Research Workers)

Suppose a researcher is interested in knowing whether melatonin, a popular sleep aid, is effective at
helping individuals fall asleep at night. The researcher samples 75 individuals at random, and assigns
25 to a control group receiving no melatonin, 25 to a treatment group receiving 1 mg of melatonin, and
25 to another treatment group receiving 3 mg of melatonin nightly. These specific doses of 1 and 3 mg
are of interest to the researcher, since it is hypothesized that the greater dose of 3 mg will be more
effective at promoting sleep compared to the lesser dose of 1 mg, which will, in turn, be more effective
than receiving no melatonin at all.

Monitoring EEG levels of all participants in a sleep lab, the researcher measures the time it takes
from ingestion of the melatonin to the time the participant reaches NREM (“non-rapid eye movement”)
sleep. The “time until NREM,” measured in minutes, is generally known as sleep onset latency. To
assess whether the melatonin has an effect on sleep onset, the researcher wishes to compare mean sleep
latencies across groups to discern any treatment effect that may be present (see Figure 3.1). Such a
research design calls for a one-way fixed effects analysis of variance.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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3.1 WHAT IS ANALYSIS OF VARIANCE? FIXED VERSUS RANDOM EFFECTS

The analysis of variance (ANOVA) is the workhorse of experimental research across the social and
natural sciences. The methodology is generally attributed to R.A. Fisher who wrote in 1925 Statistical
Methods for Research Workers, which provided scientists with a novel quantitative method for
partitioning sources of variance in a set of data and making inferences about effects in the population
from which sample data were drawn. Estimation of parameters in the analysis of variance usually boils
down to obtaining least-squares solutions analogous to what is done in regression (see Chapter 7), but
as remarked by Eisenhart (1947), Fisher’s primary contribution was in how he packaged the analysis
of variance procedure:

With respect to the problems of estimation belonging to this class [class of estimating fixed effects], analysis
of variance is simply a form of the method of least squares: the analysis-of-variance solutions are the least-
squares solutions. The cardinal contribution of analysis of variance to the actual procedure is the analysis-
of-variance table devised by R.A. Fisher, which serves to simplify the arithmetical steps and to bring out
more clearly the significance of the results obtained. (p. 3)

Fisher also published in 1935 Design of Experiments in which he elucidated principles of research
methodology that continue to this day to be the bedrock of modern experimental design. The type of
analysis of variance model one specifies depends in large part on the assumptions that go into the model
and what conclusions one wishes to make regarding observed effects. In a fixed effects analysis of
variance, the investigator is interested in testing null hypotheses of the sort:

H0 μ1 = μ2 = μ3 = μJ

where the particular, exact levels of the independent variable chosen by the experimenter are of
specific interest. That is, the investigator would like to draw conclusions about those particular levels
chosen for the study and is not interested in generalizing conclusions to a wider population of levels.
The levels of the independent variable are fixed in advance of performing the analysis, and conclusions
drawn are about those levels and those levels alone in the fixed effects model.

In a random effectsmodel, the investigator is interested in generalizing his findings not only to the
levels chosen for the experiment but also to the population of levels from which the experimental
levels were drawn. In this model, the researcher is not specifically interested in the particular levels
of the independent level chosen for the given study. He is most interested in what these randomly
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FIGURE 3.1 Sleep onset as a function of melatonin dose (hypothetical). Circles represent means for each
dose. Dotted line suggests a negative relationship between sleep onset and dose.
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chosen levels might suggest about the population of levels from which he randomly sampled the ones
appearing in the given experiment. In the random effects model, the investigator is interested not in
mean population differences, but rather in the extent to which variance in the dependent variable
can be explained or accounted for by changing levels of the independent variable. When both fixed
and random effects are present in the same model, we have the mixed model analysis of variance.
We discuss random effects and mixed models in Chapter 5.

Note carefully that in all of these models under discussion we seek to infer conclusions drawn from
samples to respective population parameters. This is not what distinguishes one model from the other.
What does distinguish models is the extent to which conclusions about sampled factor levels are gen-
eralizable to the population of factor levels. Many times, students, attempting to distinguish fixed
versus random effects, mistakenly conclude that fixed effects are somehow not as “inferential” as ran-
dom effects, in the sense that if we are dealing with a fixed effect that somehow we are no longer inter-
ested in inferential statistics. But this is entirely incorrect. In fixed effects models, we do make
inferences, only the inferences of treatment effects are specific to the levels actually chosen by the
researcher, and not to the population of levels of which the chosen ones are but a random sample,
as one would have in a random effects models.

Hays (1994), Kirk (1995), and Winer, Brown, and Michels (1991) are all classic resources on
ANOVA. Maxwell and Delaney (2004) also provide a very readable overview of ANOVA models.
A more technical and advanced treatment that assumes a grounding in matrix algebra is Scheffé
(1999). Federer (1955), Snedecor and Cochran (1967), and Edwards (1985) are also excellent sources.

3.1.1 Small Sample Example: Achievement as a Function of Teacher

Amotivating example will help set the stage for discussing the one-way fixed effects ANOVA and will
be extended to two-way models in the following chapter. We also refer to this example when we dis-
cuss random effects and mixed models in Chapter 5.

Consider Table 3.1, featuring hypothetical data for students’ standardized mathematics achievement
scores as a function of teacher. In this design, students were assigned, at random, one of four math-
ematics teachers for the course of a full school year. At the end of the year, students were evaluated on
their mathematics achievement (scores range from 0 to 100) through standardized testing. Students
were screened beforehand to ensure they possessed an approximately equivalent degree of mathemat-
ical skill before being randomly assigned.

Some features of the data include:

• There are a total of six observations per group for a total of 24 data points. It is a balanced design,
meaning that in each group there are an equal number of data points (when we study factorial
ANOVA in the following chapter, a design will be balanced if there are an equal number of data
points in each cell).

TABLE 3.1 Achievement as a Function of Teacher

Teacher

1 2 3 4

70 69 85 95
67 68 86 94
65 70 85 89
75 76 76 94
76 77 75 93
73 75 73 91

M = 71.00 M = 72.5 M = 80.0 M = 92.67
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• The dependent or response variable is student achievement score on a standardized test (range
from 0 to 100).

• The last row of the table contains the means for each group (71.00, 72.50, 80.00, 92.67).

3.1.2 Is Achievement a Function of Teacher?

We would like to know whether a student’s mathematics achievement score is dependent on what
teacher they were randomly assigned to for the school year. Recall what we mean in general by a
function statement. When we ask the question “Is achievement a function of teacher?” what
we are essentially asking is if I tell you one’s teacher, are you able to predict, with some degree
of certainty, their achievement score? Even if the assignment of teacher is related to achievement,
we should not expect it to be a function of the kind f(x) = x. Such would imply that given one’s
teacher, we could predict their mathematics achievement perfectly. That is, it would imply we
are working with a deterministic rather than a probabilistic or stochastic model. Most models
in the social, medical, and other sciences are not deterministic. Rarely can we ever expect a perfect
functional relation between two or more variables. This very idea, historically, of prediction but with
a measure of uncertainty, is what set into motion the evolution (and revolution) of probability and of
statistical modeling in the sciences.

The following is a subset of our data:

> achiev <- read.table("achievement.txt", header = T)
> library(car)
> some(achiev)

ac teach
1 70 1
2 67 1
7 69 2

We visualize the data to get a better sense of whether mean differences may exist:

> achiev$teach
[1] 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

> with (achiev, boxplot(ac ~ teach))

1 2 3 4

95

85

75

65
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Though boxplots feature themedian as a measure of central tendency, they still help us get a first-
glance visualization both regarding potential mean differences as well as whether the assumption of
homogeneity of variance (to be discussed) is satisfied. As we can see from the boxplots, it would
appear that achievement, in general, increases across teachers. We will address the assumption of
homogeneity of variance later, but for now, it would appear that the dispersion of scores within each
“teacher group” is approximately similar, though there appears to be noticeably less variability of
scores for the 4th teacher compared to the others. Observing boxplots such as these is useful as an
exploratory aid before conducting more formal inferential statistics. As a general rule, always explore
your data before conducting formal analyses. Get to “know” your data very well.

If achievement is (at least imperfectly) a function of teacher, then we would expect achievement
means to differ by teacher. Our sample averages definitely do differ. There is no doubt that sample
means 71.00 versus 72.50 versus 80.0 versus 92.67 are numerically different from one another. How-
ever, these are only sample means. They are not population means. Why are they not population
means? Because presumably, we are not specifically interested in only these sample data points when
discerning whether teacher is related to student achievement. More likely we are interested in using this
sample data to draw inferences to the population from which these data were drawn. If we were only
interested in drawing descriptive conclusions about the data in Table 3.1 and making no inferences to a
wider population, then these data could indeed constitute population data. Remember, one researcher’s
sample is another researcher’s population.Wemust always ask ourselves whether the data in front of us
are considered the complete set of observations or whether they are considered a subset of a larger set.

Hence, we wish to evaluate a null hypothesis that the population means are equal across teacher. We
can state this null hypothesis as:

H0 μ1 = μ2 = μ3 = μ4

Our statistical alternative hypothesis is that somewhere in the set of population means there is at
least one difference in means. Of course, even if we end up rejecting the null hypothesis, we do
not immediately know where the difference(s) lie. A couple of possibilities for statistical alternatives
include:

H1 μ1 μ2 = μ3 = μ4
H1 μ1 = μ2 μ3 = μ4

Note that for convenience and ease of visualization of mean differences, we are notating possible
alternatives as H1 : μ1 μ2 = μ3 = μ4 and H1 : μ1 = μ2 μ3 = μ4 to indicate equality or differences
between group means, where in the case of H1 : μ1 μ2 = μ3 = μ4 is meant to read “mean 1 is different
from mean 2, but mean 2 is equal to means 3 and 4.” Though this makes for a convenient visual for
looking at the alternative hypothesis, to be more formal about it, it would be more correct to write H1 :
μ1 μ2, μ2 = μ3 = μ4. No harm is done in writing it asH1 : μ1 μ2 = μ3 = μ4 so long as one understands
what is being communicated.

We will use procedures such as contrasts and post-hoc tests to help in discerning where mean dif-
ferences may lie given a rejected null hypothesis. We discuss contrasts and post-hocs later in the
chapter.

3.2 HOW ANALYSIS OF VARIANCE WORKS: A BIG PICTURE OVERVIEW

How do we go about testing a null hypothesis of the kind in our example, that ofH0 : μ1 = μ2 = μ3 = μ4?
We could compare the sample means directly, those of 71.00 versus 72.50 versus 80.00 versus 92.67,
and since they are not identical, conclude that mean differences in the population exist. But as men-
tioned, this would be a grossly incorrect way of proceeding. Since these are only sample means, any
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relatively small differences between means can most likely be explained by sampling error or chance.
That is, we must ask the question:

Do sample mean differences of the kind 71.00 versus 72.50 versus 80.00 versus 92.67 actually reflect a
mean difference in the population? Or, are these sample differences small enough to be simply attrib-
utable to differences generated by the simple process of sampling (i.e., “sampling error” or
“chance”)?

To begin to address the above question, we must ask ourselves a related question:

If we sampled repeatedly an infinite number of times from this population, what is the probability of
observing differences of the kind 71.00 versus 72.50 versus 80.00 versus 92.67 if the null hypothesisH0

were actually true? That is, ifH0 : μ1 = μ2 = μ3 = μ4 really does represent reality, what is the probability
of obtaining mean differences of the magnitude that we have in our current sample?

If mean differences of the magnitude that we are observing happen frequently in repeated sampling
under the null model of equal population means (i.e.,H0 : μ1 = μ2 = μ3 = μ4), then it is probably safe to at
least tentatively conclude that the observed mean difference is most easily explained by sampling error
or chance. In other words, since these kinds of differences happen so often in repeated sampling even
when the null is true, we would have no reason to start believing the null is false and to start inferring
the alternative hypothesis.

However, if mean differences of the kind we are observing in our sample turn out to be unlikely
under the null hypothesis, then we might start thinking the null hypothesis does not represent reality
after all. At that point, if the probability of the observed data under the null hypothesis is low enough,
then we have reason to reject the null hypothesis andmake an inference toward the statistical alternative
hypothesis, that at least somewhere among means, there are mean differences in the population. This is
the essence of how hypothesis-testing works in ANOVA.

3.2.1 Is the Observed Difference Likely? ANOVA as a Comparison (Ratio) of Variances

The next question becomes one of asking how to determine whether the observed mean difference is
likely or unlikely under the null hypothesis. To help better appreciate this question, imagine if the data
turned out to be as in Table 3.2 instead of how they actually are in Table 3.1.

Notice that under this idealized (and quite unrealistic) situation, every observation within its respec-
tive group is equal to the sample mean for that group. Notice that between groups, we still have the
same mean differences. However, within groups, there is no variation. We ask the question we posed
earlier—What is the probability of obtaining mean differences of the kind 71.00 versus 72.50 ver-
sus 80.00 versus 92.67 if the null hypothesis were true?

It seems intuitive that the probability of obtaining the mean differences we observed is much lower
for the data in Table 3.2 (condition of no within-group variability) than it is for the data in Table 3.1
(condition of within-group variability) if the null hypothesis were actually true. In other words, in
Table 3.2, all of the variation occurring is attributable to between-group differences. In Table 3.1, all of
the variation occurring is attributable to not only between-group differences but also within-group dif-
ferences. What we need now is a way to compare these sources of variation in some systematic and
statistically correct fashion.

Suppose we could obtain a measure of just how much variance in a data set is attributable to
between-group differences and how much is attributable to within-group differences. If most of
the variance were attributable to within-group differences, then it would suggest that any between-
group differences we are observing could probably be best explained by random variation in the
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data, that is, of the same kind that is happening within groups. However, if most of the variance is
attributable to between-group differences, then it would suggest that any between-group differences
we are observing is not easily explained by within-group variation. That is, the between-group differ-
ences we are observing might actually represent a real difference of population means in the popu-
lation that generated the sample data, and not simply sampling error or chance, the very type of
variation we are witnessing within groups.

Our goal then is to make the following comparison in the form of a ratio:

σ2Between
σ2Within

where σ2Between represents “variance between groups” and σ2Within represents “variance within
groups.” If σ2Between > σ2Within to such an extent that we can exclude sampling error as being “respon-
sible” for this inequality, then we will reject the null hypothesis H0 : μ1 = μ2 = μ3 = μ4 in favor of the
statistical alternative hypothesis, H1. If, on the other hand, σ

2
Between is more or less equal to σ2Within,

then it would suggest that any observed mean differences in our sample are most easily explained by
chance or sampling error. In other words, we have no evidence to conclude or argue that H0 is actu-
ally false. This ratio that compares σ2Between to σ

2
Within is called the F-ratio (or F statistic), named in

honor of R.A. Fisher, and constitutes the overall omnibus test of significance in the analysis of
variance model.

3.3 LOGIC AND THEORY OF ANOVA: A DEEPER LOOK

Having presented a brief overview of how ANOVA works, we now develop the theory at a
slightly deeper level, essentially “unpacking” and elaborating on the brief discussion aforemen-
tioned. We begin first by drawing on previous exposure to the independent-samples t-test. In this
respect, we present ANOVA as an extension of the independent-samples t-test where we are inter-
ested now in testing null hypotheses on more than two independent samples (i.e., H0 : μ1 = μ2). We
wish to generalize the null hypothesis to reflect a test of J population means, H0 : μ1 = μ2 = μ3 = μJ.
After presenting the parallels between independent-samples t-tests and ANOVA, we go into a
more thorough discussion of how the ANOVA model itself is built and conceptualized, starting
with the idea of modeling a randomly chosen observation in observed data, right up to the der-
ivation of the sums of squares. We then take expectations of mean squares (i.e., expected values of
sums of squares divided by their respective degrees of freedom) which lead us to generating the
F ratio.

TABLE 3.2 Hypothetical Achievement Data

Teacher

1 2 3 4

71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67

M= 71.00 M = 72.50 M = 80.00 M= 92.67

Between-group variation but no within-group variation.
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3.3.1 Independent-Samples t-Tests Versus Analysis of Variance

Most statistical methods are usually based on the same fundamental principles learned in a first course
on statistics. The advanced methods simply constitute different and many times more complex ways
of arranging these fundamental tools. If you truly understand the logic of how an independent-samples
t-test works (see Chapter 2), then understanding the nuts and bolts of ANOVAwill not be that difficult.

Recall that we have said we would like to test a null hypothesis of the kind:

H0 μ1 = μ2 = μ3 = μJ

To help us appreciate just how we will go about testing the null hypothesis for ANOVA, let us briefly
review the form of the independent samples t-test, searching for some insight or ideas on howwemight
tackle our ANOVA problem. Recall the independent samples t of Chapter 2 (2.7):

t =
E y1 −E y2

s21
n1

+
s22
n2

=
μ1 − μ2

s21
n1

+
s22
n2

where E y1 and E y2 , the expectations of y1 and y2, are equal to μ1 and μ2, s21 and s22 are unbiased
estimators of their population counterparts σ21 and σ

2
2, and n1 and n2 are the sample sizes in each group.

Recall that (2.7) essentially has two parts to it. In the numerator is expressed a difference in means of
the kind μ1 − μ2. In the denominator is a sum of sample variances, each weighted by the sample size n
on which it was computed:

s21
n1

+
s22
n2

(3.1)

Collectively, (3.1) formed an estimate of the standard error of the difference in means. That is,
the denominator of the t-test gave us an idea of how much variance in sample mean differences y1 − y2
we could expect to see if we sampled infinitely from the given population under consideration. The job
of (2.7) was to compare an observed mean difference to the variability we might expect to see if we
were able to sample mean differences an infinite number of times from the population. When n1 n2,
we used a pooled estimator of the population variance,

s2pooled =
n1 − 1 s21 + n2 − 1 s22

n1 + n2 − 2

making the independent-samples t-test equal to

t =
E y1 −E y2

n1 − 1 s21 + n2 − 1 s22
n1 + n2 − 2

n1 + n2
n1n2

In the analysis of variance, we will arrive at a ratio quite similar to that of the independent-samples
t-test, one which effectively compares a numerator term expressing mean difference to a denominator
term that effectively represents an estimate of population variability. If mean differences in the
numerator are large relative to expected overall variability in the denominator, then it will suggest
that the mean difference in the sample may not be due simply to chance or sampling error alone. In
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other words, it will be grounds for establishing statistical significance and rejecting the null
hypothesis.

The question for us right now is how to conceptualize ANOVA so that we can actually run a similar
test as we did for the independent-samples t-test but with more than two means. How do we conceive of
our numerator and denominator for our test? For this, we need to focus our attention on how the analysis
of variance model is conceptualized through a model equation. That is, we need to consider how the
ANOVA model arises. We start at the beginning with fundamental ideas concerning what constitutes
a statistical model. These ideas will not only be useful for understanding the current model we are dealing
with but will also be helpful in understanding other statistical models presented in this book and else-
where. Taking the time to learn and understand the material to follow will pay dividends when extending
your knowledge base to more complex models such as repeated-measures, random effects, andmul-
tilevel or hierarchical modeling. It is well worth your time to understand the ANOVAmodel very well.

3.3.2 The ANOVA Model: Explaining Variation

Recall the concept of amodel introduced in Chapter 1. The idea of a model is to think up an equation
that best accounts for how observed data were generated.1 For our achievement example, we ask ques-
tions of the kind—Why was the score for a randomly drawn observation in our data equal to yi?
Why was another observation equal to yi + 1 (i.e., a different yi in our data?). To “explain” these obser-
vations, we need to come up with a theory as to why they are what they are. This is the essence of most
traditional statistical model-building, to come up with a mathematical equation that best accounts
for observed data, and to use that equation for making inferences toward the population. The
search is for an equation to account for observed data. In psychology, theoreticians seek out narratives
to explain human behavior. In medicine, researchers theorize causes to cancer. In finance, investors
theorize predictors of stock growth. In statistics, these narratives go by the name of statistical models.

For instance, Sigmund Freud (1856–1939) used a model for the id, ego, and superego to help
explain human behavior, to explain the data he observed. His predictions based on his theory were
not always correct. Even with what Freudians would argue was a solid theory to draw upon, he could
still not explain all behavior (some would even argue, very little of it), and had to admit that sometimes,
his theory failed, it was in error. As another example, recall that B.F. Skinner was able to predict
behavior in the pigeon, he had a theory as to why the pigeon responded as it did. It predicted a lot
of observations successfully, but others it did not predict so well. Sometimes, his theory failed too
in its predictions of behavior.

In ANOVA, just as in virtually all statistical modeling, we will put forth a theory that attempts to
explain observed data, and likewise, sometimes the theory will predict accurately, but other times, it
will not. The times it does not predict accurately we will denote as errors of prediction. How the
technique of analysis of variance partitions variability into predictable versus unpredictable compo-
nents is the topic of this chapter. Indeed, most statistical models do something strikingly similar, that of
attempting to separate the “signal” from the “noise.”

Referring again to our data in Table 3.1, we notice that there exists variability in the sample achieve-
ment data, that is, s2 > 0. We will define the grand mean of all the data as equal to

y =
n

i = 1

yi
N

1Kirk (1995) calls the model equation an experimental design model equation (p. 32). Though the current text is not about
experimental design per se, the fields of applied statistics and experimental design are necessarily intimately (and historically)
linked. One cannot make intelligent selections of statistical analyses without a keen awareness of experimental design issues.
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or, since these data are balanced (i.e., equal numbers per group), we can calculate the grand mean as
the “mean of means,” where J designates the number of groups:

y =
J

j = 1

y j

J

The grand mean for this data is equal to

J

j = 1

y j

J
=

71 00 + 72 50 + 80 00 + 92 67
4

= 79 04

Given that we have at least some variability in the data, we can express each observation yij as being
somewhat “off” from the grandmean, and calculate a deviation score for each observation. If we let any
given observation i in a given group j be represented by yij, and the mean of all observations to equal y ,
then we can express the deviation for any given score as yij − y . For instance, we observe the following
deviations for the first few data points in each teacher group (70, 69, 85, 95):

yij − y = y11 − y = 70 00− 79 04 = − 9 04

yij − y = y12 − y = 69 00− 79 04 = − 10 04

yij − y = y13 − y = 85 00− 79 04 = 5 96

yij − y = y14 − y = 95 00− 79 04 = 15 96

To give more examples of what we are doing, consider the deviations for the last observations in each
age group (73, 75, 73, 91):

yij − y = y61 − y = 73 00− 79 04 = − 6 04

yij − y = y62 − y = 75 00− 79 04 = − 4 04

yij − y = y63 − y = 73 00− 79 04 = − 6 04

yij − y = y64 − y = 91 00− 79 04 = 11 96

We could continue to do this for the entire data set. The important point to note (so far) is that each
observed score in the data set can be expressed as a deviation from the grand mean.

3.3.3 Breaking Down a Deviation

Now that we have reasoned that we can represent any single score as a deviation from the mean (even if
the score is equal to the mean, the deviation is then equal to 0), our next point of interest is to break
down the deviation further. That is, we are interested in the following important question:

Why does any given score in our data deviate from the overall mean?

We need to think about the possible reasons why a given deviation, of the kind yij − y , might
exist in a set of data. This is an equivalent question to asking why a given score in our data is what it
actually is, only now, we are asking this question in terms of the given score’s deviation from the
overall mean.
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Consider again the first observation, that of yij = y11 = 70.00. What “explanations” or “reasons” can
you come up with for why this observation is not equal to the overall mean of 79.04? One reason you
might come up with is that quite simply, even if the grand mean is equal to 79.04, it does not imply that
all scores are going to be equal to the mean, and for no particular good reason. That is, you might
theorize that 70.00 is different from the overall mean of 79.04 as a simple artifact of the data, out of pure
and simple variability, nothing more. However, is this explanation enough to account for the given
observation? Maybe not. For one, we have a grouping factor in our data, which is the teacher assigned
to that particular individual. We must reason that it is possible that a given data point differs from the
overall mean not only because of an artifact of the data (or chance, random variability), but because it is
in a particular group (i.e., teacher) and not another group. When we hypothesize that scores are the
way they are because they are in one group and not another, we reflect this by the deviation:

y j − y

which represents “between group” variability. That is, if the data point 70.00 differs from the overall
mean because it received the 1st teacher rather than the other three teachers, then it would seem of interest
to calculate the sample mean for this group and subtract the overall mean to reflect this deviation. If there
is an “effect” of being assigned the 1st, 2nd, 3rd, or 4th teacher, then this should be reflected in the deviation
y j − y . We can express the deviation yij − y as being “made up” or “composed” of two parts. In fact, we
can say further that the deviation yij − y is equal to the sum of two parts, a part representing variability

within a given group, yij − y j , and a part representing variability between groups, y j − y . The entire
sum is thus:

yij − y = yij − y j + y j − y (3.2)

Equation (3.2) is a fundamental identity in the analysis of variance. It expresses the make-up or
composition of any randomly chosen observation in a one-way layout as a sum of two parts. The over-
riding goal of the analysis of variance is to learn whether the deviations in a set of data are better
explained or accounted for by within-group deviations of the kind yij − y j , or between-group
deviations of the kind y j − y . You may be able to foresee where this discussion is headed. If it turns

out that deviations of the kind yij − y are better explained by between-group deviations than they are
by within-group deviations, it would suggest that our samples may have been drawn from distinct and
unique populations. Experimentally, this would make good sense, since this is presumably why we did
the study in the first place, to seek out mean differences between such treatment groups. In other words,
if we found, overall, that deviations of the kind y j − y were large relative to deviations of the kind
yij − y j, then it might suggest our treatment was effective. We will return to this point later after we
have more fully developed the logic behind ANOVA. Before we do anything more, we need to give
names to each of the deviations in our fundamental identity of (3.2).

3.3.4 Naming the Deviations

Let us consider the first deviation of (3.2), that of yij − y j to the immediate right of the equal sign.
Why might such a deviation arise? That is, why would your data exhibit a deviation of the form,
yij − y j ? They are all in the same group, are they not? Therefore, it cannot be due to a “grouping”
effect of any kind. After all, they were all collected and treated the same way. The best we can do
to explain this deviation is to call it “error,” or to say that the score yij deviates from y j due simply
to “chance,” or to “random factors” that we cannot immediately account for or explain. In brief, we
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do not know why one score deviates from another within a given group. Hence, we will call the
term yij − y j by the name of error and denote it as eij, which represents the error for any given indi-

vidual i in a given group j. Substituting eij for yij − y j we rewrite the identity in (3.2) as:

yij − y = eij + y j − y

Now, we ask the following question—Why would the second deviation, that of the form, y j − y ,
exist? That is, why would one group’s mean differ from the overall mean of all the observations?
A sensible explanation is that there is some kind of “effect” of being in that particular group versus
being in another group, and that is why a given group mean is different from the overall mean. We
will name this deviation by “aj” and let it represent the sample effect or treatment effect of being
in a particular group. Hence, when we further substitute aj for y j − y , we can write our equation

for the deviation yij − y in (3.2) as,

yij − y = eij + a j

or, more commonly, we will reorder aj before the error effect:

yij − y = a j + eij (3.3)

In summary then, what we have done thus far is to reason that a given deviation of the kind
yij − y can be composed of two “things.” Either it is due to an effect of being in one sample versus
another, which we call by the name of sample effect, aj, or, it is due simply to “error” which we
designate as eij.

The analysis of variance partitions variability in this way such that we can eventually test (through
an F ratio) the assumption that deviations are due to “error” alone, or equivalently, that the sample
effects we have observed in our sample are not large enough to begin to doubt that the population
effects (which we will denote by αj, the population counterparts to aj) are actually equal to zero.

3.3.5 The Sums of Squares of ANOVA

We have concluded that any deviation from the grand mean can be said to be represented by, or “com-
posed of” yij − y = a j + eij. However, when summing any deviations about a mean, we know that the

sum of the deviations will equal zero. That is, if we did take the sum of deviations yij − y , we know

that yij − y = 0 would be true for any data set we deal with, real or hypothetical. Though calcu-
lating the sum of absolute deviations of the form yij − y is a possibility for avoiding the sum of
zero, the solution historically adopted for this problem has been to square the deviations, then sum
them up. We will apply the same principle of squaring deviations to our model equation
yij − y = a j + eij
We omit here the actual derivation of the sums of squares. For details, see Hays (1994) or Kirk

(1995). After deriving the sums of squares, we arrive at the following identity:

J

j = 1

n

i

yij − y
2
=

J

j

n j y j − y
2
+

J

j = 1

n

i

yij − y j
2

(3.4)

Equation (3.4) is referred to as the partition of the sums of squares for a one-way fixed effects
between-subjects analysis of variance. Notice that it is made up of three parts, which we detail now:
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SS total:
J

j = 1

n

i
yij − y

2
—This is the total sum of squares for the entire data set. It is the sum of

squared deviations of every individual value in a sample of data from the grand mean of all observa-
tions. This term is also equal to calculating NS2 (see Hays, 1994, for details).

SS between:
J

j
n j y j − y

2
—This is the sum of squares representing variation due to a potential

treatment effect. Notice that in our derivation, we picked up the “multiplier” nj. This is simply equal to
the number of observations per group, which for balanced designs, we assume to be equal.

SS within:
J

j = 1

n

i
yij − y j

2
—This is the sum of squares representing error or within-group var-

iation. It is the sum of squared deviations for all observations in each group from its respective group
mean. It is a measure of error because if all observations are in the same group (i.e., they were all treated
the same way), we would expect scores to be more or less the same, and would attribute any differences
to chance or unexplainable variability (which we call error).

3.4 FROM SUMS OF SQUARES TO UNBIASED VARIANCE ESTIMATORS:
DIVIDING BY DEGREES OF FREEDOM

Recall how we calculated a variance—we produced a sum of squares, and then divided this sum of
squares by an appropriate denominator:

S2 =

n

i
yi − y

2

N
or s2 =

n

i
yi − y

2

N − 1
(3.5)

The denominator for the uncorrected variance was simply N, and for the corrected variance, N − 1. The
reason for dividing by N − 1 was to obtain an unbiased estimator of the population variance σ2. When
we divide by either denominator, we are in essence producing a “mean” of the squares, only that in one
case, we are basing the mean onN pieces of information, and in the other case, basing it onN − 1 pieces
of information. However, the concept of generating an “average” is the same in both contexts.

The important element then is the selection of appropriate denominators for our various sums of
squares. We do the exact same thing in ANOVA, only that now, instead of having only one sum
of squares to be concerned about, we have three, SS total, SS between, and SS within. The question
boils down to deciding what degrees of freedom are appropriate for each sum of squares in generating
suitable variances.

We saw that SS between is calculated as
J

j
n j y j − y

2
. Notice that we are subtracting the grand

mean from group means. The degrees of freedom for SS between are equal to one less than the number
of groups we have. This is because in our calculation of the sums of squares, y is implicitly serving as
an estimate of μ. What this means is that this value can be considered fixed, and implies that one of the
group means is not free to vary (recall the “Beautiful Triangle” of Chapter 2). Hence, we lose one
degree of freedom. For instance, for three treatment groups, the degrees of freedom are equal to J
− 1, which, in this case, is 3 − 1 = 2.

Recall that SS within is calculated as
J

j = 1

n

i
yij − y j

2
. Notice that we are subtracting the group

mean from individual scores within the given group. In this case, we are fixing the given group mean,
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since the group mean y j is implicitly being used as an estimate of μj, so we lose one degree of freedom
per group. For example, for three treatment groups of n = 10 observations per group, the degrees of
freedom for SS within are (10 − 1) + (10 − 1) + (10 − 1) = 9 + 9 + 9 = 27. Alternatively, we could have
also computed these degrees of freedom as N − J, that is, the total number of observations minus the
number of groups. Losing one degree of freedom per group or computing N − J on the entire sample
amounts to the same thing for a balanced design.

Finally, although we will not be deriving any mean square estimates using SS total, it is nonetheless
useful to know that the degrees of freedom for SS total are equal to one less than the total number of
observations in the entire data. For instance, if there are N = 30 observations, then since each deviation
for SS total consists of subtracting the grand mean (and hence, we are constrained by it), we will lose 1
degree of freedom, giving us 30 − 1, or more generally, N − 1 degrees of freedom for SS total. Notice
that this is simply the “ordinary” corrected variance we started out with.

In dividing by appropriate degrees of freedom, we transform our sums of squares into mean squares,
one for between-group variance,

MS Between =

J

j
n j y j − y

2

J − 1

and one for within-group variance,

MSWithin =

J

j = 1

n

i
yij − y j

2

N − J

Note that while the sums of squares are additive in that SS total = SS between + SS within, the mean
squares are generally not. Because we are dividing by degrees of freedom, mean squares vary
depending on the given experiment and on such things as the operationalization of levels of the
independent variable. The “breakdown” is simply not the same as for the sums of squares. This is
why you will not typically find MS total figures in an ANOVA table.

Having developed the necessary mean squares for computing variances, our next task is to learn
what these mean squares actually estimate in the population. That is, we need to take expectations
of these mean squares.

3.5 EXPECTED MEAN SQUARES FOR ONE-WAY FIXED EFFECTS MODEL:
DERIVING THE F-RATIO

As a recap, we have seen how a given deviation from the grand mean of the form yij − y can be said to
be made up of two parts. The first part reflects deviations between sample means and the grand mean,
y j − y . The second part reflects deviations between single observations in each group from their respec-
tive group means, yij − y j . We also saw how to produce sums of squares to account for the various
sources of variation, and how to divide by appropriate degrees of freedom to obtain unbiased estimators
of variance, the so-called “mean squares.” We obtained a mean squares between (MS between) and a
mean squares within (MS within).

What are the expectations of these mean squares? Recall that when we derived the sample var-
iance, we were interested in its expectation. We found that the expectation of the corrected version of
the sample variance was equal to the population variance σ2. That is, E(s2) = σ2. We were interested in
the expected value because we wanted to know that over an infinite number of potential samples, and
by the algebra and rules of expectations, the value of the sample variance would equal that of the
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population variance. That is, we wanted some comfort and assurance in knowing that s2 was actually
estimating the correct quantity, that of σ2. If a statistic we have computed is not estimating the pop-
ulation parameter we are actually interested in knowing about, it usually does us little good (though
biased estimators at times are useful, such as in ridge regression). We are just as curious about the
values of MS between and MS within. We would like to know their expectations. The reason why
we need to know what quantities they are estimating is so we know how to generate appropriate
and relevant F-ratios.2

Expectations for MS between and MS within can be found in Hays (1994) or Kirk (1995). For our
purposes, we cut to the chase without derivation. Based on the exercise of taking expected mean
squares, it can be shown that for between and within, respectively, they are equal to:

E MSBetween =
j

n jα2j

J − 1
+ σ2e and E MSWithin = σ2e

When we take a ratio of MS between to MS within, we find that under the circumstance where there
is a complete absence of sample effects, the ratio should equal approximately

σ2e
σ2e

≈ 1 0

When sample effects are present, we expect the ratio to be greater than 1.0.
We summarize this partition of the sums of squares in what is known as the Analysis of Variance

Summary Table, given in Table 3.3.

TABLE 3.3 Summary Table for One-Way Fixed Effects Analysis of Variance

Source Sum of Squares df Mean Squares F-Ratio p-Value

Between J

j
n j y j − y

2 J − 1 J

j
n j y j − y

2

J − 1

J

j = 1
n j y j − y

2
J − 1

J

j = 1

n

i
yij − y j

2
N − J

Evaluate
obtained
ratio as F-
stat on J − 1
and N − J
degrees of
freedom

Within J

j = 1

n

i
yij − y j

2 N − J J

j = 1

n

i
yij − y j

2

N − J

— —

Total J

j = 1

n

i = 1
yij − y

2 N − 1

s2 =

J

j = 1

n

i = 1
yij − y

2

N − 1

— —

N − 1 s2 =
J

j = 1

n

i = 1
yij − y

2

2 Though we are computing the F statistic as a ratio of σ2Between/σ
2
Within, the actual F density distribution (i.e., the actual F statistic

that we compare the F-ratio to) is given by

F =
χ21 v1
χ22 v2

where χ21 and χ
2
2 are independently distributed chi-square variables on v1 and v2 degrees of freedom. For details, see Hays (1994)

or Kirk (1995).

111EXPECTED MEAN SQUARES FOR ONE-WAY FIXED EFFECTS MODEL



3.6 THE NULL HYPOTHESIS IN ANOVA

Havingconceptualized theANOVAmodelandcomputedexpectedmeansquares, thenext task is togeton
with testing null hypotheses. There are two commonwayswe can state the null hypothesis in the one-way
fixed effects ANOVA. The test of both hypotheses will suggest the same decision onH0. If MS between
is equal to MS within, then this suggests they are each estimating the same variance. That is, each
term is measuring error variance, σ2e. Recall that the expected mean square for MS between is equal to

E MS between = σ2e +
j
n jα2j

J − 1

If there are no sample effects present in a given analysis, then it suggests that all corresponding
population effects αj of the form αj = μj − μ. are equal. If they are all equal, then the sum of n jα2j must
be 0, giving us the following for the expected mean squares for between:

E MS between = σ2e +
j
n j 0

2
j

J − 1
= σ2e + 0

= σ2e

Notice that under the condition that all effects αj are equal to 0, the mean squares between is estimating
the same as the mean squares within, that of simply unexplainable or unaccounted for deviation of
scores within their respective groups, that is, σ2e. When both MS between and MS within are estimating
the same quantity, the expectation for F is approximately 1.0.3 Recall that while it is true that the
expectation for F is equal to approximately 1.0, we will rarely if ever obtain this in practice in our
sample even if the null hypothesis were true. Sampling error always makes its way into things,
so we will usually deviate slightly from expectation even under a true null hypothesis. The question
is always whether our deviation from expectation is enough to cause us to reject the null
hypothesis of equal population means.

Hence, one way of positing the null hypothesis for the one-way ANOVA is that all population
effects are equal to 0. More formally, we could state the null as

H0 α j = 0, for all populations j

If at least one of the group means does differ from the grand mean, then we have a sample effect for the
given group. We are interested in knowing whether the sample effect is large enough to suggest an
effect unequal to zero in the population. The alternative hypothesis, H1, can be stated as

H1 α j 0, for at least some populations j

If there are no population effects in a one-way ANOVA, then this implies that all population means are
equal. Because of this, we can also state the null hypothesis as:

H0 μ j = μ for all populations j (3.6)

The null hypothesis in (3.6) reads that all population means are equal to the grand mean of all the
populations. If this is true, then it implies that there cannot be any differences in means between

3The expectation of F turns out to not equal 1.0 exactly. Under the null hypothesis of equal population means, as noted in Howell

(2002, p. 331), E F =
df error

df error − 2
.
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populations. The alternative hypothesis would be that for at least one population, its mean does not
equal the grand mean of all the populations. That is,

H1 μ j μ for at least some j populations

We see then that whether we state the null in terms of population effects or population means, it
amounts to the same null hypothesis under test. Usually, however, the null hypothesis is expressed
as simply the equality of population means. The hypothesis H0 : μj = μ. for all populations j, however,
gives us an actual idea of how this former hypothesis is being evaluated.

Remember always that the null and alternative hypotheses are about parameters, and not sample
statistics, which is why we are using the notation αj and μ. or μj to represent respective population
effects and population means. Recall also that in our sample, we fully expect inequality to some degree,
for instance, y1 y2 y3. That our sample means are not exactly equal to one another is hardly a
shocking result or momentous finding. What we are really interested in, is in knowing whether such
deviations are large enough relative to what we would expect simply to due sampling error. Generally,
in research, we are usually not all that interested in sample statistics. We are most interested in para-
meters. Statistics usually simply serve as a means of estimating these parameters.

3.7 FIXED EFFECTS ANOVA: MODEL ASSUMPTIONS

Any mathematical model, whether statistical or otherwise, comes with it a set of assumptions on which
the model is based. If these assumptions are not satisfied, especially to a substantial degree, it could cast
into doubt the very correctness and utility of the model you are fitting to your data. It should be noted as
well at the outset that when one does not engage in the process of estimating parameters, that is, of
statistical inference, the analysis of variance itself is, as Fisher put it, simply a way of “arranging
the arithmetic.” One does not require assumptions for arranging this arithmetic. Eisenhart described
this very idea quite eloquently as well:

… when the formulas and procedures of analysis of variance are used merely to summarize properties of
the data in hand, no assumptions are needed to validate them. On the other hand, when analysis of var-
iance is used as a method of statistical inference, for inferring properties of the “population” from which
the data in hand were drawn, then certain assumptions, about the “population” and the sampling proce-
dure by means of which the data were obtained, must be fulfilled if the inferences are to be valid.

(Eisenhart, 1947, p. 8)

Hence, when we use the arithmetic of ANOVA to make inferences, we require assumptions. The
assumptions for the one-way fixed effects ANOVA can be summarized into the following:

• E(εij) = 0, the expectation of the error term is equal to 0. We use εij here in place of eij to denote the
population parameter.

• εij are NI 0, σ2e , the errors are normally distributed (N) and independent (I) of one another having
a mean equal to 0 and variance equal to σ2e. In general, if one can assume that the errors within each
population are normally distributed, then this implies that the observations on the dependent var-
iable in each of the populations are also normally distributed (Kirk, 1995). Normality can be tested
using graphical methods such as histograms, residual plots, and Q–Q plots, whereas independ-
ence of error, a much more difficult assumption to verify, can be investigated at least somewhat
via residual plots, but is usually ensured by the method of data collection and random assignment
for the given experiment.
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• σ2eij < ∞ , the variance of the errors is some finite number (which simply implies that it is less than

infinity).

• Cov(εij, εi j ) = 0, the covariance between errors is equal to 0. If errors are indeed independent,
then this assumption is already implied. Independence and an absence of covariance are not equiv-
alent properties, however. As we will see when we study block designs, these assumptions will
typically be violated.

• σ2j = 1 = σ2j = 2 = σ2j = J , the variances across populations as operationalized by the independent
variable are equal (often called the homogeneity assumption). This can be tested using a variance
ratio test in R where the largest variance is compared to the smallest. Levene’s test or Bartlett’s
test is also useful in verifying this assumption.

• Measurements on the dependent variable are observed values of a random variable that are dis-
tributed about true mean values that are fixed constants. This assumption (adapted from Eisenhart,
1947, p. 9) is equivalent to the assumption that the levels of the independent variable used for the
given experiment constitute the only levels the researcher wishes to generalize to in the popula-
tion. This is precisely what defines the fixed effects model as fixed. Recall that if this is not the
case, and the experimenter wishes to generalize these levels to a population of levels of which the
levels appearing in the experiment are but a random sample, then the correct model is not that of a
fixed effects model, but rather that of a random effects model.

When we perform an analysis of variance in R and SPSS toward the end of this chapter, we will
briefly demonstrate how one can go about verifying some of these assumptions using inferential tests
and graphical displays. Light to moderate departures from these assumptions is usually not a major
concern (other than that for independence of errors, which is a serious concern if violated) since
ANOVA is quite robust against violations (generally implying the type I error rate and power will
remain relatively stable even in the face of violations). However, there are remedies for violations
if they get to be severe. For instance, one can perform power transformations to help establish a sense
of normality in the dependent variable. These often take the form of square root or logarithmic trans-
formations or others. We do not cover transformations in any detail here, because usually, they are
not required except for rather extreme violations. In the event that you do wish to transform to near
normality, you are encouraged to consult any of the excellent resources on this topic. Fox (1997) is
especially good. The function boxcox (named for Box-Cox transformations) in the MASS package
(Venables and Ripley, 2002) in R offers some options in helping one decide on the most optimal trans-
formation for a set of data.

If you suspect a violation of the assumption of equal variances, so-called heterogeneity of vari-
ance, options such as the Brown–Forsythe test (see Kirk, 1995) or the Welch procedure (1951)
can be used for adjusting the obtained F from ANOVA so it better incorporates a possible violation.
These tests will typically be more conservative than the omnibus ANOVA test. Since ANOVA is quite
robust to violations of this assumption, we do not cover these tests to any extent in this book (though we
do demonstrate the Welch test in SPSS in our ANOVA example). Howell (2002) does an excellent job
at summarizing their contributions and is highly recommended. In cases where either sample sizes are
very small or even the prospect of satisfying assumptions in ANOVA seems impossible, a nonpara-
metric test may be a better choice. Nonparametric tests make fewer assumptions about the population
from which the sample data were drawn. The counterpart to the one-way fixed effects analysis of var-
iance is the Kruskal–Wallis one-way analysis of variance test and is available in most statistical
software packages. For details, see Rice (1995, p. 453).

Another assumption that is more or less implicit in the ANOVA model is that the model equation

yij = μ + α j + εij
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of which the sample equivalent is given by

yij = y + a j + eij

contains all the relevant sources of variation for the given experiment. That is, we assume the model is
correctly specified. Of course, no model is ever completely perfectly specified, but the point of this
assumption is to say that there are no obvious sources of variation that were omitted from the model.
For example, since it is generally known that there are gender differences in depression rates (e.g., see
Salk, Hyde, and Abramson, 2017), if one did not include gender in a model of predicting mean differ-
ences on depression, one could easily argue that the model is misspecified. Detecting specification
errors is sometimes a skill more honed by experience in a given research area than anything else,
in that experienced researchers are often well-familiar with the “big player” predictors in their respec-
tive fields. If those predictors are for some reason left out of an analysis, such folks will surely be the
first to call you out on a specification error. We revisit this topic when we discuss the regression model
in Chapter 7.

3.8 A WORD ON EXPERIMENTAL DESIGN AND RANDOMIZATION

Up to now, we have not commented much on the actual process of experimentation or the randomi-
zation of subjects to treatment groups. The process of randomization is that of administering subjects
randomly to levels of the treatment factor, with the goal of eliminating as much as possible any source
of bias that could potentially confound findings. For instance, in our melatonin example discussed at
the start of the chapter, randomly assigning subjects to dosage levels (control, 1 mg, 3 mg) is our best
assurance (though by no means guarantee) that the infinite number of “nuisance factors” are evenly
dispersed among our treatment groups.

Nuisance factors are all those things that could theoretically be acting on the dependent variable but
that we have not accounted for or measured in our experiment or study. For example, again referring to
the melatonin study, surely some people are more predisposed to falling asleep with ease compared to
other people. If we do not account for this in our design (e.g., through blocking or analysis of covar-
iance, for example), then we are relegated to hoping that randomization “balances things out” and that
there will not be any systematic bias built up in any group on the said nuisance factor.

Randomization is the ideal “gold standard” for experimental design. In many studies, however, it is
either impossible or unethical to randomly assign participants to treatment conditions. For instance, if
we wanted to learn whether mammography screening reduces the risk of death from breast cancer, it
would be somewhat unethical to randomly assign some participants to mammography screening while
others to a control group, especially if we have prior knowledge that screening is effective. Likewise, it
would be unethical to randomly assign some participants to a “smoking group” and others to a “non-
smoking” group to observe the effects of cigarette consumption over time. The experimenter simply
cannot have such a level of control over his or her subjects. In many cases, we have to take subjects as
they come. The best we can do often is record whether a subject has or has not received mammography
screening and associate that with their later cancer risk or survival. Likewise, we often have to take
smokers as they come, and compare them to nonsmokers. But this means we are no longer randomly
assigning participants to treatments. Designs such as this where we are unable, for whatever reason,
ethical or otherwise, to randomly assign participants to treatment conditions are generally known as
quasi-experimental designs (e.g., see Eliopoulos et al., 2005). If there is absolutely no control
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imposed at any level, these designs can sometimes be considered similar to correlational designs
(Campbell and Stanley, 1963).

As a guideline, whenever you do an experiment or study, it is usually best to try for randomization at
least at some level. If such is not attainable, then resorting to a quasi-experimental design might be
considered as a second option. A randomized design should usually be your first attempt or choice,
however.

3.9 A PREVIEW OF THE CONCEPT OF NESTING

The curious reader may have noticed an important element in our discussion of mammography screen-
ing (and that of smoking behavior) just mentioned. Women who receive mammographies may be more
likely to be alike than women who do not receive them. That is, they may share characteristics (other
than mammography screening) that women who do not receive mammographies do not share. Perhaps
those who receive mammographies are more concerned with their health than those who do not. Per-
haps they are more educated, have better health insurance, or share numerous other similarities. This
idea, which we briefly introduced in the previous chapter in the context of the matched-samples design,
generally goes by the name of nesting.

In many designs, observations are naturally nested within a given group. A classic example is that of
school children nested within classrooms, and classrooms nested within schools. That is, children shar-
ing the same classroom (and thus, the same teacher) may be similar in ways compared to children in
another classroom (and thus, with another teacher). Likewise, classrooms in the same school may be
more similar than classrooms in different schools. We only briefly mention the topic here as a preview
to our further discussion of it when we consider random effects and randomized block designs in chap-
ters to follow. The concept of nesting in this manner forms the basis for such modeling as hierarchical
modeling and multilevel modeling, topics that are well beyond the scope of the current text, but have
gained popularity in the social and behavioral sciences in the last 30 years or so. We will recap and
extend this discussion of nesting when we consider randomized block and repeated-measures models
in Chapter 5.

3.10 BALANCED VERSUS UNBALANCED DATA IN ANOVA MODELS

In all of our discussion of ANOVA thus far, we have assumed that group sizes have an equal number of
subjects. These data layouts are referred to as balanced. Layouts in which groups do not have the same
number of measured objects per group (or cell, in the case of factorial ANOVA, the topic of the fol-
lowing chapter) are referred to as unbalanced. Balanced data are generally preferred to unbalanced
data for the reason that effects in a balanced design are orthogonal, which typically implies that asso-
ciated tests are independent of one another. That is, when data are unbalanced, the possibility arises that
main effects and interactions will no longer be independent of one another, which also translates to the
fact that sums of squares may not be additive. As Tabachnick and Fidell (2007) note, the problem of
unequal sample sizes is more relevant if the groups with small sample size also exhibit relatively high
variance. This could potentially lead to an inflated type I error rate. Orthogonality of factors also helps
to ensure that comparisons of one factor at levels of the other factor will not be unduly influenced by
groups on one factor having more “information” (i.e., in terms of objects studied) than another. For a
brief discussion of unbalanced designs, see Steinhorst (1982). As mentioned, in most of our examples
of ANOVA and beyond, for convenience, we generally assume balanced designs.
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3.11 MEASURES OF ASSOCIATION AND EFFECT SIZE IN ANOVA:
MEASURES OF VARIANCE EXPLAINED

Obtaining a statistically significant F statistic literally means that the statistic we have obtained is rel-
atively rare assuming that it arose from an F sampling distribution specified by J − 1 and N − J degrees
of freedom. However, as we have already discussed in relation to z and t-tests, statistically significant
statistics do not necessarily suggest a large difference between means. That is, statistical significance
does not necessarily imply a large or meaningful effect size. This is because, as summarized in
Chapter 2, there are other things in a test statistic’s “DNA” that influence its magnitude, such as sample
size, variance, and, considered jointly, its standard error. Note that when we produce the F statistic by
dividing MS between by MS within, we risk getting a large F simply as a result of MS within being
small. The smaller MS within is, the larger will be our resulting F statistic, all else equal. Similarly, one
can see that by simply increasing sample size,N − J, the degrees of freedom for SSwithin will get larger
and larger. As we increase the degrees of freedom, MS within necessarily gets smaller, since we are
dividing SS within by a larger and larger number.

Do not misunderstand. Having a small MS within is always a good thing statistically. The infer-
ential statistic is doing its job. A small error term suggests we have a good degree of precision in our
estimation. But scientifically, the small error term does not in itself guarantee that anything important
or practical has happened in the experiment or study.The distinction between statistical significance
and effect size is one youmust understand in order to evaluate scientific evidence in an intelligent
manner. A misunderstanding of this distinction can lead to serious misunderstandings in the
global interpretation of evidence.

The F-test then, or any inferential test statistic for that matter, will not reflect a pure measure of the
obtained sample effects. How do we solve this problem? One option is to take a ratio of SS between to
SS total before these sums get converted into mean squares. That way, we are not having our F statistic
unduly influenced by sample size since we are not yet dividing by N − J in the denominator. This ratio
of SS between to SS total goes by the name of Eta-Squared, symbolized as η2. We now discuss this
important statistic.

3.11.1 η2 Eta-Squared

As discussed, it seems intuitive that if we wanted a more pure measure of the difference in means, we
should consider further the magnitude of the sample effects, without necessarily requiring an inferen-
tial statement about them. Recall that any potential sample effects are included in SS between:

J

j

n j y j − y
2

whereas deviations of the kind y j − y grow larger and larger, this is indicative of an increasingly
larger difference between sample means. And since SS total is a measure of total variation in a set
of data, it seems sensible to take the ratio of SS between to SS total as our measure of effect size:

η2 =

J

j
n j y j − y

2

J

j = 1

n

i = 1
yij − y

2
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where η2 can range from 0 to 1. A value of 0 suggests that sample effects are accounting for no variance
in the dependent variable and the only source of variation that is “at work” in our data is random error.
A proportion of 1 suggests that the total variation in our data is accounted for entirely by our obtained
sample effects. Otherwise said, a measure of 1 suggests that all variation in our data is attributable to
between-group differences (i.e., which are in effect, the obtained sample effects).

To reiterate then, η2 represents the proportion of variance in the dependent variable that is
accounted for by the independent variable. In the case of a one-way fixed effects ANOVA, that
independent variable is the grouping factor.

3.11.2 Omega-Squared

It is well known that values of η2 tend to report an overly “optimistic” picture of the magnitude of effect.
This is in part because η2 is a descriptive measure of effect size in the particular sample on which it is
computed and assumes that the population regression line (if we were to know it) passes through the
group means on the independent variable (Howell, 2002, p. 353). It does not accurately estimate what
the actual true effect might be in the population from which data were drawn.

Omega-squared, ω2, is a less-biased estimate of effect size and serves as an estimate of the actual
population effect size. An estimate of ω2 for the one-way fixed effects analysis of variance can be
obtained by:

ω2 =
SS between − J − 1 MS within

SS total + MS within

where the values of SS between and MS within are obtained from the analysis of variance table. As
noted by Kirk (1995, p. 178), ω2 can also be computed as

ω2 =
J − 1 F − 1

J − 1 F − 1 + nJ

where F is that obtained from the overall ANOVA, n is the sample size per group (we assume equal n
per group), and J is the number of levels on the independent variable. This formulation is especially
useful for situations in which you wish to compute omega but do not have access to a researcher’s
ANOVA summary table (and are only provided with F).

η2 and ω2 are by far the most popular effect size measures used to contextualize findings in the
analysis of variance. However, relatively recently, attention has been drawn to the fact that these mea-
sures do not incorporate the potential influence that design features might have on the effect size esti-
mate, especially for the factorial designs of the following chapter. One recommendation given to
overcome these deficiencies is to compute generalized eta squared and generalized omega squared
statistics. These statistics, in part, incorporate the influence of design features into their estimates.
Though we do not discuss these effect size measures here, the interested reader is encouraged to consult
Olejnik and Algina (2003) for a discussion of such measures.

3.12 THE F-TEST AND THE INDEPENDENT SAMPLES t-TEST

Recall that ANOVA can be conceptualized as an extension of the independent samples t-test. Given
this, it stands that we should be able to conduct an ANOVA on a two-sample problem and translate
obtained F into a t statistic.
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Consider the small hypothetical data set in Table 3.4. Suppose we wished to test the null hypothesis
that μ1 = μ2. Both ANOVA and the independent samples t-test can be used to evaluate the tenability of
this null.

An independent samples t-test on these data yields a t-statistic of 7.20 . Evaluated on (n1 − 1) +
(n2 − 1) degrees of freedom, we find t to be statistically significant at the 0.05 level of significance.

Suppose now that instead of the t-test, we wish to perform a one-way fixed effects ANOVA on these
same data. If we square our obtained t statistic, it will equal the obtained F that we get in the ANOVA.
That is, (7.20)2 = 51.84 = F. Likewise, we can go the other way. The square root of F will equal t, that
is, F = 51 84 = 7 2 = t.

Hence, if an F statistic is statistically significant at a given significance level α on J − 1 and N − J

degrees of freedom, then the corresponding value of t = Fwill be statistically significant at the same
α level on degrees of freedom (n1 − 1) + (n2 − 1) in a two-tailed test. If the statistical alternative to the
null hypothesis is one-sided (also known as “directional”), then the sign of the t statistic must be taken
into consideration.

3.13 CONTRASTS AND POST-HOCS

The overall F statistic computed in the analysis of variance tests the general null hypothesis of equality
among population means. It is the so-called omnibus test of equality among population means. Often-
times in research, however, we have planned hypotheses that we would like to test that reduce the
omnibus null hypothesis to a series of two-group comparisons. Each comparison uses up a single
degree of freedom, and so they are sometimes called single-degree-of-freedom contrasts.

For example, referring once again to the achievement data of Table 3.1, suppose the researcher was
interested in specifically comparing achievement means on teachers 1 and 2 taken together with the
achievement means on teachers 3 and 4, also considered simultaneously. Notice that, in this case, we
are not so much interested in a general mean difference as much as we are interested in a specificmean
difference between the first and second and the third and fourth teachers.

Such a hypothesis calls for a population comparison among means. We can define a population
comparison as the following linear combination:

Ci = c1μ1 + c2μ2 + + cJμJ =
J

j = 1

c jμ j (3.7)

where cj is a set of real numbers, not all zero, and μj is the relevant population means. For an example in
which we have three means, the population comparison would be defined as:

Ci = c1μ1 + c2μ2 + c3μ3

TABLE 3.4 Hypothetical Data on Two Independent Samples

Sample 1 Sample 2

2 7
1 6
3 8
2 9

Mean = 2.0 Mean = 7.5
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For our example, since we are interested in comparing μ1 and μ2 taken as a set with μ3 and μ4, we will
weight the first two population means with an identical weight compared to the last two population
means. The following assignment of weights would work:

Ci = c1μ1 + c2μ2 + c3μ3 + c4μ4
= 1 μ1 + 1 μ2 + − 1 μ3 + − 1 μ4

Note carefully how we assigned the weights. The first two means received weights of “1”while the last
two means received weights of “−1.”Weighting the means this way has the effect of comparing μ1 + μ2
to μ3 + μ4. Because our linear combination has weights that sum to zero, that is,

J

j = 1

c j = 0

the linear combination Ci is given a special name. It is called a contrast. A contrast is simply a linear

combination of the form (3.7) for which
J

j = 1
c j = 0.

Of course, as usual, we rarely if ever have population means at our disposal. When we reject the null
hypothesis in the ANOVA F-test, we are implying that there is at least one statistically significant com-
parison of the type

Ci = c1y1 + c2y2 + + cJyJ

=
J

j = 1

c jy j

where Ci is the estimate for the population comparison Ci. When we take the expectation of Ci, we
find that

E Ci = E
j

c jy j

=
j

c jE y j

= Ci

That is, Ci is an unbiased estimator of Ci.
Recall that we do not immediately know the nature of the comparison when we reject an omnibus

null hypothesis in ANOVA. For instance, the population comparison could be μ1 versus μ2, μ3 or it
could be μ1, μ2 versus μ3, etc. There are a variety of possible comparisons one could make. As noted
by Hsu (1996), “to consider multiple comparisons as to be performed only if the F-test for homogeneity
[i.e., equality of population means] rejects is a mistake” (Hsu, 1996, p. 178). Hence, it behooves us to
consider contrasts quite carefully, since we may wish to make them even without a rejection of
omnibus F.

It is very important to also note that whether Ci or Ci, when computing a comparison, we are com-
puting a weighted sum of means. That is, when we speak of a value for Ci or Ci, we are speaking of
one and only one value which is equal to the weighted sum ofmeans we are computing. Oftentimes
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comparisons can seem confusing until it is realized that they are, in the end, reduced to a single number,
Ci. They are linear combinations (see Chapter 2), and even for the most complex of linear combina-
tions, in the end, they still boil down to a single number. Concepts of linear combinations preview the
study of multivariate methods in later chapters in this book.

An appropriate null hypothesis for a population comparison is the following:

H0 Ci = 0

since as mentioned, E Ci = 0. A two-sided alternative would be: H1 : Ci 0.
There are many types of “canned” contrasts available in software. These include simple contrasts

andHelmert contrasts, among others. Each contrast-type differs in the comparisons of means it tests.
For example, Helmert contrasts feature the comparison of each level of a factor against the average of
subsequent levels. That is, in a three-population ANOVA, Helmert contrasts would compare the first
mean with a combination of the second and third means, then the second mean with the combination of
the third and successive means (of which, in this case, there are none). One should be aware that
depending on how software defines the Helmert contrast, the output may differ somewhat from
how we have defined them. For instance, the function contr.helmert() in R contrasts the second
level with the first, the third with the average of the first two, and so forth.

We demonstrate a very simple comparison using the achievement data of Table 3.1. Again, suppose
we wished to contrast teachers 1 and 2 with 3 and 4. That is, we wish to estimate values for the fol-
lowing population contrast:

Ci = c1μ1 + c2μ2 + c3μ3 + c4μ4

Recall that to make it a legitimate contrast, we must select c1, c2, c3 and c4 such that their sum is equal to
0. To set up the contrast, we can use weights 1, 1 and −1, −1, giving us the estimated contrast value
of −29.17:

Ci = c1y1 + c2y2 + c3y3 + c4y4
= 1 71 00 + 1 72 50 + − 1 80 0 + − 1 92 67

= 71 00 + 72 50− 80 00− 92 67

= − 29 17

We notice immediately that the value of our estimated comparison Ci is not equal to 0, which 0 is what
we would have expected under the null hypothesis H0 : Ci = 0. How might we interpret this contrast,
even before testing it for statistical significance? Since we chose to compare teachers 1 and 2 with 3 and
4 and obtained a negative value for our estimated contrast, we can say, without even making an infer-
ential statement yet, that the sum of average achievement for the first two teachers in the sample is
29.17 units less than the achievement of students assigned to teachers 3 and 4. We can conclude this
by how we assigned the weights (i.e., the two “positive” means came before the negative ones). Note,
however, that we have concluded nothing yet about population parameters. We are merely observing
our descriptive linear combination. The task of gambling whether these sample results suggest a rejec-
tion of the null thatH0 : Ci = 0 is the task of statistical inference. But to test such a null, we will need, as
is true for any inferential test statistic, an estimated standard error.

We can write the estimated variance for a sample comparison Ci by

σ2
Ci

= σ2e
j

c2j
n j
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Of course, we do not know the population variance σ2e, but we can obtain an unbiased estimate of it,
σ2e , in the form of MS error. That is, upon making the relevant substitution, we get

σ2
Ci
= MS error

j

c2j
n j

We know that to get a standard deviation from a variance, it is a simple matter to take the square root of
the variance. Likewise, to get the standard error from σ2

Ci
, we take the square root of σ2

Ci
:

σCi
= σ2

Ci

Now that we have obtained a standard error for our statistic, we are now in a position to test Ci for
statistical significance. Recall that we are testing H0 :Ci = 0 against the alternative hypothesis that
H1 :Ci 0. For this, we can use a t-test,

t =
Ci −Ci

σCi

evaluated on N − J degrees of freedom.
In SPSS, we compute the contrast for the achievement data, comparing teachers 1 and 2 to 3 and 4:

ONEWAY ac BY teach
/CONTRASTS=1 1-1-1

Contrast Coefficients
Contrast Teach
1 1.00 2.00 3.00 4.00

1 1 −1 −1

Contrast Tests
Contrast Value of Contrast Std. Error t df Sig. (2-tailed)

ac Assume equal variances 1 −29.1667 3.54417 −8.229 20 0.000
Does not assume equal variances 1 −29.1667 3.54417 −8.229 15.034 0.000

The contrast, both for equal variances and unequal variances assumed, suggests we reject the null
hypothesis.

3.13.1 Independence of Contrasts

When we speak of the pairwise independence of contrasts, we are speaking, substantively, of whether
each comparison provides independent and unique information. To determine the independence of
two contrasts, we need simply to verify the product of respective weights for the two contrasts, that
is,

j
c1jc2j = 0. This requirement holds if sample sizes are equal (for the case of unequal sample sizes,
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see Hays, 1994, p. 435), and also generally assumes samples come from normal populations with typ-
ically equal variances (Hays, 1994, p. 434). C1 and C2 are considered to be orthogonal contrasts. The
number of orthogonal contrasts for a set of groups is always equal to J − 1.

Note carefully that when considering comparisons, “orthogonal” and “independent”mean the same
thing only when populations are normal with preferably homogeneous variances (Hays, 1994, p. 434).
Be sure to note as well that when speaking of independence or orthogonality of comparisons, we are
usually referring to a very specific set of comparisons, and to ensure orthogonality among the set, we
require that all pairwise comparisons be orthogonal to one another. It needs to be noted as well that
simply because two or more comparisons are independent does not necessarily guarantee that the t-
or F-tests on these comparisons are likewise independent. It simply means that each contrast is pro-
viding us with unique information with regards to tested hypotheses. For a discussion of this issue, see
Hays (1994).

3.13.2 Independent Samples t-Test as a Linear Contrast

The observant reader may have noticed at this point that an independent-samples t-test is actually a
special case of a more general linear contrast. This intuition is correct. To demonstrate such, we per-
form a t-test and a linear contrast on the hypothetical data featured in Table 3.5.

The contrast of interest to us in an independent-samples t-test is to compare group 1 (coded as 0) on
X to group 2 (coded as 1). Our contrast is thus of the kind, Ci = y1 − y2 , where the corresponding
weights we will assign to these means are 1 and −1 respectively. Any other positive and negative
balance of weight coefficients would have worked as well such as 2, −2, 3, −3, etc. We compute the
mean for group 1 to be 3.2 and the mean for group 2 to be 12.4. Weighting the two means, we obtain:

Ci = c1y1 + … + cJyJ =
J

j = 1

c jy j

= 1 3 2 + − 1 12 4

= − 9 2

Our obtained value of the contrast is −9.2. We next evaluate as t:

t =
Ci −Ci

σCi

TABLE 3.5 Hypothetical Data on Dependent
Variable Y and Independent Variable X

Y X

1 0
6 0
4 0
2 0
3 0
8 1
9 1

10 1
15 1
20 1
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for which σ2
Ci

and σCi
are equal to:

σ2
Ci
= σ2e

j

c2j
n j

=
14 5 1 2 + − 1 2

5
= 29 5 = 5 8

σCi
= 5 8

= 2 408

and where

SS error =
j i

yij − y
2

= 116 0

and so

MS error =
SS error
N − J

= σ2e =
116
8

= 14 5

To compare the above contrast to t, we now compute a t statistic, for which our estimated standard error
of the difference, σdiff , once computed, is equal to 2.408. Our t statistic is therefore equal to

t =
y1 − y2
σdiff

t =
3 2− 12 4
2 408

t = − 3 82

We evaluate t on N − J degrees of freedom, which for this problem are equal to 10 − 2 = 8. The critical
value for t at a significance level of 0.05 is 2.306 (two-tailed test). Since we do not care about the sign of
the mean difference for the purpose of the contrast (our ordering of coefficients was arbitrary, we could
have just as easily reordered our coefficients as −1 and 1), we consider the absolute value of our
obtained t, which is equal to 3.82. Since obtained t exceeds the critical value, we reject the null hypoth-
esis and conclude a statistically significant difference between the sample means. In other words, we
have evidence to suggest that in the population from which these means were drawn, we indeed have a
mean difference.

3.14 POST-HOC TESTS

The contrasts that we have briefly studied are typically useful in situations in which you have strong a
priori suspicion of where mean differences may lay in your data or a theory guiding you on which
contrasts to perform. However, oftentimes, we do not have theory guiding us regarding which contrasts
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to perform and would like to run as many as we can in order to “snoop” the data to see where pairwise
differences may lie.

Recall, however, that with each comparison or contrast we undertake, there is a risk of committing a
type I error. This error rate is known generally as the per comparison type I error rate, generally
denoted as αPC. Obviously, when we perform many comparisons on the same data, the per comparison
error rate will add up. The total error rate for a family of comparisons then is known as the family-wise
error rate, generally denoted as αFW. As given in Howell (2002, p. 371), assuming comparisons are
independent, the relationship between αPC and αFW is the following:

αFW = 1− 1 − αPC
k

where k is the number of comparisons we are carrying out. The relationship is not quite equal to a direct
sum but is still relatively high. For instance, for the situation in which we are carrying out k = 10
comparisons, each at αPC = 0.05, αFW is estimated to be

αFW = 1 − 1− αPC
k

= 1− 1 − 0 05 10

= 0 40

What the number of 0.40 is telling us is that across 10 comparisons, each performed at αPC = 0.05, the
probability of committing at least one type I error in this family is equal to 0.40. Clearly, this error rate
is unacceptably high.

What we would like to be able to do is run our 10 comparisons, but keep αFW at a nominal level such
as 0.05. How can this be done? One easy way to ensure this is to simply perform each pairwise test at a
lower level of significance by simply dividing αFW by the number of comparisons c we wish to per-
form. That is:

αFW
c

Notice that what we have done is slice up αFW into c component parts. For instance, for the case in
which we are performing 10 comparisons, our computation would be

αFW
c

=
0 05
10

= 0 005

This would mean that we would be testing each comparison at 0.005. This adjustment to αPC in which
we divide a nominal αFW by the number of comparisons is known as the Bonferroni correction.

Note that for our example at least, our corrected αPC yields an extremely small α level, and hence for
each comparison, we have very little power to reject a null hypothesis under this modification. If the
number of comparisons were much smaller, say 3, then applying a Bonferroni correction would still
keep αFW at a nominal level yet not at the expense of that significant of a decrease in power to reject null
hypotheses for each comparison, since,

αFW
c

=
0 05
3

= 0 0167
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Hence, it is clear that this intuitive way of keeping αFW at a nominal level by dividing by c is probably
best applied in situations where the number of comparisons is relatively small or one desires setting αPC
at a very low and conservative level in the case of many comparisons. For this reason, the Bonferroni
correction should be used judiciously and with some judgment.

3.14.1 Newman–Keuls and Tukey HSD

There exist a significant number of post-hoc tests one may use as data snooping procedures following
the analysis of variance. We certainly cannot discuss all of them, nor is doing so a productive use of our
time unless we aspire ourselves to be post-hoc experts. What is useful, however, is to survey a few
post-hocs for the purpose of learning how these procedures generally work.

The next post-hoc test we survey is known as the Newman–Keuls method. The Newman–Keuls
generally does not keep the family-wise error rate at a nominal level, and though the test is recom-
mended by very few and there are generally better post-hocs available, we survey it anyway because
in it is the general logic of how many post-hoc tests function. Also, as we will see, a test that is
recommended by many is the Tukey HSD (Honestly Significant Difference), which is related to
the Newman–Keuls procedure.

To illustrate the Newman–Keuls, consider the analysis of variance summary table for the achieve-
ment data, obtained by fit <- aov(ac ~ f.teach, data = achiev), where we generate a factor
for teach by f.teach <- factor(teach), and summary(fit) gives us:

Analysis of Variance Table

Response: ac
Df Sum Sq Mean Sq F value Pr(>F)

f.teach 3 1764.13 588.04 31.21 9.677e-08 ***
Residuals 20 376.83 18.84

Suppose now we produced a table of ordered pairwise differences between means on the teacher
factor. These are listed in Table 3.6.

Table 3.6 is read as follows:

• Contained in each cell are the pairwise mean differences between groups. For instance, in the cell
representing the joint occurrence of teacher 1 and teacher 2, the number 1.5 is the mean absolute
difference between teacher 1 and teacher 2 (i.e., 72.50−71.00).

• We note that the largest pairwise difference occurs between teacher 1 and teacher 4 (i.e., a mean
difference of 21.67)

TABLE 3.6 Pairwise Differences Between Achievement Means for Respective Teacher Assignments

Teacher 1 Teacher 2 Teacher 3 Teacher 4

71.00 72.50 80.00 92.67 Layer

Teacher 1 (71.00) 0 1.5 9.0 21.67 Layer 3; k = 4
Teacher 2 (72.50) 0 7.5 20.17 Layer 2; k = 3
Teacher 3 (80.00) 0 12.67 Layer 1; k = 2
Teacher 4 (92.67) 0
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• “Layer 1” represents a mean difference of two steps (i.e., k = 2), from teacher 3 to teacher 4 (each
level is counted as a step).

• “Layer 2” represents a mean difference of three steps (i.e., k = 3) from teacher 2 to teacher 4 (again,
each level is counted as a step, which is why there are 3 steps here, teacher 2 (step 1) to teacher 3
(step 2) to teacher 4 (step 3).

The logic of the Newman–Keuls test is that pairwise mean differences that are greater steps
apart should be tested against a more stringent significance level than mean differences that
are lesser steps apart. In the opinion of the Newman–Keuls test, if means are more steps apart
than less, their comparison needs to “pay the price” in terms of being harder to claim as statis-
tically significant. That is, they need to be tested against a more stringent significance level than
means that are less distant. For each layer of the test, a different critical value is computed. These
critical values are computed from the studentized range distribution (a statistic called “q”) and
also incorporates α and degrees of freedom. The critical value for a given layer of the test is
computed:

layer k − 1 = q α,k,v
MS error

n

where q(α, k, v) is the critical value for q at significance level α, number of steps k, and degrees of free-
dom for the ANOVA MS error v. All means that are a given number of steps apart are tested at the
critical value for the given layer. One moves diagonally across the table to locate these pairwise differ-
ences that are k steps apart. For example, pairwise differences for teacher 3 versus 4, 2 versus 3, and 1
versus 2 would all be tested against the same critical value at layer 1. Likewise, pairwise differences for
teacher 2 versus 4 and 1 versus 3 would also be tested against the same critical value, this time at
layer 2.

To demonstrate the computation of the critical value for layer 1, we have:

layer 2− 1 = q α,k,v
MS error

n
= q 0 05,2,20

18 84
6

= 2 950 1 772 = 5 23

The critical value for q for the above is 2.950 (which was found by seeking it out in a sampling dis-
tribution of q, available in many introductory statistics texts). The value for the layer is equal to 5.23. If
our obtained pairwise difference meets or exceeds a value of 5.23, we may deem it statistically signif-
icant at the 0.05 level. From our table, we see that 12.67 does exceed 5.23, and hence, the pairwise
difference between teacher 3 and teacher 4 is considered statistically significant. Moving up the table
diagonally, we note as well that the pairwise difference between teacher 2 and teacher 3 (7.5) is also
statistically significant, but that the pairwise difference between teacher 1 and teacher 2 is not (1.5 does
not exceed 5.23).

3.14.2 Tukey HSD

We have seen that the Newman–Keuls test specifies a different critical value dependent on the number
of steps means are apart. Tukey HSD tests each mean comparison as though they were themaximum
steps apart. This produces a much more conservative test than the Newman–Keuls, but as many would
argue, is a better test. For the data in Table 3.6, the Tukey HSD tests each difference at layer = 3 (k = 4).
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We demonstrate the Tukey test in R for the achievement data:

> TukeyHSD(fit)
Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = ac ~ f.teach)

$f.teach
diff lwr upr p adj

2-1 1.50000 -5.5144241 8.514424 0.9313130
3-1 9.00000 1.9855759 16.014424 0.0090868
4-1 21.66667 14.6522425 28.681091 0.0000002
3-2 7.50000 0.4855759 14.514424 0.0334428
4-2 20.16667 13.1522425 27.181091 0.0000006
4-3 12.66667 5.6522425 19.681091 0.0003278

We can see that the mean difference between teacher 2 and teacher 1 is 1.5, which is not statistically
significant (p = 0.93) at a conventional level. All other mean differences between teachers are statis-
tically significant at p < 0.05. For a detailed discussion of the Tukey test, see Montgomery (2005).

3.14.3 Scheffé Test

The Scheffé test is one of the more stringent, conservative tests of the post-hoc family. Recall what it
means for a test to be conservative. Pragmatically, it means that if you are able to find statistical sig-
nificance using the Scheffé, there is a good bet a difference in means truly exists in the population. It is
definitely the test for hardliners. However, along with its stringent quality comes lower statistical
power. As noted by Kirk (1995), Scheffé controls the type I error rate at or less than αFW across all
number of contrasts, not only pairwise.

We demonstrate the Scheffé test in SPSS on the teacher factor:

ONEWAY ac BY teach
/MISSING ANALYSIS
/POSTHOC=SCHEFFE ALPHA(0.05).

Multiple Comparisons
Dependent Variable: ac Scheffé
(I) f.teach (J) f. Mean Difference Std. Sig. 95% Confidence Interval

Teach (I–J) Error Lower Upper
Bound Bound

l.00 2.00 −1.50000 2.50610 0.948 −9.1406 6.1406
3.00 −9.00000a 2.50610 0.017 −16.6406 −1.3594
4.00 −21.66667a 2.50610 0.000 −29.3073 −14.0261

2.00 1.00 1.50000 2.50610 0.948 −6.1406 9.1406
3.00 −7.50000 2.50610 0.056 −15.1406 0.1406
4.00 −20.16667a 2.50610 0.000 −27.8073 −12.5261

3.00 1.00 9.00000a 2.50610 0.017 1.3594 16.6406
2.00 7.50000 2.50610 0.056 −0.1406 15.1406
4.00 −12.66667a 2.50610 0.001 −20.3073 −5.0261

4.00 1.00 21.66667a 2.50610 0.000 14.0261 29.3073
2.00 20.16667a 2.50610 0.000 12.5261 27.8073
3.00 12.66667a 2.50610 0.001 5.0261 20.3073

aThe mean difference is significant at the 0.05 level.
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We see that by the Scheffé, the mean difference between teacher 2 and 3, which was found to be
statistically significant using the Tukey, is no longer statistically significant at 0.05 (p = 0.056). This is
a consequence of Scheffé being a more conservative test.

3.14.4 Other Post-Hoc Tests

In addition to the Newman–Keuls, Tukey, and Scheffé tests discussed, there are a host of other
post-hocs available to researchers. A distinguishing feature of these tests is their power for pairwise
and linear contrasts and their ability to minimize type I error rates across numerous comparisons. Other
relatively popular tests include theHolm test, theRyan test (REGWQ), andDunnett’s test. We do not
review these tests here, though the interested reader is encouraged to consult Howell (2002) for a
succinct discussion of the benefits and drawbacks to using these tests. Montgomery (2005) also
provides further discussion. If you understand the logic of post-hoc procedures such as the
Newman–Keuls and Tukey HSD, what is meant by a more conservative versus more liberal test,
and what it means to protect an error rate against a multitude of comparison possibilities, then you
are in a good position to confront any post-hoc test you may come across and know which types
of questions to ask of it. An understanding of post-hoc tests is more important than memorizing a
catalog of them. For the reader interested in a much more thorough and deeper discussion of post-hocs,
consult Hsu (1996) or Miller (1981).

3.14.5 Contrast versus Post-Hoc? Which Should I Be Doing?

After learning about contrasts and post-hocs, students are often still unsure why contrasts are generally
recommended if one has a theoretical planned prediction about a mean difference, but that post-hocs
should be resorted to if one does not have such strong predictions. To help clarify, consider the fol-
lowing three hypothetical sample means:

y1 = 10 y2 = 40 y3 = 41

Now, after seeing these sample means, if I gave you the opportunity to test one pairwise mean differ-
ence such that you wished tomaximize your chance of finding statistical significance, which would it
be? You would probably choose the comparison y1 = 10versus y3 = 41since these are the most distant
means. However, did you really make just this comparison? No. Cognitively, when viewing the means,
you made a lot more than just one comparison. Implicitly, you compared y1 to y2, y1 to y3, etc. So when
you decided to test y1 = 10 versus y3 = 41, it would be incorrect to assume this is the only comparison
you would be making. You undoubtedly mentally made a lot more comparisons. The job of post-hoc
tests is to help guard against these many comparisons you havemade, even “below the radar” that could
unduly increase the family-wise type I error rate.

Now, pretend for a moment that you had not yet collected the above data, yet based on your the-
oretical prediction and experience in the research area, decided that once the data became available,
you would like to compare y1 to y2. Note that this is an informed comparison, it is based on your
expertise in predicting which means will be different. In such a comparison, the type I error rate is
equal to whatever significance level you set for the comparison. This is because you are making
the prediction without first looking at the means and so you are not “punished” for snooping the data
and potentially inflating the type I error rate.

To summarize, the critical distinction between a priori contrasts and post-hocs is that if you are able
to make strong theoretical predictions before looking at the data, then contrasts are a suitable option,
so long as you are not exhausting the number of contrasts you do on the same data (otherwise, you are
more of a “snooper” than a prediction-focused scientist). If you look at the data first, then it must be
assumed that you are making a whole lot more comparisons than any specific comparison that you do
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choose tomake. In such a case, post-hoc tests are needed to hold you “accountable” for making somany
comparisons and help regulate, or keep, the type I error rate under control. Note that the key distinction is
notwhen the data are collected. The key feature iswhether the datawere observed before comparisons
weremade or predicted. If one collected data ten years ago but did not look at the data, then performing a
contrast on such data is still acceptable if it is governed by theoretical prediction. As soon as one looks at
the means, however, then one has to assume that virtually all (or at least, many) comparisons have been
made (mentally), and thus enter post-hoc tests to help control the type I error rate.

The issue of a priori versus post-hoc comparisons is a general theme of scientific credibility. If one is
able to predict an outcome before seeing that outcome, the finding is quite impressive. This is the idea
of a priori comparisons and contrasts. On the other hand, if one observes an outcome and then simply
remarks that it occurred, the skill of the scientist is not as apparent. If I hold an apple in my hand and
have a theory that if I let it go mid-air it will drop to the floor, that is one thing. If I let go of the apple in
mid-air and simply record that it fell, without having any a priori prediction that it would fall, that is
quite another.

3.15 SAMPLE SIZE AND POWER FOR ANOVA: ESTIMATION WITH R
AND G�POWER

The concept of power was briefly introduced in Chapter 2. Recall that power is the probability of reject-
ing a null hypothesis given that it is false. In general, increasing sample size per cell (i.e., replicating
units) serves to increase statistical power since it increases degrees of freedom for error (pause for a
moment to consider why this statement is true). We now consider how to estimate statistical power
using software for the one-way fixed effects analysis of variance model. We demonstrate using
R and G*Power.

3.15.1 Power for ANOVA in R and G�Power

Suppose a researcher is interested in testing a balanced one-way fixed effects analysis of variance. The
dependent variable is a continuous variable. The independent variable has five levels. The researcher
sets the type I error rate at 0.05 and desires a minimal level of power equal to 0.90. In R, we can use
pwr.anova.test to estimate power for this situation:

> library(pwr)
> pwr.anova.test(k= , n= , f= , sig.level= , power= )

where, k = number of levels on the independent variable (in the current case, equal to 5), n = sample
size per group; recall for a balanced design, there are an equal number of observations per cell, f =
expected or minimally-desired effect size, sig.level = significance level for the omnibus F-test,
and power = desired or computed power level for the test.

3.15.2 Computing f

Interpreting f values is awkward and unintuitive. Much more intuitive is to convert these to R2 values.
The following is the conversion we need (see Table 3.7):

f 2 =
R2

1 −R2
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Suppose for our example that the researcher specifies a minimal effect of interest ofR2 = 0.10, which
enters pwr.anova.test as an f of 0.33. The computation for sample size is the following:

> pwr.anova.test(k = 5, n = , f = .33, sig.level = .05, power = .90)

Balanced one-way analysis of variance power calculation

k = 5
n = 29.25818
f = 0.33

sig.level = 0.05
power = 0.9

NOTE: n is number in each group

The required sample size per group is equal to 29.26. Of course, obtaining “fractions” of partici-
pants or subjects can be somewhat difficult, so we will round up (not down) for an estimated sample
size of 30 participants per group. Even though customarily the rounding of 0.25818 would suggest we
settle on 29 participants per group, recall it is good practice to always round up when estimating
sample size. It is the more conservative estimate for the desired level of power (i.e., it will give
you slightlymore power than you have requested if the effect size does turn out as you have estimated).

We perform the same computations in G*Power (Figure 3.2). Notice the identical entries of f, α,
desired power and number of groups on the left-hand side. On the right-hand side, G*Power computes
the representative noncentrality parameter, along with the critical F statistic required for rejection of the
null hypothesis. A total sample size of 150 is the output, which is, within rounding error, equal to our
computation using R for 30 participants per group (150 = 5(30)). G*Power also computes for us the
representative degrees of freedom, 4 for numerator (J − 1 = 5 − 1 = 4) and N − J = 150 − 5 = 145.

For demonstration, we generate power curves for effect size, f, values of 0.33, 0.63, 0.93, 1.23, and
1.53 (see Figure 3.3).

TABLE 3.7 R2 f2 f Conversions4

R2 f 2 f

0.10 0.11 0.33
0.20 0.25 0.50
0.30 0.43 0.65
0.40 0.67 0.82
0.50 1.00 1.00
0.60 1.50 1.22
0.70 2.33 1.53
0.80 4.00 2.00
0.90 9.00 3.00
0.99 99.00 9.95

4These conversion values were computed in R by the author as follows:
> r_squared <- c(.10, .20, .30, .40, .50, .60, .70, .80, .90, .99)
> f_squared <- (r_squared)/(1 - r_squared)
> f_squared

[1] 0.1111111 0.2500000 0.4285714 0.6666667 1.0000000 1.5000000

[7] 2.3333333 4.0000000 9.0000000 99.0000000

> f <- sqrt(f_squared)
> f

[1] 0.3333333 0.5000000 0.6546537 0.8164966 1.0000000 1.2247449 1.5275252

[8] 2.0000000 3.0000000 9.9498744
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FIGURE 3.2 Power analysis for fixed effects analysis of variance.
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FIGURE 3.3 Power curves for fixed effects analysis of variance.
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Notice also that we requested power estimates from 0.6 to 0.95 in increments of 0.01, and effect size
f values beginning at 0.33 in increments of 0.30. For relatively large effect sizes of f = 1.23 and 1.53 and
higher, sample size requirements for a given level of power are relatively constant, though still increas-
ing. For a more moderate effect size of f = 0.63, sample size requirements increase slightly more steeply
for higher levels of desired power than for lower levels. For a relatively small effect size of f = 0.33, a
much larger sample size is required for even low levels of power (e.g., 0.6), and the curve increases
rather dramatically as increased power is desired. Linearity of the curve is sometimes implicitly
assumed when researchers are considering increasing sample size from say, 30 participants to 60. It
is often mistakenly believed that such a doubling of sample size equates to a doubling of power for
a given effect size. But as power curves demonstrate, this is generally not the case.

Recall that anything that significantly lowers MS error usually results in an increase in statistical
power. Hence, in addition to increasing sample size or decreasing the variance of the population
under study, one might also adopt the strategy of including additional factors in the design in an effort
to reduce MS error. Variables that are added into the model for the sole purpose of boosting power and
reducing MS error are generally known as covariates. The analysis of covariance (ANCOVA) is an
extension of the ANOVA model in which covariates are included in an effort to boost statistical power
rather than in specifically studying their effect on the dependent variable. We delay our discussion of
ANCOVA until Chapter 9, where it will be seen that ANOVA and ANCOVA are both best
conceptualized as special cases of the more general linear regression model.

3.16 FIXED EFFECTS ONE-WAY ANALYSIS OF VARIANCE IN R:
MATHEMATICS ACHIEVEMENT AS A FUNCTION OF TEACHER

We now conduct a full fixed effects ANOVA on the achievement data of Table 3.1. We designate
teacher as a factor having levels 1 through 4:

> achiev <- read.table("achievement.txt", header = T)
> f.teach <- factor(teach)
> f.teach
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

Levels: 1 2 3 4

We obtain the mean achievement scores for each of the four teachers:

> tapply(ac, f.teach, mean)
1 2 3 4

71.00000 72.50000 80.00000 92.66667

The grand mean of the data, or, equivalently, because this is a balanced design, the mean of all
means, is computed as:

> mean(ac)
[1] 79.04167

We next obtain the summary table for our ANOVA using aov:

> fit <- aov(ac ~ f.teach, data = achiev)
> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
f.teach 3 1764.1 588.0 31.21 9.68e-08 ***
Residuals 20 376.8 18.8
–––
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The above summary table was built under the assumption that population variances are equal. With
a reported F stat of 31.21 evaluated on 3 and 20 degrees of freedom yielding a p-value of 9.68e−08, we
reject the null hypothesis of equal population means.

We can obtain sample (or treatment) effects from model.tables in R:

> model.tables(fit)

Tables of effects

f.teach
f.teach

1 2 3 4
-8.042 -6.542 0.958 13.625

We can also use the plot.design function (see Crawley, 2013, p. 238) to visualize the means
relative to the overall grand mean:

> plot.design(ac ~ f.teach)
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We can see from the plot that the means for teachers 1 and 2 are relatively close, whereas the means
for teachers 3 and 4 are quite distant. The horizontal bar just below the 3rd mean is the grand mean of all
observations, which recall is equal to 79.04.

3.16.1 Evaluating Assumptions

Since we have very small numbers per group, it would be very difficult to even attempt to test the
assumption of normality within each level of teacher in any formal way. We will instead generate a
Q–Q plot (Teetor, 2011) for the entire sample to get a rough idea as to whether achievement appears
to be at least approximately normally distributed:

> qqnorm (ac)
> qqline(ac)
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Normal Q–Q plot Histogram of ac
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Next to the Q–Q plot is also a histogram (right), obtained using hist(ac). As we can see from
both plots, a perfect normal distribution is not evidenced by any means, though the deviation from
normality, in this case, is likely nothing to be too concerned about as it relates to pushing forward with
the ANOVA (recall again that in a true evaluation of normality, we would have to evaluate each group,
or the residuals of the model; our evaluation here on the total sample is simply for demonstration).
Though graphical displays are often sufficient for detecting gross violations, we could have also per-
formed the Shapiro–Wilk test to evaluate the tenability of the null hypothesis that these sample data
arose from a normal population:

> shapiro.test(ac)

Shapiro-Wilk normality test

data: ac
W = 0.9057, p-value = 0.02842

The test yields a p-value of 0.028, which is statistically significant tested at 0.05, but not statistically
significant when tested at a more stringent significance level, such as 0.01. Since ANOVA is relatively
robust to violations of normality, we carry on with the analysis.

R provides several options for verifying the homogeneity of variances assumption. One can use the
Fligner–Killeen test, Bartlett’s test, or Levene’s test. The Fligner–Killeen, which is a nonparametric
test, is recommended by some (e.g., Crawley, 2013) over Bartlett’s and Levene’s because it is quite
robust against departures of normality:

> fligner.test(ac ~ f.teach, data = achiev)

Fligner-Killeen test of homogeneity of variances

data: ac by f.teach
Fligner-Killeen:med chi-squared = 10.8128, df = 3, p-value = 0.01278

The test rejects the null hypothesis that population variances are equal, which would suggest an
inequality of population variances.

In comparison, we now proceed with Bartlett’s test:

> bartlett.test(ac ~ f.teach, data = achiev)

Bartlett test of homogeneity of variances

data: ac by f.teach
Bartlett's K-squared = 3.8962, df = 3, p-value = 0.2729
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A p-value of 0.2729 indicates insufficient evidence against the null hypothesis of equal population
variances. Consequently, we would not reject the null and could tentatively assume equality of vari-
ance, or at minimum, proceed with our ANOVA.

Next is Levene’s test where we specify center = mean to denote the fact that we want the test
based on means rather than another measure of central tendency (such as medians):

> leveneTest(ac, f.teach, center = mean)

Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)

group 3 7.671 0.001327 **
20

–––
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A p-value of 0.0013 leads us to reject the null hypothesis of equal variances. Hence, two of the three
tests performed suggest we may have a problem with variances. As mentioned, since ANOVA is quite
robust to such a violation, we will proceed with performing the ANOVA with the assumption that the
condition of variances is satisfied, and then will compare results to a model in which we assume var-
iances are unequal. Even under cases where homogeneity of variance is questionable, R gives us the
option of carrying on with the ANOVA by requesting var.equal = FALSE in the oneway.test
function. To demonstrate, we first run the test under the assumption that variances are equal by spe-
cifying var.equal = TRUE:

> oneway.test(ac ~ f.teach, var.equal = TRUE)

One-way analysis of means

data: ac and f.teach
F = 31.2096, num df = 3, denom df = 20, p-value = 9.677e-08

The observed p-value for the analysis is extremely small (i.e., 9.677e−08). We now run the
same ANOVA, but this time, under the assumption that the equality of variance assumption is
not satisfied:

> oneway.test(ac ~ f.teach, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: ac and f.teach
F = 57.3175, num df = 3.000, denom df = 10.419, p-value = 8.982e-07

Notice that for these data, the p-value increased slightly as a result of the assumption not being
recognized (i.e., it rose from 9.677e−08 to 8.982e−07). Hence, even when incorporating a violation
in variances, because we have such a large effect, our ANOVA is still reporting an extremely small
p-value.
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3.16.2 Post-Hoc Tests on Teacher

We already performed the Tukey earlier on these data in our discussion of post-hoc tests
(see Section 3.14.2). For convenience, we reproduce the results of the Tukey HSD test on the teacher
factor:

> fit <- aov(ac ~ f.teach)
> TukeyHSD(fit)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = ac ~ f.teach)

$f.teach
diff lwr upr p adj

2-1 1.50000 -5.5144241 8.514424 0.9313130
3-1 9.00000 1.9855759 16.014424 0.0090868
4-1 21.66667 14.6522425 28.681091 0.0000002
3-2 7.50000 0.4855759 14.514424 0.0334428
4-2 20.16667 13.1522425 27.181091 0.0000006
4-3 12.66667 5.6522425 19.681091 0.0003278

The above results reveal that virtually all pairwise differences may be of interest (i.e., they are asso-
ciated with relatively low p-values) except for teacher 2 versus teacher 1 which yields a value of
p = 0.93.

We can easily observe mean differences by plotting our TukeyHSD post-hoc findings through 95%
confidence intervals, where we see the confidence interval for teacher 2 versus 1 (i.e., the first interval
below) includes 0, indicating the null hypothesis should not be rejected, which is consistent with the p-
value we obtained above.

> plot(TukeyHSD(fit))

3–1

3–2

4–3

–5 0

Differences in mean levels of f.teach

5

95% family-wise confidence level

10 15 20 25 30
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3.17 ANALYSIS OF VARIANCE VIA R’s lm

We could have also analyzed the achievement data using R’s lm (“linear model”) function:

> fit.lm <- lm(ac ~ f.teach)
> summary(fit.lm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.000 1.772 40.066 < 2e-16 ***
f.teach2 1.500 2.506 0.599 0.55620
f.teach3 9.000 2.506 3.591 0.00183 **
f.teach4 21.667 2.506 8.646 3.44e-08 ***
–––
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.341 on 20 degrees of freedom
Multiple R-squared: 0.824, Adjusted R-squared: 0.7976
F-statistic: 31.21 on 3 and 20 DF, p-value: 9.677e-08

The output supplies us with all of the information provided by aov but also much more, including
mean contrasts of interest:

• The intercept value of 71.00 is the mean achievement for students assigned to the first teacher.
R takes this to be the “baseline” group since it is the first category of teacher.

• f.teach2 represents a mean difference between the first teacher and the second teacher, of 72.5
− 71.00 = 1.50.

• f.teach.3 represents a mean difference between the first teacher and the third teacher, of
80.00 − 71.00 = 9.00.

• f.teach.4 represents a mean difference between the first teacher and the fourth teacher, of
92.67 − 71.00 = 21.67.

• The obtained p-value for the model is identical to that obtained using aov (both are equal to
9.677e − 08).

• R-squared for the model, which for ANOVA, in this case, amounts to η2, is equal to 0.824, indi-
cating that a whopping 82.4% of the variance in achievement can be explained by mean differ-
ences between these particular teachers (recall it’s a fixed effects model) chosen for the
experiment. We postpone a discussion of Adjusted R-squared until Chapter 7.

3.18 KRUSKAL–WALLIS TEST IN R AND THE MOTIVATION BEHIND
NONPARAMETRIC TESTS

Most of the statistical models surveyed in this book, in one way or another, make distributional
assumptions. For example, in the prior chapter featuring t-tests, as well as this chapter discussing
ANOVA, it has been generally assumed that population distributions and sampling distributions have
been at least approximately normally distributed with no serious violations. As we have seen, the cen-
tral limit theorem aids in assuring in most cases the normality of sampling distributions, and often the
assumption of normality of populations is at least feasible for t-tests and ANOVA. We have also had to
assume such things as equality of variances, and later in the book, we will learn that regression models
come with them their own set of parametric assumptions that need to verified and satisfied for infer-
ences on parameters to be justified.

138 ANALYSIS OF VARIANCE: FIXED EFFECTS MODELS



There are situations, however, where we can be fairly confident parametric assumptions are not sat-
isfied, which could, in turn, cause problems for drawing inferences from samples to populations. For
example, sometimes distributions of sample data may be severely abnormal, or have heavy tails that
stretch out to extremes, generating highly skewed data. In such cases, even data transformations may
be hopeless in helping ensure assumptions are met. In other cases, sample size may be exceedingly
small, such as having 5–10 subjects in a t-test, in which case it becomes virtually impossible to assure
ourselves with any kind of certainty that the assumptions underlying the parametric test could ever be
justified, unless of course, we have a priori intimate knowledge of the underlying population distribu-
tions. In most cases, especially with small samples in particular, we do not have this knowledge,
and hence we are left conducting inferences on the parametric model with a high degree of skepticism
that all is in place for inferences to be valid.

There is, however, a potential solution out of this dilemma, and that is to employ in place of a par-
ametric test, a nonparametric method. Nonparametric tests carry with them the advantage of making
virtually no assumptions about the underlying population, and thus are especially useful for sample
data that is severely misbehaving, or data that are very small in number such that we could never know
anyway whether parametric assumptions are satisfied. And though nonparametric tests are themselves
unique in their own way, many parametric tests have nonparametric “equivalents” for which research-
ers can employ either alongside or in replacement of the parametric test. Nonparametric tests can be
especially useful in situations where data (especially for small samples) are in the from of ranks, and in
many cases, nonparametric tests actually work by first translating measurement data into simpler ranks
as part of its procedure.

Though nonparametric tests are useful and we feature demonstrations of a few of them in this book,
it should be recognized that if assumptions of the test are satisfied, then parametric tests will typically
have more power over nonparametric ones, and are usually, therefore, preferred over nonparametric
methods in most, though certainly not all cases (Howell, 2002). Nonparametric tests are also a bit more
“crude” in that, as mentioned, they usually convert continuous data into such things as ranks, which
necessarily causes a loss of information in the data. As an example, if we consider two temperature
ratings of 30 degrees and 20, that distance of 10 degrees between values may be extremely important
for data analysis and be of primary interest to the investigator. However, many nonparametric tests will
simply treat the value of 30 as “first” and 20 as “second” and assign an ordinal ranking to the values
instead of appreciating and recognizing themagnitude of their difference. This is one potential draw-
back to using nonparametric tests, and so before using one, a researcher should seriously contemplate
whether the (pseudo) continuity in one’s data is especially valuable, or whether a more crude ranking
of values is sufficient (or even preferable).

As a quick example of how a nonparametric alternative test can be applied to the achievement data,
we test whether ac is a function of f.teach using theKruskal–Wallis test, which can be considered the
nonparametric equivalent to the parametric ANOVA featured in this chapter. For details of the test, see
Howell (2002). We conduct the test using kruskal.test:

> kruskal.test(ac ~ f.teach)

Kruskal-Wallis rank sum test

data: ac by f.teach
Kruskal-Wallis chi-squared = 16.2665, df = 3, p-value = 0.0009999

Though reporting a larger p-value than the parametric ANOVA run earlier, clearly, we still have
evidence to reject the null hypothesis that the samples arose from the same population (p = 0.00099).

We can perform a nonparametric post-hoc using the Tukey and Kramer (Nemenyi) test to follow
up on the Kruskal–Wallis. We use the PMCMR package (Pohlert, 2014) in R to conduct the test:
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> library(PMCMR)
> posthoc.kruskal.nemenyi.test(ac, f.teach, method = "Tukey")

Pairwise comparisons using Tukey and Kramer (Nemenyi) test
with Tukey-Dist approximation for independent samples

data: ac and f.teach

1 2 3
2 0.9658 - -
3 0.3054 0.5849 -
4 0.0014 0.0074 0.2117

P value adjustment method: none
Warning message:
In posthoc.kruskal.nemenyi.test(ac, f.teach, method = "Tukey") :

Ties are present, p-values are not corrected.

What appears in the above table are p-values, not mean differences. Comparisons between teachers 1
versus 4 and 2 versus 4 yield small p-values (0.0014 and 0.0074, respectively). These represent more
conservative findings when compared to the parametric counterpart post-hoc (Tukey) performed earlier.

3.19 ANOVA IN SPSS: ACHIEVEMENT AS A FUNCTION OF TEACHER

We now present select output for the analysis performed in SPSS.We only briefly discuss the results, as
they for the most part parallel those generated by R. Entered into SPSS, our data file appears as:

ac teach

1 70.00 1.00
2 67.00 1.00
3 65.00 1.00
4 75.00 1.00
5 76.00 1.00
6 73.00 1.00
7 69.00 2.00
8 68.00 2.00
9 70.00 2.00
10 76.00 2.00
11 77.00 2.00
12 75.00 2.00
13 85.00 3.00
14 86.00 3.00
15 85.00 3.00
16 76.00 3.00
17 75.00 3.00
18 73.00 3.00
19 95.00 4.00
20 94.00 4.00
21 89.00 4.00
22 94.00 4.00
23 93.00 4.00
24 91.00 4.00
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We perform the analysis using the following syntax:

UNIANOVA ac BY teach
/METHOD=SSTYPE(2) * requests Type II sums of squares (Type III, the

default in SPSS, would have produced the same output for this analysis)
/POSTHOC=teach(TUKEY SCHEFFE)
/EMMEANS=TABLES(teach) * requests estimated marginal means (i.e.,

the means of each group, in this case)
/PRINT=ETASQ HOMOGENEITY * requests Eta-squared and a test of

homogeneity of variance (Levene's test)
/CRITERIA=ALPHA(.05) * sets the significance level for the F-test at 0.05

Levene’s test suggests the same finding as that found in R, that there is a difference in variances in the
population:

Levene’s Test of Equality of Error Variancesa

Dependent Variable: ac
F df1 df2 Sig.
7.671 3 20 0.001

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
aDesign: Intercept + teach

Tests of Between-Subjects Effects
Dependent Variable: ac
Source Type II Sum of Squares Df Mean Square F Sig. Partial Eta-Squared
Corrected model 1764.125a 3 588.042 31.210 0.000 0.824
Intercept 149 942.042 1 149 942.042 7958.003 0.000 0.997
teach 1764.125 3 588.042 31.210 0.000 0.824
Error 376.833 20 18.842
Total 152 083.000 24
Corrected total 2140.958 23

aR-Squared = 0.824 (Adjusted R-Squared = 0.798)

The resulting ANOVA table parallels that generated by R (we do not reproduce the Tukey and
Scheffé tests here).

To run a more robust test of means, one less sensitive to model assumptions, we could have run the
Welch test (1951):

ONEWAY ac BY teach
/STATISTICS WELCH
/MISSING ANALYSIS.

Robust Tests of Equality of Means ac
Statistica df1 df2 Sig.

Welch 57.318 3 10.419 0.000

aAsymptotically F distributed.

Just as we found in R, the null hypothesis is rejected even under the more robust test.
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3.20 CHAPTER SUMMARY AND HIGHLIGHTS

• The analysis of variance, or ANOVA for short, is a statistical method useful for partitioning var-
iability in a sample for the purpose of testing null hypotheses about the equality of population
means (fixed effects) or null hypotheses about the extent to which one or more factors account
for variance in a dependent variable (random effects).

• The one-way analysis of variance is defined to have a single categorical independent variable
and a single continuous dependent (or “response”) variable.

• ANOVA models are usually distinguished between fixed effects, random effects, and mixed
models.

• In fixed effects models, the researcher is specifically interested in the levels of the independent
variable chosen for the particular experiment. The specific levels were deliberately chosen.

• In random effects models, the researcher is not specifically interested in the levels of the inde-
pendent variable chosen for the particular experiment but is rather most interested in generalizing
these levels to the population of levels from which the sample levels were drawn.

• Mixed models contain a blend of both fixed and random effects.

• The fact that sample means may differ in a data set is not itself evidence against the null hypoth-
esis. What we ask of the data is the likelihood of such differences in the sample under the null
hypothesis. If such differences are unlikely under the null, then we have reason to reject the null
hypothesis and conclude there to be population mean differences.

• The inferential test for ANOVA essentially boils down to a comparison of variances in terms of a
ratio. If between-group variance is large relative to within-group variance, then this may be
taken as evidence against the null hypothesis. The expectation for F under the null hypothesis
is approximately equal to 1.0.

• Fixed effects analysis of variance can be understood as an extension of the independent-samples
t-test, or, the independent-samples t-test can be understood as a special case of the wider
ANOVA model.

• Whenwe break down a deviation into its constituent parts, the essential goal of ANOVA is obtain-
ing an answer to the question—Why does any given score in our data deviate from the overall
mean? The extent to which these deviations are due to between-group effects rather thanwithin-
group variability is the extent to which we gather evidence against the null hypothesis.

• When we square respective deviations, we find that SS total can be partitioned into SS between +
SS within.

• The expected mean squares for both between and within suggest that when squared population
effects equal 0 (i.e., α2j = 0), the appropriate denominator for the F-test is that of MS within.

• The ANOVA summary table is a convenient way of representing the results of the analysis of
variance.

• The assumptions of fixed effects ANOVA, in addition to the fixed nature of the levels chosen for
the experiment, include E(εij) = 0, εij are NI 0, σ2e , σ2eij < ∞, Cov(εij, εi j ) = 0, and

σ2j = 1 = σ2j = 2 = σ2j = J . An additional assumption is that the model is correctly specified, which
means that the model at least reasonably accounts for the major sources of variation in the
response variable.

• In an experimental design featuring random assignment of subjects to groups, individuals within
each group are not expected to be similar a priori the randomization. However, in nonexperimen-
tal studies, individuals in existent groups usually share characteristics that are similar. That is,
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individuals within groups are usually more alike compared to individuals across groups. This con-
cept generally goes by the name of nesting and is the motivation behind such relatively advanced
techniques as hierarchical and multilevel modeling.

• Obtaining a statistically significant F in ANOVA in no way guarantees a meaningful scientific
finding. Effect size measures are required to assess the degree to which the independent variable
explains variance in the response variable.

• Eta-squared is a traditional effect size computed by taking the ratio of SS between to SS total.
A value of 0 indicates zero variance explained. A value of 1.0 indicates 100% of variance
explained.

• Omega-squared is an effect size measure used to help correct the overly optimistic estimates
typically provided by Eta-squared. Omega-squared attempts to better estimate the corresponding
effect size in the population, and thus is typically less than Eta-squared.

• Computing a t-test via ANOVA is a useful exercise to appreciate the similarities between the two
procedures by noting the relation t = F.

• Contrasts are useful in providing custom hypothesis tests between pairs of population means.

• The independent-samples t-test can be interpreted as an example of a linear contrast.
• Post-hoc tests are used to snoop the data following a statistically significant F in ANOVA. The
objective of a post-hoc test is to help control the family-wise error rate, that is, the error rate
generated by successive tests across the “family” of comparisons. Good post-hoc tests are gen-
erally those that keep the error rate at a nominal level but not at the expense of a significant loss
of power.

• TheBonferroni correction divides the family-wise error rate across the number of pairwise com-
parisons one wishes to make. The test quickly loses power as the number of means (and thus com-
parisons) increases.

• The Newman–Keuls method, though somewhat unpopular because of its failure to protect fam-
ily-wise error, is nonetheless useful for describing the general logic of a layered test. The Tukey
HSD test is a more common test than the Newman–Keuls and is also more conservative. It is
highly recommended for most cases.

• The Scheffé test is a very conservative post-hoc test that protects not only against pairwise com-
parisons but also against all linear contrasts. If one finds a sample difference with the Scheffé, one
can be relatively confident that the difference exists in the population.

• Sample size and power can be estimated with relative ease using R or G*Power.

REVIEW EXERCISES

3.1. Give a definition for the fixed effects analysis of variance.

3.2. Compare and contrast a fixed effect versus a random effect.

3.3. Explain how models in virtually all sciences are not deterministic but rather probabilistic. In
the achievement example discussed in the chapter, what would it mean to say that mathematics
achievement is a true function of teacher? Why is such an ideal likely virtually impossible in
practice?

3.4. Explain why observing differences in sample means does not alone constitute evidence
against a null hypothesis tested in ANOVA. What more information do we require?
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3.5. Compare the equation for an independent-samples t-test to that of an F-test in ANOVA, and
comment on their similarities and differences. How do they both essentially answer a similar
question?

3.6. Discuss the importance and significance of the identity

yij − y = yij − y j + y j − y

as it pertains to the logic of ANOVA. Identify each component.

3.7. Discuss the effect of squaring deviations in the identity yij − y = yij − y j + y j − y .

3.8. Verbally interpret and discuss the following identity:
J

j = 1

n

i

yij − y
2
=

J

j = 1

n

i

yij − y j
2
+

J

j

n j y j − y
2

3.9. Briefly discuss what role dividing by degrees of freedom has on the sums of squares of
ANOVA. What is the purpose of dividing by degrees of freedom?

3.10. Explain why sums of squares are generally additive for balanced designs, butmeans squares
are not.

3.11. What is the approximate expectation of F under a true null hypothesis? Why is this so?

3.12. State two ways in which the null hypothesis for ANOVA can be operationalized.

3.13. List the assumptions of the ANOVA model.

3.14. Define what is meant by a nuisance factor and comment on why randomization does not
guarantee that nuisance factors will be evenly dispersed among treatment groups.

3.15. Distinguish between an experimental design versus a quasi-experimental design.

3.16. For an experiment in which virtually all variance is accounted for by the treatment effect,
what value of η2 would you expect to obtain? Why?

3.17. For an experiment in which virtually none of the variance is accounted for by the treatment
effect, what value of η2 would you expect to obtain? Why?

3.18. Discuss the difference between η2 and ω2.

3.19. Discuss the purpose of contrasts in ANOVA.

3.20. Distinguish between a linear combination and a contrast.

3.21. Derive a data set for which the dependent variable is continuous and the independent variable
consists of a three-level grouping variable. Generate the data for which there is much within-
group variability, but very little between-group variability. In such a case, what decision on
the null hypothesis H0 : μ1 = μ2 = μ3 would likely result? Why? Explain.

3.22. The analysis of variance was developed primarily to address problems in agriculture, genetics,
and biology. Consider data from R.A. Fisher’s Statistical Methods for Research Workers
published in 1925, the book credited with the first comprehensive introduction to the analysis
of variance. In Table 41, p. 217 (1934 edition), Fisher presents data on soil bacteria in which
soil data was separated into four samples. On each sample, seven plates were inoculated, and
the number of colonies recorded on each plate. The data are reproduced in Table 3.8.
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Answer the following questions with regards to Fisher’s data:

(a) Is there evidence to suggest that the mean number of colonies differs by plate?
Conduct a one-way fixed effects analysis of variance.

(b) Is there evidence to suggest that the mean number of colonies differs by sample?
Conduct a one-way fixed effects analysis of variance.

Further Discussion and Activities

3.23. The majority of statistical procedures can be represented through concepts of covariance and
correlation. The analysis of variance, though focusing onmean differences, can nonetheless be
expressed through simple correlational analysis. An excellent and relatively easy read that
describes these ideas is given in Levin et al. (1989). Read the paper and summarize the essential
ideas of how ANOVA can be conceptualized in terms of correlational theory.

TABLE 3.8 Number of Bacteria Colonies by Plate and Sample (Fisher, 1925/1934)

Plate Sample Number of Colonies

1 1 72
1 2 74
1 3 78
1 4 69
2 1 69
2 2 72
2 3 74
2 4 67
3 1 63
3 2 70
3 3 70
3 4 66
4 1 59
4 2 69
4 3 58
4 4 64
5 1 59
5 2 66
5 3 58
5 4 62
6 1 53
6 2 58
6 3 56
6 4 58
7 1 51
7 2 52
7 3 56
7 4 54

Source: Fisher (1925, 1934).
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4
FACTORIAL ANALYSIS OF VARIANCE:
MODELING INTERACTIONS

The assignable sources of variation in a manufacturing process may be divided into two categories. First,
there are those factors which introduce variation in a random way. Lack of control at some stage of
production very often acts in this manner, and the material itself usually exhibits an inherent random
variability. The other type of factor gives rise to systematic variation.

(Daniels, 1939, p. 187, The Estimation of Components of Variance)

The researcher of Chapter 3 who studied the effect of melatonin dosage on sleep onset is interested now
in learning whether these effects are consistent across ambient noise levels present during sleep. For
this experiment, the researcher again randomly assigns 25 individuals to a control group, 25 more to a
group receiving 1 mg of melatonin, and 25 more to a group receiving 3 mg of melatonin. In addition,
within each of these conditions, half of the participants receive either no ambient noise or a low amount
of ambient noise at the moment of melatonin ingestion and lasting throughout the night (for instance, a
slight buzzing sound). The researcher would like to test whether sleep onset is a function of dosage,
ambient noise, and a potential combination of the two factors. That is, the researcher is interested in
detecting a potential interaction between dose and noise level. He is only interested in generalizing his
findings to these particular doses of melatonin and to these particular noise levels. Such a research
design calls for a two-way fixed effects factorial analysis of variance.

4.1 WHAT IS FACTORIAL ANALYSIS OF VARIANCE?

In the one-way ANOVA of the previous chapter, we tested null hypotheses about equality of
population means of the kind:

H0 μ1 = μ2 = μ3 = μJ

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
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In the two-way and higher-order analysis of variance, we have more than a single factor in our
design. As we did for the one-way analysis, we will test similar main effect hypotheses for each
individual factor, but we will also test a new null hypothesis, one that is due to an interaction
between factors.

In the two-factor design on melatonin and ambient noise level, we are interested in the following
effects:

• Main effect due to drug dose in the form of mean sleep differences across dosage levels.

• Main effect due to ambient noise level in the form of mean sleep differences across noise
levels.

• Interaction between drug dose and noise level in the form of mean sleep differences on drug not
being consistent across noise levels (or vice versa).

It does not take long to realize that science is about the discovery not of main effects, but of inter-
actions. Yes, we are interested in whether melatonin has an effect, but we are even more interested in
whether melatonin has an effect differentially across noise levels. And beyond this, we may be inter-
ested in even higher-order effects, such as three-way interactions. Perhaps melatonin has an effect,
but mostly at lower noise levels, and mostly for those persons aged 40 and older. This motivates the
idea of a three-way interaction, drug dose by noise level by age. One will undoubtedly remark the tone
of conditional probability themes in the concept of an interaction.

As another example of an interaction, consider Table 4.1 and corresponding Figure 4.1. The plot
features the achievement data of the previous chapter, only that now, in addition to students being ran-
domly assigned to one of four teachers (f.teach), they were also randomly assigned to the study of
one of two mathematics textbooks (f.text).

What we wish to know from Figure 4.1 is whether textbook differences (1 versus 2) are consistent
across levels of teacher. For instance, at teacher = 1, we ask whether the same textbook “story” is being
told as at teachers 2, 3, and 4. What this “story” is, are the distances between cell means, as emphasized
in part (b) of the plot. Is this distance from textbook 1 to textbook 2 consistent across teachers, or do
such differences depend in part on which teacher one has? These are the types of questions we need to
ask in order to ascertain the presence or absence of an interaction effect. And though it would appear
that mean differences are not equal across teacher, the question we really need to ask is whether these
sample differences across teacher are large enough to infer population mean differences. These ques-
tions will be addressed by the test for an interaction effect in the two-way fixed effects analysis of
variance model.

TABLE 4.1 Achievement as a Function of Teacher and Textbook

Textbook

Teacher

1 2 3 4

1 70 69 85 95
1 67 68 86 94
1 65 70 85 89
2 75 76 76 94
2 76 77 75 93
2 73 75 73 91
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4.2 THEORY OF FACTORIAL ANOVA: A DEEPER LOOK

As we did for the one-way analysis of variance, we develop the theory of factorial ANOVA from fun-
damental principles which will then lead us to the derivation of the sums of squares. The main differ-
ence between the simple one-way model and the two-way model is the consideration of cell effects as
opposed to simply sample effects. Consider, in Table 4.2, what the two-way layout might look like for
our melatonin example in the factorial design.

We are interested in both rowmean differences, summing across melatonin dose, as well as column
mean differences, summing across noise level. We ask ourselves the same question we asked in the
previous chapter for the one-way model:

Why does any given score in our data deviate from the mean of all the data?

Our answer must now include four possibilities:

• An effect of being in one melatonin-dose group versus others.

• An effect of being in one noise level versus others.

• An effect due to the combination (interaction) of dose and noise.
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FIGURE 4.1 (a) Cell means for teacher∗textbook on achievement. (b) Distances between cell means as depicted
by two-headed arrows. (where f.text is the factor name for textbook and f.teach is the factor name for
teacher).

TABLE 4.2 Cell Means of Sleep Onset as a Function of Melatonin Dose and
Noise Level (Hypothetical Data)

Melatonin Dose

Noise Level 0 mg 1mg 3 mg Row Means

High 15 11 8 11.3
Low 12 10 4 8.7
Column means 13.5 10.5 6.0 10.0
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• Chance variation that occurs within each cell of the design. Notice that this 4th possibility is now
the within-group variation of the previous one-way model of Chapter 3, only that now, the
“within group” is, in actuality,within cell. The error variation occurs within the cells of a factorial
design.

In the spirit of history, we show an earlier and more generic layout of the two-way model diagramed
by Eisenhart (1947) and reproduced in Figure 4.2, where entries in the cells depict data points for each
row and column combination. Note the representation of row means and column means. These will aid
in the computation of main effects for each factor.

4.2.1 Deriving the Model for Two-Way Factorial ANOVA

We now develop some of the theory behind the two-way factorial model. As always, it is first helpful to
recall the essentials of the one-way model, then extend these principles to the higher-order model.
Recall the one-way fixed effects model of the previous chapter:

yij = y + a j + eij

where the sample effect aj was defined as a j = y j − y . The sample effect aj denoted the effect of
being in one particular sample in the layout. Recall that in the one-way layout,

j
n ja j = 0, which

in words meant that the sum of weighted sample effects, where nj was the sample size per group,
summed to zero. For this reason, we squared these treatment effects, which provided us with a measure
of the sums of squares between groups:

SS between =
j

n ja j
2
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FIGURE 4.2 Generic two-way analysis of variance layout. The two-way factorial analysis of variance has
row effects, column effects, and interaction effects. Each value within each cell represents a data point. Row
and column means are represented by summing across values of the other factor. Source: Eisenhart (1947).
Reproduced with permission from John Wiley & Sons.
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It turned out as well that the sample effect aj was an unbiased estimator of the corresponding pop-
ulation effect, αj. That is, the expectation of aj is equal to αj, or, more concisely, E(aj) = αj. Recall that
the sample effect represents the effect or influence of group membership in our design. For instance, for
an independent variable having three levels, we had three groups (J = 3) on which to calculate respec-
tive sample effects. In the factorial two-way analysis of variance, we will have more than J groups
because we are now crossing two variables with one another. For example, the layout for a 2 × 3
(i.e., 2 rows by 3 columns) design is given in Table 4.3.

Notice that now, we essentially have six “groups” in the 2 × 3 factorial model, where each combi-
nation of factor levels generates a mean yjk, where j designates the row and k designates the column.
The “groups” that represent this combination of factor 1 and factor 2 we will refer to as cells. This is
why we have been putting “groups” in quotation marks, because what these things really are in the
factorial design are cells. The heart of partitioning variability in a factorial design happens
between cells. In addition to defining the sample effects associated with each factor (i.e., aj and
bk), we will now also need to define what is known as a cell effect.

4.2.2 Cell Effects

A sample cell effect (Hays, 1994, p. 477) is defined as:

ab jk = yjk − y

and represents a measure of variation for being in one cell and not others. Notice that to compute the
cell effect, we are taking each cell mean yjk and subtracting the grand mean, y (we carry two periods
as subscripts for the grand mean now to denote the summing across j rows and k columns). But why do
this? We are doing this similar to why we took the group mean and subtracted the grand mean in a
simple one-way analysis of variance. In that case, in which we computed a j = y j − y , we were inter-
ested in the “effect” of being in one group versus other groups (which was represented by subtracting
the overall mean).

Likewise, in computing cell effects, we are interested in the effect of being in one cell versus other
cells, because now, in the two-way factorial model, in addition to both main effects for row and col-
umn, it is the cell effect that will represent our interests in there possibly existing an interaction between
the two factors. We will need to compute an interaction effect to do this, but getting the cell effect is the
first step toward doing so.

As it was true that the sum of sample effects in the one-way model was equal to 0,
j
n ja j = 0, it will

also be true that the sum of cell effects is equal to 0 for any given sample. That is,

j k

ab jk =
j k

yjk − y = 0

TABLE 4.3 Cell Means Layout for 2 × 3 Factorial Analysis of Variance

Factor 2

Factor 1 Level 1 Level 2 Level 3

Level 1 yjk yjk yjk
Level 2 yjk yjk yjk
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where the double summation represents the summing across k columns first, then across j rows.We can
easily demonstrate this by computing the cell effects for Table 4.2 across each row of noise level. For
the first cell mean of 15 in row 1, column 1, the cell effect is computed as 15 − 10 = 5. For row 1,
column 2, the cell effect is 11 − 10 = 1. The remaining cell effects are computed analogously (−2,
2, 0, −6). The sum of these cell effects is easily demonstrated to be zero ((5 + 1 + (−2) + 2 + 0 +
(−6) = 0). But why would this be true? It is true for the same reason why summing sample effects equals
0. We are taking deviations from the grand mean, and by definition, the grand mean is the “center of
gravity” of all means (in a balanced design). So, it is reasonable then that the sum of deviations around
that value should be equal to 0. To avoid this, just as we did for the ordinary variance and for the var-
iances derived in the one-way analysis of variance, we square deviations.

To better conceptualize deviations from means across the one-way and two-way factorial designs, it
is helpful to compare and contrast the four scenarios featured in Table 4.4.

We can see from Table 4.4 that the solution in each case is to square respective deviations. This is
precisely why in the case of cell effects, as we did for single deviations and mean deviations, we will
likewise square them. We will call this sum of squared cell effects by the name of SS AB cells:

SS AB cells =
j k

n ab jk

2

where n is the number of observations per cell, which we assume to be equal for our purposes.

4.2.3 Interaction Effects

Having defined the meaning of a cell effect, we are now ready to define what is meant by an interaction
effect. These interaction effects are the reason why we computed the cell effects in the first place. The
sample interaction effect for each cell jk is given by

ab jk = interaction effect of cell jk

= cell effect for cell jk − effect for row j− effect for column k

= ab jk − a j − bk

= yjk − y − y j − y − y k − y

= yjk − yj − y k + y

TABLE 4.4 Deviations Featured in One-way and Two-way Analysis of Variance

Deviation In Words
Solution is Squaring

Deviations

n

i = 1
yi − y = 0

The sum of score deviations around a mean equals 0 n

i = 1
yi − y

2 > 0

n

i = 1
y j − y = 0

The sum of row sample mean deviations around a grand mean
equals 0

n

i = 1
y j − y

2
> 0

n

i = 1
yk − y = 0

The sum of column sample mean deviations around a grand
mean equals 0

n

i = 1
yk − y

2 > 0

n

i = 1
yjk − y = 0

The sum of cell mean deviations around a grand mean equals 0 n

i = 1
yjk − y

2
> 0

In each case, the sum of deviations equals to 0.
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A few things to remark about sample interaction effects:

• A sample interaction effect (ab)jk exists for each cell in the design.

• The sample interaction effect is defined by the cell effect minus the row and column effects (i.e.,
[ab]jk − aj − bk); this makes sense, since it is reasonable that we are interested in the effect of being
in a particular cell over and above the corresponding row and column effects.

• The sample interaction effect can also be defined as taking the mean of each cell, yjk, and sub-
tracting out rowmeans and column means (i.e., y j and y k, respectively), then adding on the grand
mean, y .

As we did for sample effects, we will square the interaction effects so that they do not always sum
to zero:

SS A × B interaction =
j k

n ab jk
2

4.2.4 Cell Effects Versus Interaction Effects

It is useful at this point to emphasize an important distinction and to clarify something that may at first
be somewhat confusing.We have introduced the ideas of cell effects and interaction effects. It is impor-
tant to recognize that these are not the same things, as evidenced by their different computations. To
help clarify, let’s compare the two concepts:

Cell Effect ab jk = yjk − y versus Interaction Effect ab jk ab jk − a j − bk

Notice that the interaction effect (ab)jk uses the cell effect in its computation. In our operationaliza-
tion of the two-way ANOVA, the cell effect is just the starting point to computing the interaction effect.
The cell effect simply measures the deviation of a cell mean from the grand mean. It is the interaction
effect that takes this deviation value and then subtracts further the row and column effects. Be sure not
to confuse cell effects and interaction effects as they are not one and the same.

4.2.5 A Model for the Two-Way Fixed Effects ANOVA

Having now defined the sample interaction effect, which again, is the distinguishing feature between a
one-way fixed effects model and a two-way fixed effects model, we can now state a general linear
model for the two-way, one that includes an interaction term:

yijk = y + a j + bk + ab jk + eijk

where aj is the sample effect of membership in row j, bk is the sample effect of membership in column k,
(ab)jk is the interaction effect associated with the cell jk, and eijk is the error associated with observation
i in cell jk. In words, what the model says is that any given randomly selected observation from the two-
way layout, represented by yijk, individual i in cell jk, can be theorized to be a function of the grand
mean of all observations, y , an effect of being in a particular row j, aj, an effect of being in a particular
column k, bk, the effect of being in a particular cell combination, jk, which is expressed via the inter-
action effect (ab)jk, and an effect unique to individuals within each cell jk, eijk, for which we either did
not account for in our design, or, we concede is due to random variation which we will call by the name
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of “chance.” Either way, eijk represents our inability to model yijk perfectly in a truly functional manner.
Just as was true for the one-way model, eijk is the effect that makes our model truly probabilistic.

4.3 COMPARING ONE-WAY ANOVA TO TWO-WAY ANOVA: CELL EFFECTS IN
FACTORIAL ANOVA VERSUS SAMPLE EFFECTS IN ONE-WAY ANOVA

It is pedagogical at this point to compare, side by side, the one-way model of the previous chapter to the
two-way model of the current chapter. Recall the overall purpose of writing out a model equation. It is
an attempt to “explain,” in as functional a way as possible, the makeup of a given observation. In the
one-way model, we attempted to explain observations by theorizing a single grouping factor along with
within-group variability. Our sample model was

yij = y + a j + eij

Notice that for such a model, it was not appropriate to append the additional subscript k to yij such as in
yijk, because we did not have “cells” in the one-way ANOVA. Defining the idea of a “cell” did not make
a whole lot of sense, since we were simply dealing with a single grouping variable. Subscripting yij to
represent individual i in group jwas enough. Indeed, if we were to “pretend” for a moment that we were
dealing with cells, we could write the one-way model as

yij = y + y j − y + eij
yij = y + ab j + eij

(4.1)

Nothing has changed in (4.1) except for equating “groups” with “cells.”Why do this? Simply to note
how the factorial model compares with that of the one-way model. Notice that the difference between
the one-way model and the two-waymodel in terms of cell effects is that instead of hypothesizing yijk to
be a function of a j = y j − y , we are now hypothesizing yijk to be a function of yjk − y . In both cases,
whether a j = y j − y for the one-way model or ab jk = yjk − y for the two-way model, the total
systematic variation in the data is represented by either of these, depending on whether there
is one factor or two. Sample effects represent the systematic variation in a one-way model,
and cell effects represent the systematic variation in a two-way model. If you understand this con-
cept, then generalizing these ANOVA models to higher-order models (e.g., three-way, four-way, and
potentially higher) will not be intimidating, because you will realize at the outset that the systematic
variation in the entire model is “housed” in the cell effects, regardless of the complexity of the model.
To reiterate, we can say as a general principle of fixed effects analysis of variance models that

In the fixed effects analysis of variance model, the systematic variation is housed in the cell effects. In
the special case where we have only a single independent variable, the cell effects are equivalent to the
sample (group) effects.

4.4 PARTITIONING THE SUMS OF SQUARES FOR FACTORIAL ANOVA:
THE CASE OF TWO FACTORS

Just as we did for the one-way model, we will now work out the partition of the sums of squares for the
two-way factorial model. Remember, the reason why we are partitioning “sums of squares” and not
simply unsquared effects, is because if we attempted to partition unsquared effects (e.g.,
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a j = y j − y or ab jk = yjk − y ), these effects would always sum to 0 (unless of course there is no var-
iation in the data, then whether squared or not, they will sum to 0 regardless).

When we partitioned the sums of squares for the one-way model, we started out by hypothesizing
what any single observation in our data, yi, could be a function of. After a process of deliberate rea-
soning, we concluded that yi was a function of between variation and within variation. Upon squaring
deviations, we arrived at the identity:

J

j = 1

n

i

yij − y
2
=

J

j

nj y j − y
2
+

J

j = 1

n

i

yij − y j
2

which we called the partition of sums of squares for the one-way fixed effects analysis of variance
model. We called it an “identity” simply because it holds true for virtually any given data set having
a continuously measured dependent variable and a categorically-defined independent variable.

Likewise, in the two-way factorial model, we again want to consider how the partition of the sums of
squares works out and can be derived. As we did for the one-way model, we follow a very logical
process in determining this partition.

4.4.1 SS Total: A Measure of Total Variation

Just as we did in deriving the total sums of squares for the one-way model, instead of simply consid-
ering the makeup of yijk, we will consider the makeup of deviations of the form yijk − y , which when
we incorporate into the model, we obtain, quite simply:

yijk = y + ab jk + eijk
yijk − y = ab jk + eijk

Notice that similar to how we did for the one-way model, in which yij − y = a j + eijwas true,
for the two-way model, we likewise claim that the makeup of any given observation is of two “things,”
systematic variation as represented by [ab]jk (in the one-way model the systematic variation was
represented by aj), and random variation as represented by eijk (in the one-way model the random
variation was represented by eij — note the subscripts, we did not have cells in the one-way, so we
did not need to append the subscript k). Instead of squaring aj + eij as is done in the one-way model,
we will square [ab]jk + eijk. When we take these squares and sum them, as given in Hays (1994, p. 481),
we get:

SS total =
i

ab jk + eijk
2

=
j k i

ab 2
jk + 2 ab jkeijk + e2ijk

=
j k i

ab 2
jk + 2

j k

ab jk
i

eijk +
j k i

e2ijk

=
j k

n ab 2
jk +

j k i

e2ijk
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Notice that the term 2
j k

ab jk
i
eijk dropped out of the above summation (3rd line of the equation).

What happened to this term? Since the cell effects [ab]jk sum to zero and the errors within any given cell

i
eijk sum to 0, the term 2

j k
ab jk

i
eijk drops out of the derivation, since 2

j k
ab jk

i
eijk = 0.

Hence, we are left simply with:

SS total =
j k

n ab 2
jk +

j k i

e2ijk

What we have just found is that the total variation in the two-factorial model is a function of the sum of
squared cell effects and random variation. Once we have accounted for the systematic variation in
[ab]jk, then whatever is leftover must be random error, or otherwise denoted, the variation within the
cells. Also, because the cell effects, [ab]jk, contain all systematic variation, it makes sense that within
these cell effects will be “hidden” a main effect for A, main effect for B, and interaction effect, A × B.
That is, if you take the sums of squares for a cell effect which by itself contains all the systematic var-
iation, it seems reasonable that we could break this down further into the SS for factor A, SS for factor
B, and the SS for the A x B interaction, such that:

SS AB cells = SS factor A + SS factor B + SS A × B interaction

If we put these two partitions together, we end up with the following identities:

SS total = SS AB cells + SS within cells

SS total = SS factor A + SS factor B + SS A × B interaction + SS within

In considering now the main effects for the two-way factorial model, as in the one-way ANOVA, the
sample main effect of any level j of the row factor A is given by a j = y j − y , where aj as before repre-
sents the effect for a particular row, and y j − y represents the given row mean minus the grand mean
of all observations. As in the one-way, the sum of the fixed sample main effects for factor A will be 0,

j
a j = 0. Notice again here we are specifying the word “fixed.” This is because for a fixed effects

model, the sum of effects for a main effect sum to 0. However, in the following chapter, when we
consider random andmixed models, we will see that this is not necessarily the case for certain factors.
This will have important implications in how we construct F-ratios.

The sums of squares for factor A is thus
j
Kn a j

2
, where K is the number of columns, and n is the

number of observations per cell. For the column main effect (i.e., factor B), the sample main effect is
bk = y k − y , where y k is the sample mean corresponding to a particular column k. As with the sample
effects for aj, the sum of the column sample effects, bk, will also be 0,

k
bk = 0. The sums of squares for

factor B is thus
k
Jn bk

2, where J is the number of rows.

4.4.2 Model Assumptions: Two-Way Factorial Model

The assumptions for a two-way fixed effects analysis of variance are similar to those of the one-way
analysis of variance model, only now, because we have cells in our design, these are the “groups” about
which we have to make assumptions when involving the interaction term:
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• E(εijk) = 0, that is, the expectation of the error term is equal to 0. Note the extra subscript on eijk to
reflect not only the jth population but also the jkth cell.

• εijk are NI 0, σ2e , that is, the errors are normally distributed and independent of one another. Just
as we did for the one-way, we are using εijk to denote the corresponding population parameter of
the sample quantity eijk.

• σ2eijk < ∞ , that is, the variance of the errors is some finite number (which, as was true in the one-

way model, implies that it is less than infinity).

• σ2jk = 1 = σ2jk = 2 = σ2jk = JK, that is, the variances across cell populations are equal (recall this is called
the homoscedasticity assumption).

• Measurements on the dependent variable are observed values of a random variable that are dis-
tributed about true mean values that are fixed constants. This is the same assumption made for the
one-way model in which we were interested in the fixed effects. This assumption will be relaxed
when we contemplate random effects models in chapters to come.

We could also add the assumption, as we did for the one-way model, that the model is correctly
specified, in that there are reasonably no other sources acting on the dependent variable to an appre-
ciable extent. If there were, and we did not include them in our model, we would be guilty of a spec-
ification error or of more generally misspecifying our model.

4.4.3 Expected Mean Squares for Factorial Design

In deriving F-ratio tests for the various effects in the two-way ANOVA, just as we did for the one-way
ANOVA, we need to derive the expectations for the various sums of squares, and then divide these by
the appropriate degrees of freedom to produce a mean square for the given factor or interaction. Hence
the phrase, “expected mean squares.” We adapt the following derivations from Hays (1994),
Kempthorne (1975), and Searle, Casella, and McCulloch (1992). We begin with the expected mean
squares for within cells (Hays, 1994, p. 485):

E SS within cells = E
k j i

yijk − yjk
2

=
k j

E
i

yijk − yjk
2

=
k j

n − 1 σ2e

= JK n − 1 σ2e

(4.2)

Why does
k j

E
i

yijk − yjk
2

equal
k j

n − 1 σ2e ? To understand this, recall in the one-way

layout:

E SS within = E
j i

yij − y j
2
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However, for any given sample group j, we know that we have to divide SS by n− 1 in order to get an

unbiased estimate of the error variance. That is, we know that E
j i

yij − y j
2

does not “converge”

to σ2e , but that E
i

yij − y j
2

n j − 1
does. So, we can rearrange this slightly to get

E
i

yij − y j
2
= n j − 1 σ2e

Finally, how did we go from
k j

n− 1 σ2e = JK n − 1 σ2e in the final term of (4.2)? By the rules of

summation,
J

j
y = Jy, and so

K

k

J

j
y = JKy, in which in our case n − 1 σ2e acts as “y.”

Now that we have the expectation for SS error, that of JK n− 1 σ2e of (4.2), let us consider what we
have to divide this sum of squares by to get MS error. That is, we need to determine the degrees of
freedom for error. Since there are J × K cells, we will lose 1 degree of freedom per cell, which gives
us degrees of freedom = JK(n − 1). So, MS error is equal to:

MS error =
SS error
JK n − 1

=
JK n − 1 σ2e
JK n − 1

= σ2e

That is, as was the case in the one-way ANOVA,MS error is simply equal to the error variance alone in
a two-way fixed effects ANOVA.

What about the mean square for factor A? When determining an appropriate mean square for any
term, recall that it is essential to consider what goes into the numerator. For the error term, as we just
saw, all that goes into the calculation of error is simply σ2e. When considering the effect for factor A, we
need to recall that in any given row J, both the column effects bk and the interaction effects sum to 0.
That is,

k
bk = 0 and

k
ab jk = 0. Notice that we are summing over k columns to get the row effect.

Why is this important? It is important because it tells us what we can leave out of the mean square for
factor A. Because we know

k
bk = 0 and

k
ab jk = 0, we become aware that these terms will not be

part of the mean square for factor A. If you prefer, we might say they will still be part of the term, but
since they sum to 0, why include them in the mean square for factor A at all? Both ways of thinking
about it gets us to the same place in that we do not have to incorporate them when computing our mean
squares.

Recall that the sums of squares for factor A are given by

Kn
j

a2j = Kn
j

y j − y
2

Given this, and the fact that
k
bk = 0and

k
ab jk = 0, the expectation for MS factor A in which factor

A is fixed, is:
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E MSA = σ2e +

Kn
j
α2j

J − 1

In words, the expectation is equal to error variance, σ2e, plus a term containing variability due to factor

A,
Kn

j

α2j

J − 1 . Given the expected mean square, we would like to produce an F-ratio to test the main effect
for factor A of H0 : αj = 0 versus H1 : αj 0 for at least some population as specified by the levels of
factor A. If there is absolutely no effect, we will have:

E MSA = σ2e +

Kn
j
0

J − 1

and hence

E MSA = σ2e

And so it is easy to see that the following F-ratio will be a suitable one for testing the effect due to
factor A:

F =
MSA

MS error

on J − 1 and JK(n − 1) = N − JK degrees of freedom. That is, in the two-way fixed effects analysis of
variance, MS error is the correct error term for testing the effect of factor A.

A similar argument applies to the factor B mean square. Since
j
a j = 0 and

j
ab jk = 0, we will

only expect variability due to that in columns when considering factor B, since the effects for A and
interaction effects will both sum to 0 in the fixed effects model we are currently considering (they will
not necessarily in random and mixed models of the following chapter). Therefore, the relevant expec-
tation is:

E MSB = σ2e +

Jn
k
β2k

K − 1

where similar to the case for factor A, the term Jn
k
β2k simply comes from the derivation of the sums of

squares for factor B, that of:

SS B = Jn
k

b2k = Jn
j

y k − y
2

Under the null hypothesis, it will be the case that β2k = 0, and so we are left with σ2e . Hence, the
appropriate F ratio is:

F =
MS B

MS error
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on K− 1 and JK(n− 1) = N − JK degrees of freedom. That is, in the two-way fixed effects analysis of
variance, MS error is the correct error term for testing the effect of factor B.

Finally, what of the expected mean squares for interaction? In generating the mean square, we fol-
low a similar argument as when producing the terms for factor A and factor B. That is, we ask our-
selves, what went into the interaction term? Well, we know that for the sample cell effect,
[ab]jk, we saw that it was composed of variability due to factor A, factor B, and the A × B interaction.
What goes into the interaction term (ab)jk is simply variability due to an interaction between factor
A and factor B. Thus, for the interaction, we have:

E MS interaction = σ2e +

n
j k

αβ 2
jk

J − 1 K − 1

If the interaction effects end up being 0, that is, if n
j k

αβ 2
jk = 0, then we will wind up with simply σ2e.

Hence, the appropriate F-ratio is MS interaction/MS error on (J − 1)(K − 1) and JK(n − 1) = N − JK
degrees of freedom. The summary table for the two-way factorial design is given in Table 4.5.

4.4.4 Recap of Expected Mean Squares

Recall that the practical purpose behind deriving expected mean squares, whether in the one-way
or higher-order ANOVA models, is to be able to generate meaningful F-ratios and test
null hypotheses of interest to us. In our discussion of mean squares, we have justified the use
of F-ratios for testing the main effect of A, main effect of B, and the interaction of A × B. Notice
that in each case, MS error is the appropriate denominator in the fixed effects model of analysis of
variance. When we consider random and mixed effects models in chapters to follow, we will see
that, and more importantly understand why, MS error is not always the appropriate denominator
for testing effects.

4.5 INTERPRETING MAIN EFFECTS IN THE PRESENCE OF INTERACTIONS

Typically, if one has found evidence for an interaction in an ANOVA, one can still interpret main
effects, so long as one realizes that the main effects no longer “tell the whole story.” As noted by
Kempthorne (1975, p. 483), however, “the testing of main effects in the presence of interaction, with-
out additional input, is an exercise in fatuity.”

TABLE 4.5 ANOVA Summary Table for Two-Way Factorial Design

Source Sums of Squares df Mean Squares F

A (rows) SS A J − 1 SS A/J − 1 MS A/MS error
B (columns) SS B K − 1 SS B/K − 1 MS B/MS error
A × B SS AΒ cells−SSA−SSB (J − 1)(K−1) SS Α ×Β/(J − 1)(K − 1) MS A × B/MS error
Error SS total−(SSA + SSB + SS A × B) N − JK SS error/(N − JK)
Total SS total N − 1
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As an illustration, suppose the researcher investigating the effect of melatonin did find an effect, but
that the drug was only truly effective in conditions of very low noise. If ambient noise is elevated,
melatonin no longer reduces sleep onset time. In other words, an interaction is present. In light of this
interaction, if we interpreted by itself the effect of dosage without also including noise level in our
“story,” then we would be potentially misleading the reader who may mistakenly conclude taking mel-
atonin could help him get to sleep faster even if in a college dormitory (which is relatively noisy, even at
night). The take-home message is clear—if you have evidence for an interaction in your data, it is
the interaction that should be interpreted first. Interpreting main effects second is fine, so long as
you caution your reader that they do not tell the whole story. The more complete story is housed in the
interaction term.

4.6 EFFECT SIZE MEASURES

Recall that for the one-way fixed effects analysis of variance model, we computed

η2 =

J

j
n j y j − y

2

J

j = 1

n

i = 1
yij − y

2

as a measure of effect size in the sample. It revealed the proportion of variance in the dependent variable
that was accounted for by knowledge of the independent variable.

In the factorial design, we can likewise compute η2, but this time for each factor and interaction. That
is, we will have, for respective main effects and interaction,

η2A =
SS A

SS total
η2B =

SS B
SS total

η2A B =
SS A × B
SS total

Each of these, as was true for the one-way model, will give us an estimate of the variance explained in
the dependent variable given the particular source of variation. As was true for the fixed effects model,
these measures of η2 are all descriptivemeasures of what is going on in the particular sample. Measures
of η2 are biased upward, and hence the true strength of association in the corresponding population
parameters is usually less than what values of η2 suggest.

In factorial designs, since we are modeling more than a single effect, one can also compute η2Partial,
defined as:

η2Partial =
SS effect

SS effect + SS error

A look at η2Partial reveals that the denominator contains not the total variation as in η2, but rather SS for
the effect we are considering in addition to what is “left over” from the ANOVA in terms of error. For
the one-way ANOVA, η2 = η2Partial. Some authors (e.g., see Tabachnick and Fidell, 2007) recommend
the reporting of η2Partial for the reason that the size of η2 will depend on the complexity of the model.
That is, for a given effect, η2 will typically be smaller in a model containing many effects than
in a simpler model as a result of the total variation being larger in the former case. In the case of
η2Partial, we are not allowing all of these effects to be a part of our denominator, and so η2Partial, all else
equal, will be greater than η2.

Analogous to the one-way model, ω2 can also be computed in factorial models such that it provides
a better approximation of the strength of association in the population and yields a more accurate
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estimate compared to η2. Estimates ofω2 can be obtained for both main effects and interactions, though
ω2 is less common in most software than is η2 and η2Partial. For derivation and computation details, see
Vaughan and Corballis (1969).

4.7 THREE-WAY, FOUR-WAY, AND HIGHER MODELS

The cases of three or more independent variables are a natural extension of the case for two. The only
difference in terms of the partition is that in higher-order models, in addition to subtracting out
SS A and SS B, etc., (depending on how many factors we have) from the cells term, we also need
to subtract out all two-way interaction terms as well, since they are also naturally “part” of the cells
term. Hence, for a three-way model, we would have:

SS A × B × C = SS ABC cells − SS A − SS B − SS C − SS A × B − SS A × C − SS B × C

This is nothing new. The principle is the same as for the two-way. Because cell terms contain all sys-
tematic effects in an experiment, we need to subtract all effects that may have “gone into” this term.
This includes main effects and two-way interactions, which is why we include them in the subtraction.

4.8 SIMPLE MAIN EFFECTS

Given the presence of an interaction, the examination of simple main effects allows us to study the
effect associated with some level of a given factor when the level of another factor is prespecified. We
will usually want to perform simple effects analysis for any statistically significant interaction, and the
precise number of simple effects we perform should align at least somewhat with our theoretical pre-
dictions as to not unduly inflate type I error rates (or at minimum, we could use a Bonferroni-type
correction on αFW to attempt to keep the family-wise error rate at a nominal level).

To understand simple main effects, we begin first by reconsidering factor Awith J levels. Recall that
the main effect associated with this factor in a two-way factorial model is a j = y j − y . That is, the
effect aj is defined as the difference between the mean for that particular row, y j and the grand mean
of y (Recall that the periods following the letters are simply used as “placeholders” for columns k
when considering y j and for rows j and columns k when considering the grand mean, y ). In the pres-
ence of a two-way interaction, if we chose only one level k of factor B, and examined only the effects of
factor A within a given level of factor B, each of these effects would be called simple main effects.
They are analogously derived for column effects. They are effects (usually main effects, but as we will
see, they can also be interaction effects in the case of a three-way or higher ANOVA) of a factor at one
level of another factor. They allow us to “tease apart” an interaction to learn more about what generated
the interaction in the first place.

As a visualization to better understand the concept of a simple main effect, consider once more
Figure 4.1 given at the outset of this chapter, only now, with a simple main effect indicated at the level
of the first teacher (Figure 4.3). It is the simple main effect of mean achievement differences on text-
book at the first teacher.

We can define the simple main effect in Figure 4.3 as:

yjk − y k
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where yjk is the mean for a given textbook cell and y k is the mean for teacher 1, collapsing across text-
books. We can define a number of other simple main effects:

• textbook 1 versus textbook 2 @ teacher 2

• textbook 1 versus textbook 2 @ teacher 3

• textbook 1 versus textbook 2 @ teacher 4

We could also define simple main effects the other way (though not as easily visualized in
Figure 4.3):

• teacher 1 versus teacher 2 versus teacher 3 versus teacher 4 @ textbook 1

• teacher 1 versus teacher 2 versus teacher 3 versus teacher 4 @ textbook 2

We carry out analyses of simple main effects in software toward the conclusion of the chapter,
where much of this will likely make more sense in the context of a full analysis.

4.9 NESTED DESIGNS

Up to this point in the chapter, our idea of an interaction for the achievement data has implied that all
teachers were crossed with all textbooks. The layout of 2 × 4 (i.e., 2 textbooks by 4 teachers) of both
Table 4.1 and Figure 4.1 denotes the fact that all combinations of textbook and teacher are represented
and analyzed in the ANOVA.

Nesting in experimental design occurs when particular levels of one or more factors appear only
at particular levels of a second factor. For example, using the example of teachers and textbooks, if
only teachers 1 and 2 used the first textbook but teachers 3 and 4 used the second textbook, then we
would say the factor teacher is nested within the factor textbook (Table 4.6). These types of designs
are sometimes referred to as hierarchical designs (e.g., see Kirk, 1995, p. 476). Though we do not
consider nested designs in any detail in this book, it is important to understand how such designs
(should you be confronted with one) differ from the classical factorial design in which all levels
are crossed. For further details on nested designs, see Casella (2008), Kirk (1995), Mead (1988),
and Montgomery (2005).
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FIGURE 4.3 A simple main effect: Mean difference of textbook at level 1 of teacher.
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4.9.1 Varieties of Nesting: Nesting of Levels Versus Subjects

It is well worth making another point about nesting. Recall that in our brief discussion of Chapter 3,
nesting was defined as a similarity of objects or individuals within a given group, whether it be those
women receiving mammographies or those exhibiting smoking behavior, or those children within the
same classroom, classrooms within the same school, etc. It should be noted at this point that the nesting
featured in Table 4.6 in relation to factor levels, other than for a trivial similarity, is not of the same kind
of nesting as that of subjects within groups. The word “nesting” is used interchangeably in both cir-
cumstances, and much confusion can result from equating both designs.

To illustrate the important distinction, let us conceptualize a design in which the same subject is
measured successively over time. These are so-called repeated-measures designs, to be discussed
at some length in Chapter 6. Consider the data in Table 4.7 in which rats 1 through 6 were each meas-
ured a total of three times, once for each trial of a learning task. For this hypothetical data, rats were
tested to measure the elapsed time it took to press a lever in an operant conditioning chamber. The
response variable is the time (measured in minutes) it took for them to learn the lever-press response.
We would expect that if learning is taking place, the time it takes to press the lever should decrease
across trials.

In such a layout, it is often said that “trials are nested within subject” (in this case, the rats). That is,
measurements from trial 1 to 3 are more likely to be similar within a given rat than between rats.
If a rat performs poorly at trial 1, even if it improves by trials 2 and 3, we could probably still expect a
relatively lowered performance overall. On the other hand, if a rat performs very well at trial 1, this
information probably will tell us something about its performance at trials 2 and 3. That is, because
observations occur within rat, we expect trials to be correlated.

TABLE 4.6 Nested Design: Teacher is Nested Within Textbook

Textbook 1 Textbook 2

Teacher 1 Teacher 2 Teacher 3 Teacher 4

70 69 85 95
67 68 86 94
65 70 85 89
75 76 76 94
76 77 75 93
73 75 73 91

Mean = 71.0 Mean = 72.5 Mean = 80.0 Mean = 92.7

TABLE 4.7 Learning as a Function of Trial (Hypothetical Data)

Rat

Trial

Rat Means1 2 3

1 10.0 8.2 5.3 7.83
2 12.1 11.2 9.1 10.80
3 9.2 8.1 4.6 7.30
4 11.6 10.5 8.1 10.07
5 8.3 7.6 5.5 7.13
6 10.5 9.5 8.1 9.37

Trial means M = 10.28 M = 9.18 M = 6.78
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This is one crucial difference when we speak of nesting. On the one hand, we have nested designs in
which factor levels of one factor are nested within factor levels of a second factor. This is the nesting
featured in Table 4.6. On the other hand, we have nestedmeasurements, in which factor levels usually
remain the same from subject to subject (or “block to block” as we will see in Chapter 6), but that
several measurements are made on each subject. These two types of nesting are not quite the same.
The only way the two types of nesting do converge is if we consider subject to be simply another
factor. In hierarchical and multilevel models, for instance, we say that students are nested within class-
room. But what are students? In the sense of nesting, students are but another factor of which we sample
many different levels (i.e., many different subjects). Likewise, different classrooms have different stu-
dents, and if there is more similarity among students within the same classroom than between, then we
would like this similarity to be taken into account in the statistical analysis. Nesting of this sort is a
characteristic of randomized block designs and multilevel sampling. We discuss this topic further
when we survey random effects and mixed models in the next two chapters. For now, it is enough
to understand that when the word “nesting” is used, it is important to garner more details about the
design to learn exactly how it applies. Half of the battle in understanding statistical concepts is often
in appreciating just how the word is being used in the given context.

4.10 ACHIEVEMENT AS A FUNCTION OF TEACHER AND TEXTBOOK:
EXAMPLE OF FACTORIAL ANOVA IN R

Having surveyed the landscape of factorial analysis of variance, we now provide an example to help
motivate the principles aforementioned. We once more use the hypothetical achievement data for our
illustration. As discussed, instead of only randomly assigning students to one of four teachers, we also
randomly assign students to one of two textbooks. We are only interested in generalizing our findings
to these four teachers and these two textbooks, making the fixed effects model appropriate.

Our data of Table 4.1 appears below in R:

> achiev.2 <- read.table("achievement2.txt", header = T)
> achiev.2
> some(achiev.2)

ac teach text
1 70 1 1
2 67 1 1
3 65 1 1

First, as usual, we identify teacher and text as factors:

> attach(achiev.2)
> f.teach <- factor(teach)
> f.text <- factor(text)

We proceed with the 2 × 2 factorial ANOVA:

> fit.factorial <- aov(ac ~ f.teach + f.text + f.teach:f.text,
data = achiev.2)
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> summary(fit.factorial)

Df Sum Sq Mean Sq F value Pr(>F)
f.teach 3 1764.1 588.0 180.936 1.49e-12 ***
f.text 1 5.0 5.0 1.551 0.231
f.teach:f.text 3 319.8 106.6 32.799 4.57e-07 ***
Residuals 16 52.0 3.3
—
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We note that the main effect for teacher is statistically significant, while the main effect for text is
not. The interaction between teacher and text is statistically significant (p = 4.57e-07). The identical
model can be tested in SPSS (output not shown) using:

UNIANOVA ac BY teach text
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN= teach text teach*text.

To look at means more closely, we may use the package phia (Rosario-Martinez, 2013), and
request cell means for the model:

> library(phia)
> (fit.means <- interactionMeans(fit.factorial))

f.teach f.text adjusted mean
1 1 1 67.33333
2 2 1 69.00000
3 3 1 85.33333
4 4 1 92.66667
5 1 2 74.66667
6 2 2 76.00000
7 3 2 74.66667
8 4 2 92.66667

We reproduce the cell means in Table 4.8.
Remember, when trying to discern whether an interaction exists, we ask ourselves the following

question—At each level of one independent variable, is the same “story” being told at each level

TABLE 4.8 Achievement Cell Means Teacher�Textbook

Textbook

Teacher

Row Means1 2 3 4

1 yjk = y11 = 67 33 yjk = y12 = 69 00 yjk = y13 = 85 33 yjk = y14 = 92 67 y j = y1 = 78 58
2 yjk = y21 = 74 67 yjk = y22 = 76 00 yjk = y23 = 74 67 yjk = y24 = 92 67 y j = y2 = 79 50
Column
Means

y k = y 1 = 71 00 y k = y 2 = 72 5 y k = y 3 = 80 0 y k = y 4 = 92 67 y = 79 04
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of the other independent variable?What such a question begs us to do is look at means at the level of
one factor conditioned on levels of the other factor.

For example, examine the mean teacher differences at textbook 1 in Table 4.8. We note the means to
be 67.33, 69.00, 85.33, and 92.67 for the first, second, third, and fourth teachers, respectively. Notice
how these means represent a continuous increase from teachers one through four. This is what we mean
by the “story” being told at the level of textbook = 1. The actual “story” is not the actual values of the
means, but rather the differences between means. That is, the story is themagnitude and direction on
which these cell means differ. We can see the story for textbook = 2 is similar, yet not the same as for
textbook = 1 (for example, from teacher 2 to 3 denotes a mean decrease, not an increase).

Trying to discern all this in a table of cell means is quite difficult, and we are better off graphing
these cell means, which we can do via an interaction plot in R as we did in Figure 4.1 to open this
chapter. We reproduce the plot here:

> interaction.plot(f.teach, f.text, ac)
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Be sure you are able to match up the interaction plot with the cell means in Table 4.8. The plot
provides a much better picture of what is really going on in the achievement data than a table of num-
bers only could ever reveal. Is the same mean difference story of textbook differences on achievement
being told at each level of teacher? The plot helps to answer such questions. It would appear from the
plot that for the first and second teachers, textbook 2 is more effective than textbook 1. But for teacher
3, textbook 1 is more effective than textbook 2. That is, there is a reversal of means from teacher 2 to
teacher 3. For teacher 4, it appears that achievement is equal regardless of which textbook is used.

Of course, visualizing mean differences in a plot is one thing and provides strong evidence for an
interaction in the sample data. However, simply because we are seeing that mean differences of
teacher across textbook are not equal is not reason in itself to reject the null hypothesis of no interaction
and infer the alternative hypothesis that there is one in the population from which these data were
drawn. We need to conduct the formal test of significance to know if rejecting the null of no interaction
is warranted.

Always remember that differences and effects in sample data may not generalize to actual differences
and effects in the populations from which the sample data were drawn. This is the precise point of the
inferential significance test and associated p-value, to make a decision as to whether observed differ-
ences or effects potentially seen in the sample can be inferred to the population.
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Recall also that as sample size n ∞, that is, as it grows without bound, even for miniscule
sample effects or sample interaction effects, statistical significance is assured. This may make
it sound like it is sample size that is dictating whether we “find something or not.”And this is precisely
true if we are foolish enough to consider the p-value as the “be all and end all” of things. As we pointed
out in Chapter 2, when interpreting statistical and scientific evidence, the p-value should be used as
only one indicator of the potential presence of a scientific finding. The other indicator is effect size.

To reiterate and emphasize, distinguishing between statistical significance and effect size is not
only a good idea, it is essential if you are to evaluate scientific evidence in an intelligent manner. If
you are of the mind that p-values, and p-values alone, should be used in the evaluation of scientific
evidence, then you should not be interpreting scientific evidence in the first place. Being able to dis-
tinguish between what a p-value tells you and what an effect size tells you is that mandatory. It is not
merely a preferred or “fashionable” custom, it is absolutely necessary for quality interpretation of sci-
entific findings.

Another way to visualize the interaction is through R’s plot.design, where we notice that
means across teacher are quite disperse and means across textbook are quite close to one another:

> plot.design(ac ~ f.teach + f.text + f.teach:f.text, data = achiev.2)
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The plot allows us to see the main effects for teacher and textbook. Recall, however, that in the
presence of an interaction effect, it is the interaction effect that should be emphasized in interpretation,
not the main effects, as these latter effects do not tell us the “whole story.”

4.10.1 Comparing Models Through AIC

A model is considered nested within another model if it estimates a subset of the parameters estimated
in the larger model.Akaike’s information criteria, introduced in Chapter 2, is a useful measure when
comparing the fit of nested models. It can also be used for comparing the fit of non-nested models as
well, however, it is commonly used for comparing nested models. Because the main-effects-only
model can be considered a model nested within the higher-order interaction model, computing AIC
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for each model can also give us a measure of improvement in terms of how much “better” the inter-
action model is relative to the main-effects-only model. We first compute AIC for the main-effects
model:

> fit.main <- aov(ac ~ f.teach + f.text, data = achiev.2)
> AIC (fit.main)
[1] 145.8758

We next compute AIC for the model containing the interaction term:

> fit.int <- aov(ac ~ f.teach + f.text + f.teach:f.text, data = achiev.2)
> AIC (fit.int)
[1] 104.6656

Recall that a decrease in AIC values denotes an improvement in model fit. The AIC value for the
main-effects-only model is 145.88, while AIC for the model containing the interaction term is 104.67,
which helps statistically substantiate our obtained evidence for an interaction effect.

Collapsing across cells, the sample means for teacher are computed:

> library(phia)
> interactionMeans(fit.factorial, factors = "f.teach")

f.teach adjusted mean std. error
1 1 71.00000 0.7359801
2 2 72.50000 0.7359801
3 3 80.00000 0.7359801
4 4 92.66667 0.7359801

As before, these means for teacher are found by summing across the means for textbook. Are there
mean differences for teacher? Our sample definitely shows differences, and based on our obtained p-
value for teacher, we also have statistical evidence to infer this conclusion to the population fromwhich
these data were drawn. Suppose we decided to not control for per comparison error rate and decided
to simply run independent samples t-tests. In R, we can use the pairwise.t.test function and for
p.adj, specify “none” to indicate that we are not interested in adjusting our per comparison error rate:

> pairwise.t.test(ac, f.teach, p.adj = "none")

Pairwise comparisons using t tests with pooled SD

data: ac and f.teach

1 2 3
2 0.5562 - -
3 0.0018 0.0072 -
4 3.4e-08 1.1e-07 6.1e-05

P value adjustment method: none
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What is reported in the table are the p-values associated with the pairwise differences.We note the p-
value for comparing teacher 1 to teacher 2 is equal to 0.5562, which is not statistically significant at the
0.05 level. The p-value for comparing teacher 1 to teacher 4 is equal to 3.4e-08, and hence, is statis-
tically significant. The p-value for comparing teacher 2 to teacher 3 is equal to 0.0072 and is also sta-
tistically significant. The remaining p-values for comparing teacher 2 to 4 and 3 to 4 are likewise very
small and hence the differences are statistically significant.

We now perform the same comparisons, but this time using a Bonferroni correction to adjust the
per comparison error rate. We do this by requesting p.adj = “bonf”:

> pairwise.t.test(ac, f.teach, p.adj = "bonf")

Pairwise comparisons using t tests with pooled SD

data: ac and f.teach

1 2 3
2 1.00000 - -
3 0.01095 0.04316 -
4 2.1e-07 6.4e-07 0.00036

P value adjustment method: bonferroni

Though we notice all pairwise differences that were statistically significant (at 0.05) without using a
correction are still significant after using a Bonferroni correction, we note the increase in p-values for
each comparison. Comparison 2 versus 3 now yields a p-value of 0.04316, which for instance, would
no longer be statistically significant if evaluated at the 0.01 level of significance. This is because the
Bonferroni, through its adjustment of the significance level for each comparison, is making it a bit
“harder” to reject null hypotheses in an effort to keep the overall type I error rate across comparisons
at a nominal level.

We can also obtain means for the textbook factor:

> library(phia)
> interactionMeans(fit.factorial, factors = "f.text")

f.text adjusted mean std. error
1 1 78.58333 0.5204165
2 2 79.50000 0.5204165

Since there are only two levels to the textbook factor, conducting a post-hoc test on it makes no
sense. There is no type I error to adjust since there is only a single comparison. The problem of “mul-
tiple comparisons” does not exist.

4.10.2 Visualizing Main Effects and Interaction Effects Simultaneously

A very nice utility in the phia package is its ability to generate a graph for which one can visualize
both main effects and potential interaction effects simultaneously. We obtain this with plot
(fit.means):

> library(phia)
> plot(fit.means)

169ACHIEVEMENT AS A FUNCTION OF TEACHER AND TEXTBOOK



90

85

80

75

70

90

85

80

75

70

1 1

1

1
2
3
4

2 2

2

3 4

f.teach

f.teach

Adjusted mean

f.text

f.text

In the quadrants running from top left to lower right are shown the main effects for teacher and
textbook, respectively. In the quadrants running from top right to lower left are shown the sample inter-
action effects for teacher∗textbook. Both of the interaction graphs are yielding the same essential infor-
mation but in the one case (lower left), teacher is plotted on the x-axis while in the other (upper right),
textbook is plotted on the x-axis. In both graphs, an interaction effect is evident.

4.10.3 Simple Main Effects for Achievement Data: Breaking Down Interaction Effects

Recall that the purpose of conducting simple main effects is to break an interaction effect down into
components to better understand it, to learn what is promoting there to be an interaction in the first
place. They are essentially reductions of the sample space in order to zero in on analyses that tease
apart the interaction effect.

Ideally, a researcher should usually only test the simple main effects of theoretical or substantive
interest. Otherwise, the exercise becomes not one of scientific hypothesis-testing but rather one of
data-mining and exploration (and potentially, “fishing”). Data mining and exploration are not “bad”
things by any means, only be aware that if you do “exploit” your data, you increase the risk of com-
mitting inferences that may turn out to be wrong if replication (or cross-validation) is not performed.
If you do decide to test numerous simple main effects, then using a correction on the type I error rate
(e.g., Bonferroni) is advised. At minimum, you owe it to your audience to tell them which findings
resulted from your predictions, and which were stumbled upon in exploratory searches. From a sci-
entific perspective, especially when working with messy high-variability data, the two are not one
and the same.
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We evaluate mean differences of textbook across teacher:

> library(phia)
> testInteractions(fit.factorial, fixed = "f.teach", across = "f.text")

F Test:
P-value adjustment method: holm

Value Df Sum of Sq F Pr(>F)
1 -7.3333 1 80.667 24.820 0.0004071 ***
2 -7.0000 1 73.500 22.615 0.0004299 ***
3 10.6667 1 170.667 52.513 7.809e-06 ***
4 0.0000 1 0.000 0.000 1.0000000
Residuals 16 52.000
—
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R generates theHolm test, which is a multistage test, similar in spirit to the Bonferroni, but in split-
ting up α per comparisons c, adjusts c depending on the number of null hypotheses remaining to be
tested (see Howell, 2002, pp. 386–387 for details). The Holm test is thus generally more powerful than
the Bonferroni. The value of the first contrast is the mean difference between textbook 1 versus text-
book 2 at teacher 1 (i.e., 67.33 − 74.67 = −7.33), and is statistically significant. The value of the second
contrast is the mean difference between textbook 1 versus textbook 2 at teacher 2 (i.e., 69.00 −
76.00 = −7.00), also statistically significant. The third contrast is the mean difference between textbook
1 versus textbook 2 at teacher 3 (i.e., 85.33 − 74.67 = 10.67), and the fourth contrast is the mean dif-
ference between textbook 1 versus textbook 2 at teacher 4 (i.e., 92.67 − 92.67 = 0.00). The last of these,
of course, is not statistically significant.

Simple main effects of text differences within each teacher can also be tested in SPSS using:

UNIANOVA
ac BY teach text
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/EMMEANS = TABLES(teach*text) COMPARE (text) ADJ(BONFERRONI)
/CRITERIA = ALPHA(.05)
/DESIGN = teach text teach*text.

One could also test for corresponding teacher differences within each textbook by adjusting the
above code appropriately (i.e., COMPARE (teach)).

4.11 INTERACTION CONTRASTS

Whereas simple main effects analyze mean differences on one factor at a single level of another factor,
interaction contrasts constitute a comparison, not of means, but ofmean differences (i.e., a contrast
of contrasts). That is, they compare a mean difference on one factor to a mean difference on a sec-
ond factor. We can obtain values for all interaction contrasts in one large set:

> testInteractions(fit.factorial)
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F Test:
P-value adjustment method: holm

Value Df Sum of Sq F Pr(>F)
1-2 : 1-2 -0.3333 1 0.083 0.0256 0.8747843
1-3 : 1-2 -18.0000 1 243.000 74.7692 1.196e-06 ***
1-4 : 1-2 -7.3333 1 40.333 12.4103 0.0084723 **
2-3 : 1-2 -17.6667 1 234.083 72.0256 1.278e-06 ***
2-4 : 1-2 -7.0000 1 36.750 11.3077 0.0084723 **
3-4 : 1-2 10.6667 1 85.333 26.2564 0.0004079 ***
Residuals 16 52.000
–––
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The value of the first contrast is the difference between mean differences teacher 1 and teacher 2 for
textbook 1 (67.33 − 69.00 = −1.67) and teacher 1 and teacher 2 for textbook 2 (74.67 − 76.00 = −1.33).
That is, it is the difference −1.67 − (−1.33) = −0.33. This comparison is not statistically significant (p =
0.87). The value of the second contrast is the difference between mean differences teacher 1 versus
teacher 3 for textbook 1 (67.33 − 85.33 = −18.00) and teacher 1 versus teacher 3 for textbook 2
(74.67 − 74.67 = 0). That is, it is the difference −18.00 − 0 = −18.00. This comparison is statistically
significant (p = 1.196e-06). Remaining contrasts are interpreted in an analogous fashion.

4.12 CHAPTER SUMMARY AND HIGHLIGHTS

• Factorial analysis of variance is a suitable statistical method to test bothmain effects and inter-
actions in a model where the dependent variable is continuous and the independent variables are
categorical.

• The benefit of using factorial ANOVA over separate one-way ANOVAs is the ability to test for
interactions between factors.

• Whereas sample effects constituted the basis of the one-way ANOVAmodel, sample cell effects
constitute the systematic variation in the factorial ANOVA model.

• Interaction effects are computed by subtracting row and column effects from the cell effect.

• It is important to understand that cell effects are not equal to interaction effects. Rather, cell
effects are used in the computation of interaction effects.

• Just as was true in the one-way model, the error term εijk accounts for variability not explained by
effects in the model. In the case of a two-way factorial, the error term corresponds to within-cell
unexplained variation.

• A comparison of the one-way model to the two-way model is useful so that one can appreciate
the conceptual similarities between sample effects and cell effects.

• In a two-way model, the sums of squares for cells partition into row, column, and interaction
effects.

• The assumptions of the two-way factorial model parallel those of the one-way model, except that
now, errors εijk are distributed within cells, hence the requirement of the additional subscript k.

• Expected mean squares for factors A, B, and A × B reveal that MS error is a suitable denom-
inator for all F-ratios.

• Interpreting main effects in the presence of interaction effects is permissible so long as one is
clear to the fact that an interaction was also detected. Ideally, interaction terms should be inter-
preted before any main effect findings are discussed.
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• A suitable effect size measure for terms in a factorial model is η2, though it suffers from similar
problems in the factorial model as it does in the one-way model. For a less biased estimate, ω2 is
usually recommended.

• A simple main effect is the effect of one factor at a particular level of another factor. Simple main
effects are useful in following up a statistically significant interaction effect.

• Interaction contrasts can also be tested in factorial designs. These are comparisons of mean dif-
ferences on one factor to mean differences on a second factor. They are “contrasts of contrasts.”

• Factorial analysis of variance can be very easily performed using R or SPSS. Using the phia
package in R, one can generate useful interaction graphs to aid in the interpretation of findings.

REVIEW EXERCISES

4.1. Define what is meant by a factorial analysis of variance, and discuss the purpose(s) of con-
ducting a factorial ANOVA.

4.2. Explain, in general, what are meant by main effects and interaction effects in facto-
rial ANOVA.

4.3. Invent a research scenario where a two-way factorial ANOVA would be a useful and appro-
priate model.

4.4. In a two-way factorial ANOVA, explain the four reasons why a given randomly sampled data
point might differ from the grand mean of all the data.

4.5. Define what is meant by a cell effect, and why summing cell effects will always result in a sum
of zero. What do we do to cell effects so that they do not sum to zero for every data set?

4.6. Define an interaction effect.

4.7. What is the difference between a cell effect and an interaction effect?

4.8. To help make the conceptual link between the one-way model and the two-way, why is it per-
missible (and perhaps helpful) to think of aj as cell effects in yij = y + a j + eij? Explain.

4.9. What is the expected mean squares forMS within in the two-factor model? Does this expec-
tation differ from the one-way model? Why or why not?

4.10. What are the expected mean squares for factor A and factor B in the two-way factorial
model? How do these compare to the expectations for the one-way model?

4.11. What is the expected mean squares for the interaction term in the two-way model? Under the
null hypothesis of no interaction effect, what do you expect MS interaction to be?

4.12. In constructing F-ratios, what are the correct error terms for factor A, B, and A × B in the two-
way model? What argument says that this is correct?

4.13. Given the presence of an interaction effect in a two-way model, argue for and against the inter-
pretation of main effects.

4.14. Define what is meant by a simple main effect.

4.15. Discuss how an interaction graph can display a sample interaction, but that evidence might
not exist to infer a population interaction effect.
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4.16. Suppose a researcher wants to test all simple main effects in his or her data. Discuss potential
problems with such an approach, and how that researcher might go about protecting against
such difficulties.

4.17. In our computation of interaction contrasts, we interpreted two of them. Interpret the remain-
ing interaction contrasts for the achievement analysis:

1-4 : 1-2 -7.3333 1 40.333 12.4103 0.0084723 **
2-3 : 1-2 -17.6667 1 234.083 72.0256 1.278e-06 ***
2-4 : 1-2 -7.0000 1 36.750 11.3077 0.0084723 **
3-4 : 1-2 10.6667 1 85.333 26.2564 0.0004079 ***

4.18. In our analysis of the achiev.2 data, we computed the simple main effects of textbook across
teacher. Compute and interpret the simple main effects of teacher across textbook.

4.19. One way to conceptualize the testing of an interaction effect in ANOVA is to compare nested
models. Recall a model is considered nested within another if it estimates a subset of parameters
of the first model. For the achiev.2 data, though the significance test for interaction indicated the
presence of an interaction, compare themain-effects-only models to that of the model contain-
ing an interaction term through the following:

(a) Test the main-effects-only model for teacher. Name the object main.effects.
teacher in R.

(b) Test the main-effects-only model for teacher and textbook. Name the object main.
effects.textbook in R.

(c) Test the interaction model. Name the object interaction.effect in R.

(d) Compare the models in R using: anova(main.effects.teacher, main.
effects.textbook, interaction.effect). Was adding the textbook and
interaction effect worth it to the model?
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5
INTRODUCTION TO RANDOM EFFECTS
AND MIXED MODELS

This class includes all problems of estimating, and testing to determine whether to infer the existence of,
components of variance ascribable to random deviation of the characteristics of individuals of a particular
generic type from the mean values of these characteristics in the “population” of all individuals of that
generic type, etc. In a sense, this is the true analysis of variance, and the estimation of the respective com-
ponents of the over-all [sic] variance of a single observation requires further steps beyond the evaluations of
the entries of the analysis-of-variance table itself.

(Eisenhart, 1947, p. 4)

The researcher of the previous two chapters, having discovered an effect of melatonin dosage on sleep
onset, now ponders the following question:

Is sleep onset a function not only specific doses, but of melatonin dosage in general? That is, if we
randomly sampled 3 dosages from a population of potential doses, would these differing doses
account for variation in sleep onset?

In this situation, the researcher is not interested specifically in any particular set of doses. Rather, the
researcher would like to draw the conclusion that differing dose level is associated with differing
sleep onset. The effect for dose in this case would be considered a random effect, since levels of dose
are randomly drawn from a wider population of possible doses. The subset of dosages randomly
sampled for the given experiment is used to make a generalization to the population of dosage levels.
This type of design calls for the random effects analysis of variance model.

Upon further thought, not only is the researcher interested in randomly sampling three dosage levels
for use in his experiment, but just as he did for the two-way model of the previous chapter, he also
wants to include ambient noise as a factor in his design. For this factor, he is only interested in
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comparing levels no noise to some noise and hence keeps the factor fixed. He is not interested in gen-
eralizing to the population of noise levels. Hence, the researcher will now have one random factor
(dose) and one fixed factor (noise) in his experiment. This type of design calls for a mixed effects
factorial analysis of variance model.

In this chapter, we survey the random effects and mixed effects analysis of variance models. As we
did for one-way and factorial fixed effects, we develop the conceptual basis and then move on to a
consideration and development of suitable F-ratios to test effects. As we saw in previous chapters,
in a fixed effects model, whether one-way, two-way, or higher-order, expected mean squares revealed
that MS error was the correct error term for testing main effects and interactions. As we will see in the
random effects and mixed models,MS error is not always the most suitable error term for testing
effects. We will survey some of the theories as to why other error terms are more suitable in these
situations. We also provide software examples of random effects and mixed effects models in
R. For fitting mixed models in R, readers should consult Gelman and Hill (2007). Pinheiro and Bates
(2000) provide an excellent treatment of the wider mixed effects model in S-Plus. Demidenko (2004)
provides a very technical treatment along with some applications.

5.1 WHAT IS RANDOM EFFECTS ANALYSIS OF VARIANCE?

Recall that in the fixed effects models studied in previous chapters, what made the effects in these mod-
els “fixed” was the fact that over theoretical repetitions of the experiment, levels of the independent
variable were to remain constant. For example, in the melatonin experiment, the fixed factor of dosage
was so named because the researcher had a specific interest in the dosages tested. The idea of a random
effects model is that over theoretical repetitions of the experiment, treatment effects are no longer
assumed to remain fixed. Rather, treatment effects are considered to be random, and hence over numer-
ous theoretical replications of the experiment (i.e., if we were to perform them), it is reasonable to
assume that we will obtain different treatment levels when sampling each time. In a random effects
model then, the levels of a random factor are randomly sampled from a population of possible
levels that could have been included in the given experiment. When a factor is a random factor,
it implies that there is a probability distribution of levels associated with that factor, and what you
are using in your experiment is but a sample of levels from a wider set of potential levels that could
have been used. In the language of sets, the levels randomly sampled are but a proper subset of the
wider set of population levels. As Casella (2008) noted:

… by the very nature of a random factor, we are not really interested in estimating the levels of the factor that
are in the experiment. Why? Because if the factor is truly random, the levels in the experiment are nuisance
parameters, and only the variance of the factor is meaningful for inference. (p. 101)

Historically, nobody better described the concept of a random effects model than Eisenhart (1947):

… when an experimenter selects two or more treatments, or two or more varieties, for testing, he rarely, if
ever, draws them at random from a population of possible treatments or varieties; he selects those that he
believes are most promising. Accordingly Model I [fixed effects] is generally appropriate where treatment,
or variety comparisons are involved. On the other hand, when an experimenter selects a sample of animals
from a herd or a species, for a study of the effects of various treatments, he can insure that they are a random
sample from the herd, by introducing randomization into the sampling procedure, for example, by using a
table of random numbers. But he may consider such a sample to be a random sample from the species, only
by making the assumption that the herd itself is a random sample from the species. In such a case, if several
herds (from the same species) are involved, Model II [random effects] would clearly be appropriate with
respect to the variation among the animals from each of the respective herds, and might be appropriate with
respect to the variation of the herds from one another. (p. 19)
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The random effects model has sometimes historically been called a components of variancemodel
(Searle, Casella, and McCulloch, 1992) because unlike the fixed effects model in which the primary
interest is in testing null hypotheses about specific differences between population means, the primary
interest in a random effects model is in estimating variance in the dependent variable that can be attrib-
uted to main effects or interactions. This estimate of variance accounted for will apply not only to the
levels actually sampled but to the larger set of possible levels (i.e., population) from which our sample
was drawn. Hence, in random effects models, our primary goal is to estimate components of variance
rather than test null hypotheses about equalities among population means as was the case in the fixed
effects model.

5.2 THEORY OF RANDOM EFFECTS MODELS

Insight into the random effects model can be gleamed from a brief discussion of its assumptions, and
then by comparing these assumptions to those made in the previously studied fixed effects model.
Recall the one-way analysis of variance model of Chapter 3:

yij = μ + α j + εij

where μ is the grand mean, αj is a population effect estimated by the sample effect y j − y , and εij is the
error associated with observation i in group j. We first list the assumptions for the one-way random
effects model that parallel those of the fixed effects model:

• For any treatment j, the errors εij are normally distributed, with a mean of 0 (i.e., E(eijk) = 0) and
variance σ2e , which is identical for each possible treatment j. That is, N 0, σ2e . Notice that this
assumption parallels the assumption of normality in the fixed effects model.

• The values of the random variable eijk are all independent (as was also assumed in the fixed effects
model). In cases of naturally-occurring, or imposed hierarchical nesting structures, errors within
groups may be related (see Section 5.17 and Chapter 6 for details on blocking and nesting).

• σ2eijk < ∞ , that is, the variance of the errors is some finite number (which, as was true in the one-

way and two-way models, implies that it is less than infinity).

• σ2jk = 1 = σ2jk = 2 = σ2jk = JK, that is, the variances across cell populations are equal (recall this is called
the homoscedasticity assumption and is essentially the same as in the fixed effects models studied
previously).

Where the random effects model differs from the fixed effects model is in the following
assumptions:

• aj is a random variable having a distribution with mean 0 and variance σ2A. That is, unlike the
fixed effects model, the sample treatment effects aj are no longer considered to be constant across
replications. Analogous to how we can reach into a bag and take a sample of 10 objects and cal-
culate a sample mean on them, the sample mean can be considered to be a random variable that
can vary from experiment to experiment. We now need to treat aj as possibly fluctuating from
sample to sample or from experiment to experiment. They are no longer fixed as they were in
the fixed effects model.

• The values of the random variable aj occurring in the experiment are all independent of each other
(Hays, 1994).
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• Each pair of random variables aj and eij are independent. That is, the sample effects are independ-
ent of error (or if you wish, the error effects).

Note that the assumptions for a random effects model are for two different distributions, one for the
distribution of the random variable aj, and the other for eij. In the fixed effects model, we only made a
probability assumption about eij, since we assumed aj to be fixed across theoretical replications. Since
the sample effects were assumed to be fixed, it made no sense to associate them with a probability
distribution.

5.3 ESTIMATION IN RANDOM EFFECTS MODELS

There have been, historically, several different methods of estimating parameters in random effects and
mixed models. The classic method in which one computes expected values of mean squares is his-
torically known as ANOVA estimation (Wu, Yu, and Liu, 2009). This methodology has some flaws
and drawbacks, and in part because of the advances in computing power, other methods of estimation
have come into vogue, which include maximum-likelihood (ML), restricted maximum-likelihood
(REML), and minimum norm quadratic unbiased estimation. Of these, ML and REML are dom-
inant today in the estimation of variance components in both random effects and mixed models. These
methods of estimation, however, are quite complex and require iteration for their solution.

As we did in prior chapters, we focus on the method of taking expectations (ANOVA estimation),
largely because under certain conditions, results of ANOVA estimation match those of the iterative
methods. Also, a brief study of expectations in ANOVA models, I believe, goes a long way to demys-
tifying the theory behind estimation in general, and opens the door for the reader to understand more
complex methods for estimating parameters.

In what follows then, we begin with the principles developed in previously studied fixed effects
models and derive expected mean squares for random effects models. Our discussion and derivation
is based largely on the work of Hays (1994), Kempthorne (1975), Searle, Casella, and McCulloch
(1992), and Scheffé (1999), who all present thorough accounts of random effects ANOVA.

5.3.1 Transitioning from Fixed Effects to Random Effects

Recall the quantities of MS Between and MS Within as first derived in the fixed effects model of
Chapter 3:

MS between =
SS between

J − 1
=

j
n j y j − y

2

J − 1

MS within =
SS within
N − J

=
j i

yij − y j
2

N − J

Should we expect derived EMS on these values to be the same in a random effects model? Not nec-
essarily. The reason is that now we are randomly selecting the J different factor levels. They are no
longer fixed. Because of this, as we will see, our expected mean squares will change. They will change
because we are no longer interested in population mean differences. We are interested, rather, in esti-
mating variances.

Because we are randomly sampling the levels of our factor in a random effects model, we can write
the mean of the sample random effects as
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a =
i
a j

J

where aj is, as before, the sample effect y j − y for a given group J = j. This is the mean of the sample
effects for the given experiment we are conducting. Theoretically, if we were to conduct the experiment
again, and obtain new levels, we would obtain another a for that particular experiment, and so on for
additional repetitions of the experiment. What is key to understand here is that this mean will surely
vary from sample to sample due to sampling error (i.e., the error generated simply by the process of
sampling) inherent in the random effect. This is why aj has now become a random variable. We can
have some certainty, however, that the mean effect over all infinite samples that could be drawn
from the population will equal to zero. More formally, we say that the expected value of a will
be 0, E a = 0. However, the value of a in any given sample need not be equal to the long-run expec-
tation. That is, as noted by Hays (1994, p. 530), “… although the mean of the effects over all the pos-
sible treatments [emphasis added] must be 0, the mean aof the sample effects present in a given set of
data need not be 0.”

Theoretically then, in any particular experiment, the value of a is not constrained to equal 0 as it was
in the fixed effects model. The major point is that in any given model with a random effects term (other
than the obvious eij effect, which is indeed also a random effect), we must somehow deal with the fact
that these treatment effects aj are now random. Being random, their values will undoubtedly
change from experiment to experiment. This change in assumption figures prominently in the der-
ivation of the expected mean squares. We will see that because of this random quality of the sample
effects, the expected mean squares in the random effects model are quite different than in the fixed.
Likewise, null hypotheses will be defined differently as well.

5.3.2 Expected Mean Squares for MS Between and MS Within

Recall once more the reason for taking expectations of mean squares. It is to learn what parameter
our given mean squares is estimating. By calculating EMS, we can then use these to generate suitable
F-ratios to test various effects of interest, whether they be main effects or interactions.

As Hays (1994) does, we begin our derivation by conceptualizing the mean of the errors for any
group j in a one-way random effects ANOVA as

e j =
i
eij

n

where e j is the mean error for a given group,
i
eij is the sum of errors across all groups j, and n is the

sample size per group (as before, we are assuming a balanced design). If we take this for the entire
sample across J groups, we will have

e =
j i

eij

N
=

e j

J

which means that the average overall error is equal to the mean error, e j, per group. Given this, and just
as we did in previous chapters where we wrote out model equations, we can write the deviation of any
group mean y j from the grand sample mean y as

y j − y = a j − a + e j − e (5.1)
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Why does it make sense to write the deviation of a group mean from the grand mean as in (5.1)? This
makes sense, because we just mentioned that we can calculate a “mean of errors” term over all groups.
If this is the case, then it stands to reason that for a given group j, the mean error for that particular group
minus the overall mean error for the entire data will give us the “effect” of error for that particular
group, just as y j − y gives us the sample “effect” of being in a particular group j. Notice that the

sum of effects for a j − a will sum to 0, and the sum of effects for e j − e will also sum to 0; so,
as usual, we take the squared deviations, otherwise the entire right-hand side of (5.1) will always
sum to zero (this idea of the sum of unsquared effects always equaling zero should be becoming famil-
iar territory by now). Squaring (5.1), summing, and taking expectations, we get (Hays, 1994, p. 531):

E
j

y j − y
2

= E
j

a j − a
2

+ E
j

e j − e
2

(5.2)

From (5.2), we have the expected mean squares for SS between:

E
j

y j − y
2

= E
j

a j − a
2

+ E
j

e j − e
2

E MS between = nσ2A + σ2e

(5.3)

where n is the number of subjects (or objects) per group, σ2A is the variance attributable to varying levels
of factor A, and σ2e is the variance of the error. That is, the sum of squares for between is equal to a
source of variability for factor A, nσ2A, and a source of variability represented by the error term, σ2e .

The expectation for error, as was true for the fixed effects model, is the average error per group:

E MSwithin =
σ2e
J

= σ2e

That is,MS within, just as was the case for the fixed effects ANOVA, is an unbiased estimate of error
variance, and only error variance.

5.4 DEFINING NULL HYPOTHESES IN RANDOM EFFECTS MODELS

In the random effects model, null hypotheses are stated differently than in a fixed effects model. A null
hypothesis in a random effects model is not really about means. It is more about variances. Or to be
even more precise, variance components. The null hypothesis for the one-way random effects model
is given by

H0 σ2A = 0

where σ2A is the variance attributable to differing levels of factor A. If changing levels of the factor is not
associated with any change in the dependent variable in our sample, then it stands that the variance
explained, sampling error aside, should equal to 0. And since the purpose of conducting the investi-
gation is usually to show that varying levels of the factor is associated with variance explained in the
dependent variable, our alternative hypothesis is given by:

H1 σ2A > 0
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Notice that the alternative hypothesis is specified in terms of a positive value. The greater than sign
denotes that σ2A cannot be zero or negative given a rejection of the null hypothesis. This is reasonable,
since we know variance, by definition, is a positive quantity. If there are treatment effects, either for
those treatments sampled or across all treatment levels in the population, we would expect the variance
attributable to our factor to be greater than 0. For the one-way random effects model then, there are two
“components of variance” that need to be obtained. One is σ2A, the other is σ

2
e. Both of these compo-

nents add up to the total variance σ2y in the dependent variable. That is, σ2y = σ2A + σ2e. We will discuss
shortly why this is the case.

5.4.1 F-Ratio for Testing H0

How do we come up with a suitable ratio for testing H0 σ2A = 0? We do so by considering the derived
expected mean squares. As was the case for the fixed effects model, we want to isolate that part of the
expected mean squares that represents the “effect” we are interested in. In nσ2A + σ2e, that part is nσ

2
A.

That is, if our experimental treatment “worked,” (in some sense) we would expect nσ2A to be large rel-
ative to σ2e . Notice that once we have isolated the part we are interested in, as was true for the fixed
effects models of the previous chapters, the correct error term quite naturally reveals itself. Since we do
not want our effects to be “polluted” by σ2e, we will divide nσ

2
A + σ2e by σ2e. But what is σ

2
e? This is the

expectation of MS within. Hence, the F-ratio we want to produce is one which takes nσ2A + σ2e in the
numerator and divides it by σ2e . That is, our F-ratio for the one-way random effects model is:

F =
nσ2A + σ2e

σ2e

At first glance, it may appear that we can simply cross out σ2e in the numerator and σ2e in the denom-
inator. However, recall from the rules of algebra that we cannot do this since the numerator is a sum and
not a product. Had the numerator been nσ2A σ2e , where the parentheses denote multiplication, then
crossing out σ2e would have worked. But since we are dealing with addition, we cannot eliminate σ2e in
this way.

Returning to our F-ratio, we can appreciate why it makes good sense to construct it as we did. If
there are no treatment effects for our factor, then nσ2Awill be 0, since σ

2
Awould equal 0, and any n (i.e.,

sample size per group in a balanced design) multiplied by 0 will equal 0. Under this condition, we are
simply left with σ2e in the numerator, and our F-ratio would be equal to approximately

F =
nσ2A + σ2e

σ2e
=

n 0 + σ2e
σ2e

=
σ2e
σ2e

= 1

That is, we can state more formally that under H0,

E
nσ2A + σ2e

σ2e
≈ 1

If, on the other hand, H0 is false, then this implies the alternative hypothesis, σ2A > 0, and so nσ2A will
be some quantity larger than 0. Our expectation then for our ensuing F-ratio would be

E
nσ2A + σ2e

σ2e
> 1
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under a false null hypothesis. As was the case for the fixed effects model, we evaluate F on J – 1 and
N – J degrees of freedom. A statistically significant F-statistic suggests that the variance attributable
(or “accounted for”) by our factor (i.e., either the levels represented in the sample or by the population
of levels) is not equal to 0 in the population from which these data were drawn. That is, a rejection of
the null hypothesis implies that the variance in our dependent variable that is accounted for by our
factor is greater than 0.

5.5 COMPARING NULL HYPOTHESES IN FIXED VERSUS RANDOM EFFECTS
MODELS: THE IMPORTANCE OF ASSUMPTIONS

It would do well at this point to emphasize and reiterate the fact that a rejection of the null hypothesis in
a random effects analysis of variance tells us something different than a rejection of a null hypothesis in
the fixed effects models of the previous chapters. In the fixed effects model, we tested hypotheses about
means. In the random effects model, we are testing hypotheses about variances. A rejection of the null
hypothesis in a fixed effects model hints to us that somewhere among the population means, it looks
like there is a mean difference. A rejection of the null hypothesis in the random effects model tells us
that changing levels of the independent variable has the effect of explaining or accounting for variance
in the dependent variable. These two null hypotheses are not the same.

What we have noticed, however, is that the error terms used for testing both hypotheses in the one-
way fixed effects and one-way random effects model are the same. In both cases, MS error is the
correct error term. Why are they the same? They are the same (so far) because in both cases, the
one-way fixed and one-way random effects, MS error “gets the job done” in terms of isolating the term
in the numerator that we are interested in. Recall that in the one-way fixed effects model, the
expectation for MS between was equal to

E MS between = σ2e +
j
n jα2j

J − 1

The expectation for MS within was equal to σ2e , and so because we were interested in isolating

j
n jα2j

J − 1

since it contained any treatment effects present, it made sense to use σ2e as the error term. I want to
emphasize that this is why we used MS within as the error term, because it made sense to do so in
terms of what we wished to isolate in the numerator. This is the general logic of choosing error terms
in ANOVA, whether in simple designs or more complex. Deciding on a correct error term is not a
“mysterious” process once you have the expected mean squares at your disposal (on the other hand,
deriving EMS can be somewhat difficult).

The expectation for MS within is again equal to σ2e in our current random effects model, and so
because we are interested in isolating nσ2A, it again makes sense to use MS error as the error term. Also,
be sure to note that the phrase error term andMS error are not synonymous with one another. Under
our current discussion, MS error is the appropriate error term. As we will see for the two-factor random
effects model, the correct error term will be other than MS error. It is extremely important to not get
into the habit of automatically associating “error term” with “MS error.” MS error is, under
many circumstances and models, the appropriate error term, but under other models, it no
longer is. In those cases, we will seek an error term other than MS error.
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5.6 ESTIMATING VARIANCE COMPONENTS IN RANDOM EFFECTS MODELS:
ANOVA, ML, REML ESTIMATORS

Once we have computed the analysis of variance, whether in the one-way or two-way (to be discussed
shortly) or higher-order analyses, our next job is to estimate variance components for such models.
Note that in our computations of analysis of variance so far, we have not yet addressed just how quan-
tities such as σ2A and σ

2
e are estimated. All we have considered thus far is how to use these quantities to

help us derive suitable F-ratios. We first consider ANOVA estimators, and then move on to a brief
consideration of maximum likelihood and restricted maximum likelihood.

5.6.1 ANOVA Estimators of Variance Components

ANOVA estimators are easily computed, and in some cases can be used as starting values to other
forms of estimation. They are also the most historically relevant in the evolution of variance component
estimation. Recall once more the expectation for MS between found in (5.3). We can solve for σ2A and
get an unbiased estimate of σ2A:

E MS between = nσ2A + σ2e

nσ2A + σ2e = E MS between

nσ2A = E MS between − σ2e

We can then obtain our estimate of the variance component σ2A quite simply:

σ2A =
MS between-MS within

n

whereMS between andMSwithin are obtained from the ANOVA, and n is the sample size per group in
a balanced design. The next question is how to use this component. By itself, it simply represents a
quantity of variance. What we would like to obtain is a proportion of variance attributable to our
factor relative to the total variance in our dependent variable. To obtain this estimate, we need to know
that the variance of our dependent variable y can be written as a function of two components in the one-
way random effects model. The first component is σ2A, while the second component is σ2e . That is,

σ2y = σ2A + σ2e

This tells us that the total variance in a population for a one-factor experiment is composed of varia-
bility due to our factor, σ2A, and variability not due to our factor, which is relegated to the error com-
ponent, σ2e .

The question now becomes how to estimate the total variance σ2y in the random effects model.
We do so by (Hays, (1994, p. 534)):

σ2y = σ2A + σ2e

=
MS between + n− 1 MS within

n
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where σ2y, σ
2
A, and σ

2
e are respective estimates of variances σ2y, σ

2
A, and σ

2
e. Having estimated the respective

components of variance, we can now assess the proportion of variance due to, or accounted for, by our
factor. We take the following ratio, called the intraclass correlation coefficient:

ρ =
σ2A

σ2A + σ2e
=

σ2A
σ2y

(5.4)

The intraclass correlation coefficient measures the proportion of variance due to the grouping factor,
and like all proportions, ranges from 0 to 1. As noted by Kirk (1995), it is generally considered to be the
most popular measure of effect size for random effects.

A second, related interpretation of the intraclass correlation, is that it is the bivariate correlation
coefficient between any two randomly selected observations within a given level of the independ-
ent variable (Fox, 2016). That is, we can define ρ as

ρ = cor yij, yij'

where yij and yij’ are two distinct observations in a given group j. Intraclass correlations are useful in
measuring proportions of variance explained in applications of random effects and mixed models of the
current chapter as well as blocking and repeated measures models of the following chapter.

5.6.2 Maximum Likelihood and Restricted Maximum Likelihood

As discussed by Searle, Casella, and McCulloch (1992), ANOVA estimation has some weaknesses,
including the fact that negative variance estimates are possible. According to Casella (2008, p. 143),
negative variance estimates are often the fault of the estimation procedure rather than the model. Fur-
ther, Casella notes that a negative variance component should not in itself imply a conclusion that
σ2A = 0, and that when negative estimates occur, one should try a better estimation procedure, such
as restricted maximum likelihood (REML), which is a variation of maximum likelihood (ML).

Maximum likelihood estimation has its recent history beginning with a paper by Hartley and Rao
(1967) in which ML equations were derived, but required iterative calculations to estimate variance
components. At first, these computations were quite laborious, but with the advent of high-speed com-
puting, iterations are now performed with relative ease and speed. Closed-form solutions for ML esti-
mation are usually heavily dependent on normality assumptions.

Restricted maximum likelihood estimation focuses on maximizing the likelihood which is invar-
iant (i.e., does not change) to the fixed effects of the model (called the location parameters of the
model). REML estimates variance components as a function of residuals that are left over after
estimating the fixed effects by least-squares (Searle, Casella, andMcCulloch, 1992). For balanced data,
REML solutions are identical to ANOVA estimators. For unbalanced data, ML and REML are
generally preferable over ANOVA estimators (Searle, Casella, and McCulloch, 1992). Choosing
between ML and REML is not straightforward, and our best advice is to follow the recommendation
of Searle, Casella, and McCulloch (1992):

As to the question “ML or REML?” there is probably no hard and fast answer. Both have the same merits of
being based on the maximum likelihood principle – and they have the same demerit of computability
requirements. ML provides estimators of fixed effects, whereas REML, of itself, does not. But with bal-
anced data REML solutions are identical to ANOVA estimators which have optimal minimum variance
properties – and to many users this is a sufficiently comforting feature of REML that they prefer it over
ML. (p. 255)
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5.7 IS ACHIEVEMENT A FUNCTION OF TEACHER? ONE-WAY RANDOM
EFFECTS MODEL IN R

Recall once more the achiev data of Chapters 3 and 4 (reproduced in Table 5.1). In those chapters, we
designated teacher as a fixed effect. In the current analysis, we will consider it to be a random effect.

Imagine the following scenario—You are the parent of Taylor, an 11-year old child in sixth grade
elementary education. Taylor is not performing as well as you would like in school, and based on a few
verbal reports from your daughter and parents of other children, you suspect it may have something to
do with Taylor’s teacher. The principal of the school, however, comes to the teacher’s defense and
makes the following claim to you: “Student achievement is not associated with teacher. Whether a
student has one teacher or another makes no difference in how the child performs.”

In advancing your argument, you would like to accumulate some evidence to help substantiate that
teacher does play a “role” in academic achievement. You randomly sample four teachers from your
city and obtain mathematics achievement scores from the children in those classes, scored from 0 to
100, where higher scores are indicative of greater achievement. Ideally, children would also be ran-
domly assigned to teacher, but for now, our focus is simply on understanding how teacher can be con-
sidered a random effect. Even if not by experimental design, it is most likely that children were
randomly assigned to teacher from the outset (i.e., unless of course a school designates particular stu-
dents for particular teachers, in which case, random assignment is not taking place). For our purposes
here, again, we focus simply on teachers being randomly selected from a wider set of teachers.

Notice that your hypothesis calls for a one-way random effects model, since levels of teacher were
randomly sampled. Surely, you are not interested in showing differences (i.e., mean differences)
between these particular teachers you have sampled. Rather, you would like to draw the conclusion
that variance in achievement is a function of different teachers, of which these four in your design con-
stitute a random sample of teachers for the given study. We thus have the perfect setup for a one-way
random effects model. Should your study be “successful” in that you obtain evidence that variance in
achievement accounted for by teacher is greater than 0, you would be in a position to respond to the
principal of the school arguing that varying teachers is associated with variance explained in
achievement, which would stand contrary to the principal’s initial claim that regardless of teacher,
students achieve to the same degree.

We run the model using the function lmer (linear mixed effects models) in the package lme4
(Bates et al., 2014) specifying teacher as a random effect. To request maximum likelihood estimation,
we include the statement REML = FALSE (i.e., by default, lmer will run REML):

TABLE 5.1 Achievement as a Function of Teacher

Teacher

1 2 3 4

70 69 85 95
67 68 86 94
65 70 85 89
75 76 76 94
76 77 75 93
73 75 73 91

M= 71.00 M = 72.5 M = 80.0 M = 92.67
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> library(lme4)
> fit.random <- lmer(ac ~ 1 + (1|f.teach), achiev, REML = FALSE)

About the above model specification:

• ~ 1 fits an intercept to the model.

• (1|f.teach) specifies f.teach as a random factor.

• achiev is the name of the dataframe in which the data are contained (i.e., the .txt file we loaded
into R).

• REML = FALSE tells R to bypass the default estimation method (REML) and to fit the model by
maximum likelihood.

> fit.random
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: ac ~ 1 + (1 | f.teach)

Data: achiev
AIC BIC logLik deviance df.resid

157.1869 160.7211 -75.5935 151.1869 21
Random effects:
Groups Name Std.Dev.
f.teach (Intercept) 8.388
Residual 4.341

Number of obs: 24, groups: f.teach, 4
Fixed Effects:
(Intercept)

79.04

Features of the output include the following:

• AIC is equal to 157.19, and recall is useful for comparing models. Lower values of AIC indicate a
better-fitting model than do larger values. Recall that AIC jointly considers both the goodness-of-
fit as well as the number of parameters required to obtain the given fit, essentially “penalizing” for
increasing the number of parameters unless they contribute to model fit. If we were to build on the
current model by potentially adding terms, then we could observe the extent to which AIC
changes and use this in our global assessment of model fit.

• BIC yields a value of 160.72, which is also useful for comparing models. Lower values of BIC are
also generally indicative of a better-fitting model than are larger values. As was true for AIC, if we
were to fit additional parameters to the model, we would want to see a drop in BIC values to jus-
tify, on a statistical basis, the addition of the new parameters.

• Deviance of 151.19, defined as −2[logeLModel − logeLSaturated], where LModel is the likelihood
of the current model and LSaturated is the likelihood of the saturated model. Here we assume
logeLSaturated is equal to 0, hence we can also write the deviance as −2[logeLModel]. Smaller values
than not are indicative of better fit.

• The variance component for f.teach is equal to the square of the standard deviation. That is,
(8.388)2 = 70.36.
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• The variance component for residual is equal to the square of the standard deviation. That is,
(4.341)2 = 18.84.

• The only fixed effect for this model is the intercept term, and is equal to 79.04. This is the grand
mean of achievement for all observations and is not of immediate interest to us.

We could also request a summary of the fitted model (summary(fit.random)), which will
provide us with similar output as above, with the exception that variance components are included
(so we do not have to square the standard deviations ourselves).

5.7.1 Proportion of Variance Accounted for by Teacher

Having fit the model, we can now compute the proportion of variance accounted for by f.teach.
Recall that the variance component for f.teach was equal to 70.36, while the variance component
for residual was equal to 18.84. It is important to emphasize that these are variance components, they
are not proportions of variance (that they are not proportions should be evident in itself since propor-
tions range from 0 to 1).

Since σ2y = σ2A + σ2e, we can compute the estimated proportion of variance accounted for by our inde-
pendent variable, the intraclass correlation, as:

σ2A
σ2y

=
σ2A

σ2A + σ2e
=

70 36
70 36 + 18 84

=
70 36
89 20

= 0 79

That is, approximately 79% (we rounded up) of the variance in achievement is accounted for by
teacher.

Of course, this is an extremely large measure of association for data of this kind. If you actually did
find such an effect for teacher, what would it suggest? Consistent with our interpretation of the random
effects model, it would imply that 79% of students’ achievement variance in school is associated with
varying teachers, either those teachers selected in the sample or those in the population from which the
sampled levels were drawn. Does this mean that one’s teacher is somehow responsible for one’s
achievement? Surely not, at least not so based on our statistical analysis.

Still, the finding of 79%, if it were actually true, could serve as a strong counter-argument against
that of the principal’s who claimed that teacher had no “impact” on students’ achievement. Again, we
must be cautious with our interpretation, because we certainly have no evidence for anything remotely
close to causal. The word “impact” is used purposely in quotes here. Concluding that teachers
“impact” student achievement implies a directional causal-like claim, and hence must be used with
great care, if used at all.

However, such data are still rather strong evidence that changing teachers might be a good idea for
Taylor given that she is struggling in school. And the benefit of conducting a random effects model
instead of a fixed effects one is that our inferences are not restricted to generalizing to only the levels
sampled for the given analysis. We can generalize to the population of levels of which the ones fea-
tured in the given analysis were merely a random sample. Because you conducted a random effects
model, the principal cannot rebuke your evidence by accusing you of “handpicking” certain teachers
over others. Your finding of 79% is generalizable to the population of teachers of which the ones you
tested were but a random sample. This is what gives random effects their power to draw rather far-
reaching generalizations, not unlike when we randomly sample subjects, of which the particular sub-
jects you obtained in your experiment are but a sample of a larger population. Because of the way
subject “levels” were sampled, we feel more confident about generalizing to a wider population of
subjects.
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5.8 R ANALYSIS USING REML

We now fit the one-way random effects model using REML estimation, and briefly compare the output
to the previous analysis usingML. To fit by REML, simply exclude the statement REML = FALSE from
our previous model statement (fit.random <- lmer(ac ~ 1 + (1|f.teach), achiev,
REML = FALSE)):

> fit.random.reml <- lmer(ac ~ 1 + (1|f.teach), achiev)
> summary(fit.random.reml)

REML criterion at convergence: 146.3

Scaled residuals:
Min 1Q Median 3Q Max

-1.6056 -0.8696 0.2894 0.7841 1.3893

Random effects:
Groups Name Variance Std.Dev.
f.teach (Intercept) 94.87 9.740
Residual 18.84 4.341

Number of obs: 24, groups: f.teach, 4

Fixed effects:
Estimate Std. Error t value

(Intercept) 79.04 4.95 15.97

We see that the output using REML is very similar to that using ML. The variance components for
teacher and residual are 94.87 and 18.84 respectively, for a proportion of variance due to teacher equal to
0.83 (i.e., 94.87/(94.87 + 18.84) = 94.87/113.71 = 0.83), a figure slightly higher than that usingmaximum
likelihood.We could have also obtained the standard deviations byVarCorr (fit.random.reml).

5.9 ANALYSIS IN SPSS: OBTAINING VARIANCE COMPONENTS

We now conduct the identical analysis using SPSS’s VARCOMP function. We will demonstrate using
both maximum likelihood (ML) and restricted maximum likelihood (REML), and briefly compare our
results to those obtained using R.

To run the one-way random effects model using ML, we request in SPSS:

VARCOMP ac BY teach
/RANDOM=teach
/METHOD=ML

The remainder of the syntax should include a limit on the number of times you wish the algorithm to
iterate (for our example, we have chosen 50), the criteria for convergence (choosing a relatively small
number is recommended, or just use the default in SPSS as we have done), and the history of the
iteration:

/CRITERIA = ITERATE(50)
/CRITERIA = CONVERGE(1.0E-8)
/PRINT = HISTORY(1)
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Select output from the VARCOMP procedure follows. As we can see, much of it is essentially
analogous to that obtained using R (ML).

Iteration History

Iteration Log-Likelihood Var(teach) Var(Error)

0 −83.415 98.007 89.207
1 −76.353 31.190 18.842
2 −75.593 70.365 18.842
3 −75.593a 70.365 18.842

Dependent variable: ac.

Method: maximum-likelihood estimation.
aConvergence achieved.

First, we see the iteration history, showing the number of times the algorithm took to converge on a
log-likelihood statistic having requested convergence criteria (recall our criteria was 1.0E-8). Though
the numbers are rounded, we can see that from iteration 2 to iteration 3 the difference between log-
likelihood statistics is extremely small (too small to be noticeable in SPSS’s report due to rounding,
both values are equal to −75.593 in the output). We can also see that SPSS settled on variance com-
ponents of 70.365 for teach and 18.842 for error. These are the same as those estimated in R.

Next, SPSS reports the variance component estimates that appeared at the last stage of the iteration
(i.e., under iteration 3 above):

Variance Estimates

Component Estimate

Var(teach) 70.365
Var(Error) 18.842

Dependent variable: ac.

Method: maximum-likelihood estimation.

As we did in the analysis via R, we can compute the proportion of variance explained by teacher
by 70.365/(70.365 + 18.842) = 70.365/89.207 = 0.79, which is the same figure we obtained in our anal-
ysis using R.

We next briefly demonstrate the syntax and output for the same model fit in SPSS, this time fit by
REML. To conserve space, only the final variance component estimates are given:

VARCOMP ac BY teach
/RANDOM=teach
/METHOD=REML [note the change from ML to REML]

/CRITERIA = ITERATE(50)
/CRITERIA = CONVERGE(1.0E-8)
/PRINT = HISTORY(1)
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Variance Estimates

Component Estimate

Var(teach) 94.867
Var(Error) 18.842

Dependent variable: ac.

Method: restricted maximum-likelihood estimation.

Using REML as our method of estimation, we see that teacher accounts for approximately 83% of
the variance in achievement (i.e., 94.867/(94.867 + 18.842) = 94.867/113.709). These results parallel
those found in R using REML.

5.10 FACTORIAL RANDOM EFFECTS: A TWO-WAY MODEL

Having discussed the one-way random effects model and having come to the conclusion through
expected mean squares that the correct error term was indeed MS error, we now turn to consideration
of the two-way random effects model. In this case, both factors are random, which again implies that
the levels for a given experiment are sampled levels from a wider population of levels. As was true for
the one-way model, we are not interested specifically in mean differences. Rather, we are interested in
variance in the dependent variable attributable to each factor, and potentially also to their interaction.

For example, suppose that instead of merely hypothesizing an association between teacher and
achievement, we hypothesize that hours of homework is also related to achievement. However, as
was the case for teacher, we are not interested in only particular hours of homework (levels), but rather
would like to randomly sample a few hours (levels) in an effort to generalize our findings to a pop-
ulation of homework hours. Such would designate hours of homework to be a random effect. In this
model then, both teacher and homework would be random effects, giving us the two-way random
effects model:

yijk = μ + α j + βk + αβ jk + εijk

where μ is the population grand mean, αj (i.e., aj, its estimate) is the random variable for row sample
effects, βk (i.e., bk) is the random variable for column sample effects, (αβ)jk (i.e., (ab)jk) is the random
interaction effect for a given cell jk, and εijk (i.e., eijk), as before, is the error component, this time for a
given individual i in a given cell jk. Notice that the only part of the model that is not random in the two-
way random effects model is the grand mean (Hays, 1994). The rest of the model consists of random
variables, including the error component εijk.

The assumptions for the two-way random effects model parallel those of the one-way random
model, though we now have to generally assume interaction effects, (αβ)jk, to be normally distributed
with mean 0 and variance σ2AB, as well as assuming αj, βk, (αβ)jk, and εijk are all pairwise independent
(Hays, 1994).

In terms of partitioning variability, the arithmetical computations for the two-way analysis of var-
iance under the random effects model are exactly the same as those for the two-way analysis of variance
under the fixed effects model. However, as was true for the one-way model, the mean squares will be
different. Consequently, this will imply that we construct our F-ratios differently than in the fixed
effects model. As we will see, and for very good theoretical reasons, the error term for each factor
in the two-way random effects model will be MS interaction, and no longer MS error. This may
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seem counterintuitive at first consideration, but our derivation of the EMS will prove our intui-
tion wrong.

We begin by considering the expected mean squares. As was true for the one-way random effects
model mean squares, our starting point for considering these for the two-way model begins with recal-
ling features of the fixed effects model. Recall that in the two-way fixed effects model, the row and
column effects each summed to 0, that is,

j
a j = 0 and

k
bk = 0. The interaction effects, (ab)jk, also

summed to zero across rows, columns, and cells. What this meant is that in the fixed effects models,
when considering relevant row and column effects, we did not need to concern ourselves with inter-
action effects being “picked up” along the way in our computation of row or column effects, since they
summed to 0 in each case. The only thing that was being accumulated in our summation was the usual
error term, e j. For instance, a given row effect aj could be written as follows:

y j − y
2
= a j + e j − e

2
(5.5)

The major point of (5.5) is to emphasize that when taking squared deviations from the grand mean in
the fixed effects model, the deviation reflects only the fixed effect aj and mean error (i.e., e j − e).Notice
that the interaction effect does not contribute to the sums of squares for rows, because the sum of
the interaction effects equals 0 in the fixed effects model as we sum across columns. Or, again, if
you prefer, one could say that the interaction effect is included in the sum of squares for the fixed effect
aj, but that since it equals 0, it drops out of the fixed effect term. A similar situation applies to columns.
There is simply no interaction effect (i.e., the interaction effect will equal to 0) included in the column
effect. This is an extremely important point to grasp in order to understand the random effects model
under discussion, and the mixed model to be surveyed later. When generating F-ratios for fixed effects,
we were not “picking up” interaction variance, and hence had no need to consider interaction in gen-
erating suitable F-ratios to test main effects. That is, they did not figure in the expected mean squares.

5.11 FIXED EFFECTS VERSUS RANDOM EFFECTS: A WAY
OF CONCEPTUALIZING THEIR DIFFERENCES

As an aside and prior to our development of the two-way model, there is a way to understand the dif-
ference between a fixed effect and a random one, and that is in drawing on our knowledge of an “effect”
we are already very much familiar, that of eijk.

Recall that the effects aj in any given sample will not necessarily equal their long-run expectation in
a random effects model. Yes, while it is true that E a j = 0, when we simply take a random sample
from the set of all possible levels, there is no guarantee, theoretically, that a given sample will match
that long-run expectation. A similar situation applies for the bk column effects. Likewise, the sample
values for interaction effects (ab)jk, because they are now too random, do not have to match their
expected values in the sample of levels selected for the given experiment.

If you compare this with the behavior of the error term, eijk, you will notice that the error term
behaves in a similar fashion. Yes, the long-run expectation of the error is equal to 0, that is, the mean
of the error over an infinite number of repeated samples is expected to be 0. However, in any given
experiment, in any given sampling of eijk, there is no reason to suspect that eijkwill equal that long-run
expectation. This is why eijk is quite naturally regarded as a random effect (even before we knew what
random effects were!). Its “levels” (i.e., the values of eijk occurring in a given experiment) are randomly
sampled from a larger population of potential “levels” (i.e., from a larger population of potential
errors).
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As we will see, it is this element of randomness of both aj and bk that will have influential conse-
quences on ensuing expected mean squares and generation of suitable F-ratios to test effects of interest.

5.12 CONCEPTUALIZING THE TWO-WAY RANDOM EFFECTS MODEL:
THE MAKE-UP OF A RANDOMLY CHOSEN OBSERVATION

To explain how things work in a two-way random effects model, we begin with the idea that we have
been tracing since our first look at the one-way fixed effects ANOVA in Chapter 3, that of the “make-
up” of a given observation for the model under consideration. We again borrow quite heavily from the
work of Hays (1994), Kempthorne (1975), Kirk (1995), Searle, Casella, and McCulloch (1992), and
Scheffé (1999) in what follows.

For the two-way model, we begin by conceiving that the grand sample mean y will consist of aver-
age row effects, column effects, interaction effects, and mean error:

y = a + b + ab + e

The mean y j of any row will consist of the effect of that row, the mean of the column effects (because
we are summing across columns), the mean of the interaction effects within that row, and the mean
error in that row:

y j = a j + b + ab
j
+ e j

That is, notice that to calculate the mean of any row, y j , aside from a row effect, aj (which is what we
actually want to obtain), we are also “picking up” mean column effects, mean interaction effects, and
mean error. As Hays (1994, p. 542) notes, the difference between the row mean and the grand mean
(which we want to calculate as usual to get a row effect, y j − y ), will not include any column effects
(we will see that it drops out of the equation), but it does include average interaction effects as well as
row effects and error:

y j − y = a j + b + ab j + e j − a − b − ab − e

= a j − a + ab
j
− ab + e j − e

(5.6)

Notice that when we take deviations from the grand mean, of the form y j − y , which by the above

is the quantity “a j + b + ab
j
+ e j ” minus “a + b + ab + e ,” this difference does not

include any column effects, because in (5.6), b dropped out of the final solution. It canceled out, since
b − b = 0. The final solution does, however, contain row effects and interaction effects. That is, to get
a row effect y j − y , we also get the “unwanted” interaction effects. We will need a way of dealing with
these unwanted effects when we build our F-ratio. In the fixed effects models, we did not have to worry
about picking up “nuisance effects” (other than error) when computing row or column effects. Why
not? Because these nuisance factors did not exist in fixed effects models (or equivalently, they did
exist, but were equal to 0).

Similarly, for the deviation of any columnmean from the grand mean, we can define a column effect
as containing an effect for that particular column, b.k, the mean of the row effects, a (because we
are summing this time across rows), a mean interaction effect, ab

k
, and the mean error in that

column, e k:

y k = b k + a + ab
k
+ e k
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Therefore, when we take y k deviations about the grand mean, y k − y , we end up with

y k − y = b k + a + ab
k
+ e k − a − b − ab − e

= b k − b + ab
k
− ab + e k − e (5.7)

That is, a column deviation from the grand mean contains a column effect, average interaction effects,
and average error, but no row effect, because similar to (5.6) when the column effect dropped out of
the equation for the row effect, here, the row effect a drops out of the equation. Notice that a − a = 0
in (5.7).

In summary then, we need to find a way to produce our F-ratios such that the interaction in the row
and column effects is accounted for. As we will see, for the two-way random effects model, this will
call for a test of main effects MS against the interaction term instead of the MS error term as in
the fixed effects ANOVA. To understand why this is so, however, we need to once more consider the
expected mean squares.

5.13 SUMS OF SQUARES AND EXPECTED MEAN SQUARES FOR RANDOM
EFFECTS: THE CONTAMINATING INFLUENCE OF INTERACTION EFFECTS

Let us see how the interaction involvement of (5.6) and (5.7) will influence the sums of squares for
rows in the two-way random effects factorial model. Recall we derived, for the two-way fixed effects
model, the effect for row to be

SS A = SS between rows =
j

Kn y j − y
2

Now, when we substitute y j − y with

a j − a + ab j − ab + e j − e

of (5.6), we obtain

SS A = SS between rows =
j

Kn a j − a + ab
j
− ab + e j − e

2
(5.8)

which we can now reduce to, in terms of expected mean squares:

E MS A = E MS between rows = Knσ2A + nσ2AB + σ2e (5.9)

We notice (5.9) contains the interaction term, nσ2AB. What this means is that when we consider the con-
struction of a suitable F-ratio to isolate σ2A, we are going to need a denominator that includes nσ2AB so
that we can account for it being a part of the numerator of our F-test. Likewise, for factor B (columns),
in terms of EMS, we have:

E MS between columns = Jnσ2B + nσ2AB + σ2e (5.10)
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Again, the term nσ2AB appears in (5.10), whereas in the fixed effects model, this term did not appear
(or, again, if you like, it did appear, but was equal to 0). Analogous to our test of the row effect, this
will call for a different F-ratio for testing the column effect than what we had in the fixed effects model.
In the fixed effects model of the previous chapter, we simply did not have to deal with the “contam-
ination” of nσ2AB.

Finally, the expectation mean squares for the interaction term ends up being nσ2AB + σ2e, and as usual,
the expectation for MS error is σ2e. See Searle, Casella, and McCulloch (1992) for how this expectation
is obtained.

5.13.1 Testing Null Hypotheses

As was true for the one-way random effects model, the null for factor A is given by H0 σ2A = 0 This
null hypothesis, if “true,” would imply that Knσ2A = 0, and so all that is left from the expected mean
squares is

Knσ2A + nσ2AB + σ2e
0 + nσ2AB + σ2e

What if we naively decided to use good ‘ol MS error as our error term for testing this effect? Under the
null hypothesis that σ2A = 0, we would have:

nσ2AB + σ2e
σ2e

Notice that had we used MS error, we would still have an interaction term unaccounted for in the
numerator, which would mean that even if there are no effects for factor A, we might still obtain
an F appreciably greater than 1. This would be because interaction variance, nσ2AB is making its
way into the numerator and we are not effectively isolating Knσ2A. Therefore, this calls for us to use
a new error term to test the main effect for such a random effect. Which error term shall we choose
to “get rid of” nσ2AB + σ2e? We notice that this term is actually the mean square for interaction, since
recall that this is what we found the expectation for interaction to be.

Now, everything should be beginning to fall into place. The test for factor A must be against MS
interaction as it allows us to isolate the effect of interest in the numerator:

F =
MSA

MSA × B interaction
=

Knσ2A + nσ2AB + σ2e
nσ2AB + σ2e

We lose a degree of freedom for row and one for column, so the degrees of freedom on which the
above F will be tested are equal to (J − 1) and (J − 1)(K − 1).

Likewise, for factor B, to evaluate the null hypothesisH0 σ2B = 0, since there is interaction variance
again “contaminating” the effect, E MS between columns = Jnσ2B + nσ2AB + σ2e , the appropriate
denominator for testing this effect (on (K − 1) and (J − 1)(K − 1) degrees of freedom) is once more
nσ2AB + σ2e :

F =
MS B

MSA × B interaction
=

Jnσ2B + nσ2AB + σ2e
nσ2AB + σ2e
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If H1 σ2B > 0, then the term Jnσ2B will reflect this effect, and the F-statistic will be appreciably greater
than 1.0. Otherwise, we will be left with simply

F =
Jnσ2B + nσ2AB + σ2e

nσ2AB + σ2e

=
0 + nσ2AB + σ2e
nσ2AB + σ2e

=
nσ2AB + σ2e
nσ2AB + σ2e

and our expectation for F would be approximately 1.0 under the null hypothesis σ2B = 0.
What is the appropriate denominator for testing H0 σ2AB = 0? This one is easy. Since we found the

expected mean squares to be nσ2AB + σ2e , it is quite evident that the correct denominator in this case
actually is MS error, evaluated on (J − 1)(K − 1) and JK(n − 1) degrees of freedom. That is,

F =
MS interaction

MS error
=

nσ2AB + σ2e
σ2e

In summary then, we have found that in the two-way random effects model, both random effects are to
be tested against MS interaction, while the interaction term is to be tested against MS error.

5.14 YOU GET WHAT YOU GO IN WITH: THE IMPORTANCE OF MODEL
ASSUMPTIONS AND MODEL SELECTION

Even if you should never venture into models with random effects (other than, of course, the error
term in a fixed effects model, which is virtually always present), a survey of random effects is ped-
agogically instructive because it serves to illustrate that the conclusions one draws from an analysis of
data are very much contingent on the assumptions and sampling one enters with into the model-
building process. The actual arithmetic of the ANOVA may very well be the same in many cases,
but the construction of F-ratios will differ based on the assumptions you make at the very begin-
ning of your experiment. We summarize this idea with the following:

If you use a fixed effects model, when really, you are interested in interpreting a random effects
model, you will be restricted to making inferences only about the levels of the independent variable
that are present in your experiment. Your substantive conclusions are intimately tied to the model
you have tested.

There are many research papers across the sciences where researchers, after conducting a fixed
effects analysis of variance, regularly, and perhaps inadvertently, generalize their findings to levels
of the independent variable(s) not tested in the model. As emphasized by Searle, Casella, and McCul-
loch (1992, p. 22), “Users of computer packages that have F-values among their output must be
totally certain that they know precisely what the hypothesis is that can be tested by each such
F-value.”

Let us shed a bit more perspective on Searle et al.’s warning. Consider the following scenario: As a
researcher in sensation and perception, suppose you are interested in the variability explained in pupil
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size (i.e., dependent variable) when looking at various playing cards. If you select two playing cards,
say a king of spades and a jack of hearts, measure pupil size, and find there is a statistically significant
difference between pupil size for king of spades versus pupil size for jack of hearts, under the fixed
effects ANOVA, you will only be able to conclude mean differences for these two card-types only,
since you are assuming that in replications of the experiment, only these two cards would be used again
and again. Now, had you used a random effects model, and randomly sampled these two cards from
the deck, you could have concluded that differences in cards, either those selected randomly for the
given experiment or those in the population of potential cards that could have been selected, accounts
for a given amount of variance in pupil size. That is, you would be able to make a more general state-
ment in the random effects model. You would be able to say something about playing cards in general,
rather than just the two kinds you selected.

As a general guideline, when you interpret an ANOVA, always ask yourself whether the investi-
gator is assuming a fixed or random effects model, and then critically evaluate whether the data were
analyzed and interpreted in correspondence with these assumptions. Be sure to verify whether conclu-
sions outlined in results and discussion sections agree with the model actually analyzed. If they line up,
then great. If they do not, then at least you will have a sense of the limitations imposed by the analysis in
relation to the potentially much more broad conclusions drawn in the discussion of the paper.
Researchers often like to overstate conclusions in discussion sections despite the fact that their
statistical analyses do not support such conclusions.

5.15 MIXED MODEL ANALYSIS OF VARIANCE: INCORPORATING FIXED
AND RANDOM EFFECTS

Suppose that instead of merely wanting to demonstrate that teacher is associated with variance in
achievement, you also wanted to show that the lesson plan used by the teacher is also associated with
achievement. Suppose you were interested in specifically comparing five different lesson plans. Hence,
teacher remains random, but lesson is now fixed. When we have a mix of fixed and random factors, we
have themixed model analysis of variance. Pinheiro and Bates (2000) do a nice job of summarizing
the applied rationale of a mixed model:

Mixed-effects models are primarily used to describe relationships between a response variable and some
covariates in data that are grouped according to one or more classification factors. Examples of such
grouped data include longitudinal data, repeated measures data, multilevel data, and block designs.
By associating common random effects to observations sharing the same level of a classification factor,
mixed-effects models flexibly represent the covariance structure induced by the grouping of the data. (p. 3)

Purely random effects models are relatively rare. Fixed effects models are much more common
across the social, economic, and medical sciences. However, a study of random effects such as we have
undergone is quite useful, not only because it provides an understanding of the random effects model
itself, but also because it serves as a “bridge” to the mixed model, which is quite popular.

As we did for both the fixed effects and random effects models, we consider the expected mean
squares for the mixed model. When we obtain effects for the fixed factor, we will need to sum across
a random factor. Just as we summed across random factors in the two-way random effects model, we
will once again conclude that this factor (i.e., the fixed one, not the random one) be tested againstMS
interaction and not MS error.

To help better understand the denominators we will use for testing fixed and random effects, con-
sider the layout in Table 5.2. In this layout, the fixed factor, represented by rows, has six levels, and the
random factor, represented by columns, has three levels.
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In the layout of Table 5.2, we will have the following effects for the fixed factor and random factor:

• Row effects, denoted by y j − y , represent the effect of being in one row versus being in other
rows on levels of the fixed factor.

• Column effects, denoted by y k − y , represent the effect of being in one column versus being in
other columns on levels of the random factor.

The questions we need to ask ourselves about Table 5.2 are the following:

• What kind of information went into producing the row effects, y j − y ? Notice that to get these
row effects, we need to sum across a random factor. How will this summing across a random
factor impact the makeup of the given row effect?

• What kind of information went into producing the column effects, y k − y ? Notice that to get these
column effects, we need to sum across a fixed factor. How will this summing across a fixed factor
impact the makeup of the given column effect?

To get a given row effect, y j − y , because we are needing to sum across a random effect, we have
every reason to believe that the sum of interaction effects, (ab)jk, will not equal to 0 (Hays, 1994).
Hence, we will need to account for this source of variation when constructing our F-ratio. That is,
within any row of the fixed effect, we can expect there to be an average interaction effect, unequal
to zero (and possibly different from row to row), that we are “picking up” as we sum across the given
row. These row totals then, and their corresponding effects, will not only reflect row effects, but rather
will also be reflective of average interaction effects. To the contrary, to get a given column effect,
y k − y , because we are summing across a fixed effect, we have good reason to believe that the
sum of interaction effects, (ab)jk, will equal to 0. Hence, we do not need to account for this source
of variation when constructing our F-ratio (or equivalently, we can account for it, but it will be equal
to zero each time).

How are the expected mean squares impacted by all this? For the fixed effect, factor A, EMS is
equal to

E MSA = σ2e + nσ2AB +

Kn
j
α2j

J − 1

TABLE 5.2 Cell Layout for 6 × 3 Mixed Model Analysis of Variance

Random Factor (B)

Row MeansI II III

Fixed Factor (A) I yijk yijk yijk y j

II yijk yijk yijk y j

III yijk yijk yijk y j

IV yijk yijk yijk y j

V yijk yijk yijk y j

VI yijk yijk yijk y j

Column means y k y k y k y
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Notice that included in this EMS is interaction variance, nσ2AB, which is unwanted. For the random
effect, EMS is equal to

E MSB = σ2e + Jnσ2B

Notice that the only unwanted variation in this EMS is that of σ2e . The EMS for the interaction term
ends up being, quite simply

E MSAB = σ2e + nσ2AB

We now have all the information necessary to build our F-ratios. For the fixed effect, under the null
hypothesis of no effect, we get

E MSA = σ2e + nσ2AB +

Kn
j
α2j

J − 1

= σ2e + nσ2AB +

Kn
j

0 2
j

J − 1
= σ2e + nσ2AB

which suggests that the correct denominator for testing the fixed effect must be MS interaction:

F =
MSA
MSAB

=
σ2e + nσ2AB +

Kn
j

0 2
j

J − 1

σ2e + nσ2AB

Notice that it is the fixed factor (not the random factor) that is tested against the interaction term
in the mixed model.

Under the hypothesis of no column effect (random factor), σ2B = 0, since E MSB = Jnσ2B + σ2e we
end up with simply σ2e . Thus, the F-ratio for the random factor is given by

F =
Jnσ2B + σ2e

σ2e

Notice that it is the random factor (not the fixed factor) that is tested against MS error in the
mixed model.

As a recap of what we have done, we have seen that in a two-way mixedmodel, to produce the F-test
for the random effect, we divide by MS error. The reason for this is that to produce the column means,
we have to sum across the fixed factor. Those respective sums are not expected to contain anything but
variability due to levels of the random factor along with error.

For the fixed effect, however, what went into the sums for rows? That is, when we produce the sum
(or the mean) for each row (fixed effect, in our layout), what kind of variability went into each of these
row sums? There is surely (hopefully) variability due to the effect of being in that particular row and not
other rows, and there is variability due to error, as usual. But, there is another source of variability, and
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that is interaction variance. Why? Because when we tally up the cell totals for a level of the fixed factor,
we are summing across only a sample of possible levels of the random factor. Hence, if we were to do
the experiment over, and presumably sampled different levels of the random factor, the effect we would
obtain for the given level of the fixed effect might change by the very nature of summing across the
random factor in question. Hence, we have “unwanted” interaction variance in the rows and have to
account for this when generating the corresponding F-ratio. If we produced our F-ratio by dividing by
MS error, we would still have an interaction effect left over in the numerator, and thus we would have
failed to isolate the effect of interest (i.e., row effect). We would have failed to test our null hypothesis
of interest.

5.15.1 Mixed Model in R

Having laid out some of the theory for mixed models, we now estimate a mixed model on the achieve-
ment data, this time specifying textbook as a fixed factor and teacher as a random effect (Table 4.1). Of
course, there is much more to the fitting of a mixed model than shown here (e.g., plots, diagnostics to
verify assumptions, etc.). Our purpose here is only to briefly demonstrate how such a model can be fit
in R.

We use the package nlme (Pinheiro et al., 2014), and fit our model using REML (partial output
shown below):

> library(nlme)
> mixed <- lme(ac ~ f.text, data = achiev, random = ~1 | f.teach)
> summary(mixed)

Random effects:
Formula: ~1 | f.teach

(Intercept) Residual
StdDev: 9.733736 4.423571

Fixed effects: ac ~ f.text
Value Std.Error DF t-value p-value

(Intercept) 78.58333 5.031607 19 15.617940 0.0000
f.text2 0.91667 1.805915 19 0.507591 0.6176

In the code, random = ~1 | f.teach) designates the random effect. The coefficient for f.
text2 is a mean contrast between the first and second textbooks (i.e., 79.50 – 78.58 = 0.92). The
effect for textbook is not statistically significant (p = 0.6176). The variance component for f.teach
is equal to the square of 9.73, which is 94.67. Since the square of the residual is equal to 19.57, the
proportion of variance accounted for by f.teach is 94.67/(94.67 + 19.57) = 94.67/114.24 = 0.83
(rounded up from 0.829). Confidence intervals for effects can also be obtained via inter-
vals(mixed).

5.16 MIXED MODELS IN MATRICES

Having briefly introduced the mixed model for the simplest case, we now briefly consider the mixed
model in its most general matrix form:

Y = XB + ZU + E (5.11)
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where,Y is a response matrix,X is a model matrix associated with the fixed effects inB,B is a vector of
parameters corresponding to the fixed effects, Z is the model matrix associated with the random effects
in U, and E is a vector of errors, what is left over from the model after prediction of Y. We assume that
U~N(0, Σz) and E~N(0, Σε), where Σz is the covariance matrix for the random effects and Σε is the
covariance matrix for the errors contained in E. This formulation of the model often goes by the name
of the Laird-Ware form, after the seminal paper “Random-Effects Models for Longitudinal Data”
(Laird and Ware, 1982) that provided the very general form of the mixed model. Because of Y, the
model in (5.11) can also accommodate more than a single response variable, giving us themultivariate
mixed model (Timm, 2002), of which all other univariate mixed models can be considered spe-
cial cases.

5.17 MULTILEVEL MODELING AS A SPECIAL CASE OF THE MIXED MODEL:
INCORPORATING NESTING AND CLUSTERING

Our study of the mixed model lends itself well to introducing a class of modeling methodologies that is
increasing in popularity in the social and natural sciences, that ofmultilevel or hierarchical modeling.
As we discuss in the chapter to follow, mixed models are also useful for addressing problems of
repeated measurements, which usually can also be conceptualized as having a “multilevel” or “hier-
archical” structure.

The topic of multilevel modeling is beyond the scope of this book. Our goal here is to simply
conclude this chapter with a foot-in-the-door commentary as to how these models can be conceptua-
lized as a special case of the more general mixed model. Indeed, as Pinheiro and Bates (2000) note:

This model with two sources of variation, bi and εij, is sometimes called a hierarchicalmodel… or a mul-
tilevel model. The bi are called random effects because they are associated with the particular experimental
units […] that are selected at random from the population of interest. They are effects because they represent
a deviation from an overall mean.…Because observations made on the same [level of the independent var-
iable] share the same random effect bi, they are correlated. The covariance between observations on the
same [level] is σ2b corresponding to the correlation of σ2b σ2b + σ2 . (p. 8)

To properly discuss the multilevel model, it helps first to recall where we have been. Recall the
one-way fixed effects analysis of variance model of Chapter 3:

yij = y + a j + eij

In this model, we assumed the treatment effects aj to be fixed and eij to be random and normally dis-
tributed. In specifying aj as fixed, it implied that we were only interested in mean differences as repre-
sented by the factor levels actually included in the given experiment. If we were interested in the
population of levels of which the ones showing up in our experiment constituted a random sample,
then we specified aj as random, and had the one-way random effects model, which is the same as
the fixed effects model, only that now, sample effects are considered randomly sampled from a larger
population.

This type of model in which we allow aj to be random instead of fixed can, in many cases, actually
be conceived as a very simple version of what is known as themultilevel or hierarchicalmodel. What
are the levels of the “hierarchy?” The observations yij constitute level 1, and the “grouping” random
treatment effect aj constitutes level 2. We say that observations yij are nested within level 2.

For instance, suppose that in our achievement example, instead of randomly assigning students to
teacher, we simply sampled students as they were, and as already associated with a given teacher. In
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such a case, school children yij would be considered nested within teacher. If we then randomly
sampled a number of teachers (say, four, as in our previous example), but wished to generalize to a
wider population of teachers, then teacher becomes a random effect. But how is this also a multilevel
or hierarchical model? Such models emphasize the fact that observations often occur in a natural hier-
archy or as a result of one being imposed through a sampling plan (such as blocking). For our student
observations, there is expected to be a likeness about students who share the same teacher. Observa-
tions “within teacher” are more likely to be similar than observations between teachers, not nec-
essarily because of any external treatment condition imposed, but simply because these students
share the same teacher. And having the same teacher means they share the same teaching style, etc.,
and all of the other infinite innumerable (and potentially even immeasurable) elements that may be
related to sharing the same teacher. And though there is nothing technically inherent in the definition of
“multilevel modeling” that prevents us from designating all effects as fixed effects (e.g., studying and
generalizing to mean differences between teachers), when we speak of multilevel or hierarchical mod-
els, we are usually implicitly invoking the idea that we have one or more random effects. For our
example, we are usually interested in generalizing to more teachers than we have sampled for our study,
making it, as we have seen, a random effect.

Our point is thatmultilevel structures are often analyzed via mixed models. There is nothing inher-
ent in such a hierarchical structure that “demands” such data be analyzed as such, but for reasons of
both wanting to account for likeness of observations within levels of the hierarchy as well as general-
izing to levels of the treatment effect, these typically necessitate the use of such models. For a classic
introduction to multilevel and hierarchical data, see Raudenbush and Bryk (2002). Snijders and Bosker
(1999) also provide a very readable treatment.

5.18 CHAPTER SUMMARY AND HIGHLIGHTS

• In the traditional fixed effects model, the specific levels of the independent variable(s) chosen by
the experimenter are of interest, and population inferences are made about those, and only those,
levels used in the experiment. Null hypotheses are tested of the sort H0 : μ1 = μ2 = μ3 = μJ.

• In the random effects model, the experimenter is not interested specifically in the levels chosen
for the particular experiment. Instead, the levels chosen are merely regarded as a random sample
of potential levels that could have been chosen. The experimenter is interested in testing a null
hypothesis that the variance in the dependent variable accounted for by the given factor is equal to
0, that is, H0 σ2A = 0.

• The conceiving of sample effects as random rather than fixed has important implications for the
construction of F-ratios.

• In the one-way random effects model, MS error is a suitable error term for constructing the
F-ratio for a test of the random effect. Variance components may be estimated using ANOVA
estimation, ML, or REML. REML is often the estimator of choice in random effects and mixed
models.

• In the two-way random effects model, because each effect is computed by summing across a ran-
dom effect, the expected mean squares dictateMS interaction to be the correct error term for each
effect in the generation of F-ratios.

• When a model has a mixture of fixed and random effects (in addition, naturally, to the error term),
the model is a mixed model. EMS for a two-way mixed model reveals that it is the fixed effect
that is tested against MS interaction. The random effect is tested against MS error.
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• Understanding that εijk is always a random effect, whether in fixed effects, random effects, or
mixed models, helps one to better appreciate the nature of random effects in general, realizing
that their behavior will be governed by similar random processes as is true of εijk.

• An understanding of basic mixed model theory coupled with the idea of nesting structures lends
itself to conceiving the multilevel or hierarchical linear model.

• Random effects andmixed models can be fit in R using lme4 or nlme. SPSS’s VARCOMP can
also be used to estimate variance components.

REVIEW EXERCISES

5.1. Discuss why a researcher may wish to conduct a random effects analysis of variance instead
of a fixed effects ANOVA.

5.2. Elaborate on the statement “Random effects ANOVA is not about means, it is about
variances.”

5.3. Distinguish between a random effects model and a mixed effects model.

5.4. Give an example of three research scenarios that would necessitate the fitting of a random
effects model.

5.5. Give an example of three research scenarios that would necessitate the fitting of a mixed
effects model.

5.6. Distinguish the assumptions for a one-way fixed effects model from those of a one-way ran-
dom effects model. How are they similar? Different?

5.7. How are aj and eij similar in a random effects model but different in a fixed effects model?

5.8. How can it be said that, technically, virtually all ANOVA models are either random effects
or mixed models, and that purely fixed effects models rarely exist?

5.9. What are three common ways of estimating parameters in a random effects model?

5.10. What is the expected mean squares for the random factor in a one-way random effects
model?What implication does this EMS have on the construction of the corresponding F-ratio?

5.11. How does the null hypothesis for a one-way random effects model differ from that of a one-
way fixed effects model?

5.12. Given the F-ratio for a one-way random effects model, what is the expectation for F under the
null hypothesis, and why?

5.13. Define the intraclass correlation coefficient, its meaning, and its purpose.

5.14. In the chapter example of achievement as a function of teacher, explain how the interpretation
of findings would have changed had teacher been regarded as a fixed effect rather than a ran-
dom one. Would this have helped or hindered the cause of the parent in responding to the prin-
cipal’s claim? How so?

5.15. Consider the following hypothetical data in Table 5.3 on factor A (three levels) and factor B
(six levels). Factor A is a fixed factor while factor B is a random factor. Within each cell is a
single observation.
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Estimate a two-way mixed model in R using REML. How much variance is accounted for by the
random effect?

TABLE 5.3 Cell Layout of Data on Factors A and B

Factor B (R)

Factor A (F)

Means1 2 3

1 11 27 57 31.67
2 12 29 45 28.67
3 14 31 65 36.67
4 16 26 95 45.67
5 51 36 54 47.00
6 24 35 46 35.00
Means 21.33 30.67 60.33 37.44
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6
RANDOMIZED BLOCKS AND REPEATED
MEASURES

The analysis of variance is not a mathematical theorem, but rather a convenient method of arranging the
arithmetic.

(Fisher, in Wishart (1934))

In the typical between-subjects experimental design, the purpose of randomly assigning subjects to
treatment conditions is so that all of the “nuisance” factors associated with subjects that we are not
interested in studying hopefully “balance out” across treatment groups. For instance, again referring
to our melatonin example, if we were to test the effectiveness of differing doses of melatonin on sleep,
we might generate treatment groups of control, 1 mg and 3 mg. When randomly selecting a subject
from the population then randomly assigning that subject to, say, the 1 mg group, that subject carries
with him or her all characteristics unique to that individual that could, theoretically, be related to, or
have an influence on the dependent variable we are studying (in this case, sleep onset latency). Perhaps
it is true that someone with a very healthy immune system will naturally respond better to low mel-
atonin doses than someone who is not quite as healthy. What if, just by chance, the healthy individual
winds up in the 1 mg group while the weaker individual winds up in the 3 mg group? Of course, ideally,
one would hope none of these nuisance effects would “pile up” in one group or the other. But if they
did, it could have serious consequences on the interpretation of findings. One way to overcome this
potential confound is to implement what is known as a randomized block design.

In this chapter, we survey the randomized block design and repeated measures model. When we
generate blocks, we produce homogeneous subsets of subjects before administering levels of the inde-
pendent variable within each block. The goal of both the randomized block design and that of
repeated measures is to account for the source of variability that is housed within blocks. We
study these two statistical techniques in the same chapter because they are very much intimately
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related. As we will see, the subject factor in a repeated measures is, in actuality, the blocking factor in a
randomized block design. We also briefly survey how the repeated measures model can be interpreted
as the multilevel or hierarchical model discussed in the conclusion of the previous chapter. These
models take into consideration the nesting structure implicit in the data, which, in the case of repeated
measures, are the repeated measurements nested within individual.

There are a number of excellent sources on block designs, repeated measures, and longitudinal mod-
els. See Kirk (1995, Chapter 7) for a good introduction to randomized block designs. Casella (2008),
Dean and Voss (1999) give good overviews of a variety of designs, which includes advanced features
such as confounding in blocks and fractional factorial designs. Winer, Brown, and Michels (1991) is
perhaps still, the “bible” of experimental design and should also be consulted. Singer and Willett
(2003) provide extensive coverage of longitudinal models, including time-varying covariates, and
applications to nonlinear and multilevel structures. Mead (1988) provides extensive coverage of block-
ing and repeated measures designs.

6.1 WHAT IS A RANDOMIZED BLOCK DESIGN?

The primary purpose of a randomized block design is to reduce the error term estimated in an analysis
of variance through an attempt to account for one or more nuisance factors. The logic of a blocking
design is produce groups of participants who are alike (or “homogeneous”) on one or more nuisance
variables, and then carry out the random assignment of subjects to conditions within each of these
blocks. If blocking is successful, the resultingMS error term from the analysis of variance will typically
be smaller than it otherwise would have been without blocking. Such is the logic of blocking, to
account for additional sources of variation by including a source of variation called “blocks” into
the ANOVA that would otherwise be relegated to the error term. When the error term is reduced in
this fashion, we hopefully allow for a more sensitive (i.e., powerful) test of the null hypothesis we
are interested in. Why “hopefully?” Because when we block, we typically lose degrees of freedom
for generating the error term for the F-ratio (more on this shortly). Hence, it is possible that blocking
simply is not “worth it” in terms of trading off degrees of freedom for a reduction in MS error. As
summarized by Larsen and Marx (2001, p. 675), “If the block sums of squares is significantly large, as
determined by the F test…the loss of degrees of freedom to blocks was a good investment.” However,
if SS due to blocks is not that large, then losing degrees of freedom may result in a less powerful test of
the primary hypotheses in the ANOVA. The moral of the story is clear: if you are going to block,
block on one or more nuissance factors that you know will “steal” a great deal from the error term.
Otherwise, it may simply not be worth it (including the trouble and expense of initiating a blocking
protocol in your experiment). Experienced researchers usually know what to block on, because they
are intimately familiar with the literature in their area of investigation.

6.2 RANDOMIZED BLOCK DESIGNS: SUBJECTS NESTED WITHIN BLOCKS

Recall our brief discussion of the previous chapter regarding the concept of “nesting” as naturally occur-
ring in multilevel structures and often analyzed through mixed models. In randomized block designs
(and repeated measures designs, as we will see), a nesting effect is also present. However, in the typical
block or repeated measures design, we impose the nesting structure by generating blocks. If we
planned our blocks successfully, it stands that individuals within blocks will be more alike compared
to individuals between blocks. It is in this sense then that subjects are nested within blocks. As wewill
see, we may treat block as either a fixed effect or a random effect. Blocks are usually decided upon and
generated beforehand to increase the homogeneity within blocks in a deliberate fashion. For example,
if we thought that IQ level might be related to our dependent variable of interest, but we had no interest
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in studying IQ specifically through a factorial design, we could block on low,medium, and high IQ. In
this case, we, as investigators, are generating the blocks by pretesting individuals and classifying them
into one of three blocking groups. In other instances, blocks will be more naturally occurring, such as
classrooms nested within school. The distinction between whether we “choose” the blocking factor or
whether it is inherent in the data is nicely summarized by Casella (2008):

Thus, if we are in a situation where blocks can be chosen, it makes sense to choose them as disparate as
possible. This also makes good common sense, in that we want to verify our treatment comparisons on as
wide a variety of situations as possible… If the variation in blocks is not controllable…where we block on
subjects, but their use is dictated by the inherent design, then we just hope that the variation removed due to
blocking is a large piece (and it typically is). (p. 108)

In this chapter, we present only minimal theory regarding the randomized block design. The reason
for not elaborating too much on the model is because our primary reason for discussing it at all is to use
it as a precursor and introduction to the repeated measures ANOVA model, which can be conceptua-
lized as blocking taken to the extreme. In a repeated measures model, we again have a blocking effect,
though as mentioned, the blocks will actually be subjects. In such models, where subjects are tested
more than a single time, we will say that measurements are nested within subject. Repeated mea-
sures models and longitudinal models are omnipresent in social research, so our primary focus of this
chapter is to provide a reasonable, if not still quite brief, introduction to such models, and how they
deal, on a statistical level, with these nested structures.

We summarize our main points so far:

• In the one-way randomized block design, subjects are nested within blocks, meaning that subjects
within one level of the blocking factor will be more alike or similar than subjects between blocks.
Statistically, the blocking factor could be regarded as fixed or random, for the same reasons why
experimental factors were considered fixed or random in fixed, random, or mixed models of the
previous chapters.

• In the one-way repeated measures design, measurements are nested within subject, meaning
that measurements within each subject are more likely to be alike than measurements across sub-
jects. Though subject can be regarded as a fixed effect, it makes muchmore sense to designate it as
a random effect, since we are usually not specifically interested in the given subjects sampled.

The idea of blocking, though formally introduced in this chapter, is not new to us. In the paired
samples t-test in which subjects served under a pretest then posttest condition, we essentially had a
one-way repeated measures design where measurements were nested within subjects. The matched-
pairs design is, in fact, a basic block design. If one truly understands the differences between independ-
ent and paired samples t-tests, one can quite easily grasp the idea of blocking and nesting, which opens the
door to even more advanced modeling, including hierarchical and multilevel, as well as many other
ANOVA and regression models. As always, most so-called “advanced” concepts are usually rooted
in essential introductory concepts. That does not make the introductory concepts “easy” by any means,
it simply means that “advanced statistics” usually features difficult introductory concepts that take a long
time to truly master and understand. For instance, there is nothing “introductory” about understanding z-
scores, their “whys” and their “hows,” regardless of how they may first appear to an undergraduate in a
first course. Statistical concepts are deceptively very slippery.

Recall Table 2.8 from Chapter 2 (reproduced here as Table 6.1). The “matching” is meant to gen-
erate subjects within each block sharing more similarity with one another than subjects between blocks.

The problem with these types of designs is that they violate the assumption of independence that is
required for “ordinary” between-subjects analysis of variance. As a result of the nesting structure,
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either naturally occurring or imposed by the design, participants within groups (i.e., blocks) usually
cannot be considered independent of one another. Special considerations have to be taken into account
when analyzing data that have such a nesting or correlational structure.

6.3 THEORY OF RANDOMIZED BLOCK DESIGNS

We now briefly discuss the theory behind randomized block designs. As we will see, having already
studied the random effects and mixed models of the previous chapter, proposing a statistical model for
the randomized block design is somewhat of a review of concepts already learned, since these models
are ideally suited to handle the analysis of block designs.

It is first, as always, helpful to start with earlier, simpler models, then build our way up to the model
under consideration. Recall once more the one-way fixed effects model:

yij = μ + α j + εij

where yij is the score of individual i in group j, μ is the grand mean of all observations (or of all group
means, in the case of a balanced design), αj is the population treatment effect associated with group j
representing the mean difference between that particular group and the grand mean (i.e., the sample
effect is y j − y ), and εij is the error associated with individual i in group j and represents within-group
variation. Also recall that in the fixed effects model, since the investigator is only interested in making
conclusions about the specific populations operationalized by the independent variable (rather than the
population of potential levels that could have been included in the given experiment), we assumed that
the sum of treatment effects equaled 0 (i.e., αj = 0).

As we learned in the previous chapter, the one-way random effects model is similar to the fixed, only
that in the random model, αj (aj being its sample estimate) is regarded as a random effect, and thus a
rejection of the null hypothesis now implied that varying levels of our independent variable is asso-
ciated with variance in the dependent variable. This idea of explaining variance was reflected in our
null and alternative hypotheses for the random effects model, which recall were H0 σ2A = 0 and
H1 σ2A > 0, respectively. Analogous null hypotheses were proposed for the two-way random effects
model as well.

We then studied themixedmodel, in which for the two-way case, we designated one factor as fixed
and one factor as random. That model was given by:

yijk = μ + α j + βk + αβ jk + εijk (6.1)

where, as for the two-way random effects model, we had to expand our subscript on yijk to reflect obser-
vation i in cell jk. As before in the completely fixed effects model, μ was still the grand mean of all
observations and αj was the treatment effect associated with the fixed factor. Our additional term, βk,

TABLE 6.1 Matched-Pairs Design

Treatment 1 Treatment 2

Block 1 10 8
Block 2 15 12
Block 3 20 14
Block 4 22 15
Block 5 25 24
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was a random effect, which also implied that the interaction (αβ)jk was also a random effect. As usual,
the model also contained an error component εijk, representing within-cell variation that is unexplained
by the systematic portion of the model.

What, of the above models, is suitable for a blocking design? The blocking factor will usually (but
not always) be regarded as a random effect, since when we block on a nuisance variable, we are usually
not interested only in the particular blocks we have included in the experiment. We are usually inter-
ested in generalizing to the population of blocks of which our chosen blocks are but a mere sample.
Hence, assuming our treatment factor is fixed, this implies that our randomized block model will
be a mixed model. Thus, in general, we can say:

In models for randomized block designs, the blocking factor is usually regarded as random. Assuming the
other factor is fixed, this combination of a random factor and a fixed factor gives rise to the mixed model
analysis of variance as a suitable model for analyzing randomized block designs.

In what follows, we consider two specific models. The first is the nonadditive randomized block
design, which is another way of saying that the model contains the factor x block interaction term. The
second is the additive model, which means that the model does not contain the factor x block
interaction.

6.3.1 Nonadditive Randomized Block Design

The nonadditive randomized block design is usually best suited for the two-way mixed model in which
there is a main effect for both factor A and factor B, as well as an interaction. The model for the non-
additive randomized block design can be given by (6.1):

yijk = μ + α j + βk + αβ jk + εijk

where now βk is the effect associated with the blocking factor, usually considered to be random,
(αβ)jk is the interaction effect for treatment by block, and εijk is, as before, the error i associated with
cell jk. Again, the inclusion of the interaction term is what makes the model nonadditive. One point
worth noting is that through our use of subscripts, we are implying that within each treatment-block
combination, we are able to derive an MS error term, which implies that we have a design of n > 1 per
cell, the so-called replicated design. In situations in which we have only a single observation per
treatment-block combination, our model can be written as:

yjk = μ + α j + βk + αβ jk + εjk (6.2)

Notice that in (6.2), we have dropped the subscript i in yjk, (ab)jk and ejk to indicate that within each cell,
there is only a single observation (i.e., n = 1 per cell). That is, with the notation yjk, we are not having to
specify any given subject i, since it is understood that there is only a single subject per cell. This nota-
tion is not necessarily standard across authors, but rather is simply how we choose to designate the
difference between the replicated and nonreplicated designs.

As we will see, models such as this in which there is but a single observation per cell, referred to as
nonreplicated designs, present some interesting challenges in terms of analysis. Because there is
only a single observation per cell, it becomes impossible to derive εjk, the error term, because there
is no within-cell variation to speak of. Hence, in these n = 1 per cell designs, the error term and the
interaction term are confounded, which, as we will see, has implications for how F-ratios are
constructed.
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6.3.2 Additive Randomized Block Design

If we either assume or otherwise conclude (e.g., through Tukey’s test for nonadditivity, as we will
discuss later) there to be no factor x block interaction, then we can simplify and rewrite the model of
(6.1) as

yijk = μ + α j + βk + εijk

Notice that now we are no longer modeling an (αβ)jk interaction. What are the consequences of
either including or not including a factor x block interaction in the model? This depends primarily
on two things: whether treatment and block are considered fixed or random, and the extent of repli-
cation within cells. Consider the data in Table 6.2 and the accompanying cell layout of Table 6.3.

At first glance, we note differences among sample means for factor A (21.33 versus 30.67 versus
60.33). We note as well the differences among sample means between blocks in the right-hand margin
of the layout. Even if we regard block as fixed, we are usually not interested in mean differences. We

TABLE 6.2 Fictional Data on Y, A, and Block

Y A Block

11 1 1
12 1 2
14 1 3
16 1 4
51 1 5
24 1 6
27 2 1
29 2 2
31 2 3
26 2 4
36 2 5
35 2 6
57 3 1
45 3 2
65 3 3
95 3 4
54 3 5
46 3 6

TABLE 6.3 Cell Layout of Data on Y, A, and Block

Factor A

Block 1 2 3 Means

1 11 27 57 31.67
2 12 29 45 28.67
3 14 31 65 36.67
4 16 26 95 45.67
5 51 36 54 47.00
6 24 35 46 35.00

Means 21.33 30.67 60.33 37.44
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are most interested in simply removing block from the error term of the overall ANOVA. And cer-
tainly, when block is random, as we have already argued that it should be designated as such in most
contexts, mean differences are definitely not of interest. Likewise, we are usually more interested in
simply extracting it from the error term of the model as to provide a more sensitive test for factor A.

For pedagogical purposes, we run the ANOVA model specifying both factor and block as fixed
effects (where f.block in what follows designates block as a factor in R):

> block.data <- read.table("blocking.txt", header = T)
> attach(block.data)
> f.a <- factor(a)
> f.block <- factor(block)
> fit.block <- aov (y ~ f.a*f.block)
> anova(fit.block)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

f.a 2 4976.4 2488.22
f.block 5 827.8 165.56
f.a:f.block 10 2136.2 213.62
Residuals 0 0.0

Notice that R was unable to generate F-ratios for any of the effects (i.e., blank spaces under F value).
Also note that it was unable to compute a sum of squares for error. Why did this occur? It occurred
because our design is onewithout replication per cell. Recall that within each factor x block cell com-
bination, there exists only a single observation. Because of the fact that each cell has n = 1, we are
unable to generate an error term separate from the interaction term, and according to fixed effects the-
ory of previous chapters, both fixed effects in the model should be tested against MS error. Since we
cannot generate an MS error term, we cannot test either effect, the effect due to factor A or that due
to block.

Suppose now we decided not to test the factor A by block interaction, but still kept factor and
block fixed:

> fit.additive <- aov (y ~ f.a + f.block)
> anova(fit.additive)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

f.a 2 4976.4 2488.22 11.648 0.002444 **
f.block 5 827.8 165.56 0.775 0.589224
Residuals 10 2136.2 213.62

We note that when we do not test the interaction, R is able to generate F-tests for both factor and
block. Why is this so? Because without a specified interaction term, this source of variance is rele-
gated toMS residual. Notice that the mean squares of 213.62 of the previous interaction term in the
full factorial model is now the mean squares for “error” (residual) in the model without interaction.
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As the interaction term, its expected mean squares in the nonadditive case was that of interaction
variance and error. However, that term has now become simply residual. And in line with expected
mean squares for the fixed effects model, both fixed effects factor and block are tested against MS
residual. It should no longer be called MS error since variability within cell is impossible in this case.
As Casella (2008, p. 45) notes, “Within error, sometimes called ‘pure’ error, is very different from a
‘residual.’ As the name implies, a residual is something that is left over. In statistics, the residual is
left over from the model fit.” We will revisit this distinction in our study of structural equation
models later in the book.

What was the point of these two analyses? On a purely statistical level, it was a simple demonstra-
tion that single cell designs do best (at an arithmetical level, not necessarily theoretical, see Casella
(2008)) without the testing of an interaction term. On a more substantive and scientific level, however,
it served as a demonstration that the decisions you make in how you set about testing your model will
have a serious impact on the outcome of the model, even to the point of whether terms in the model are
even testable. We summarize with the following:

In an unreplicated randomized block design which includes an interaction term, if both factor and block
are specified as fixed effects, it is impossible to test either effect since we are unable to generate an error term
distinct from the interaction term. If the design did contain more than a single observation per cell, we would
be able to test each fixed effect against MS error because we would be able to distinguish an error term over
and above the interaction term (Hays, 1994). Hence, from a scientific perspective, if you are wanting to test
effects of interest, you must ensure your data meet specifications required of the model.

The above principle generalizes to virtually any model you choose to test and is not a sole property
of the randomized block design. A model can only test effects if you have supplied it with enough
information to do so. If you do not have enough information to fit your model, it does not necessarily
mean the untested effects would not have existed had you supplied the requisite data to test them.Good
models are correctly specified and are based on enough data to test effects of theoretical interest.
Plan and design your experiments carefully.

6.4 TUKEY TEST FOR NONADDITIVITY

We noted that in the nonreplicated situation, it was impossible to test for the presence of an interaction
effect, and if block were designated as fixed, we used MS residual to test our effects. It may seem
impossible then to be able to tell if an interaction exists in data for which there is only a single obser-
vation per cell. Now, had we been able to replicate per cell in the block design, then we could obtain a
true error term estimate due to having more than a single observation per cell, and be able to provide a
test for the interaction effect. But it would seem at first glance in the nonreplicated situation, testing for
an interaction effect would be impossible. However, not all hope is lost. There does exist a method for
testing the presence of nonadditivity (i.e., the presence of a factor by block interaction, in this case).
This test is known as the Tukey test for nonadditivity (1949). We do not demonstrate the test here,
though the interested reader is encouraged to consult the R package additivityTests
(Simeckova, Rusch, and Simecek, 2014) for details on how to run the Tukey test and other similar
tests. If such a test does not indicate the presence of an interaction effect, then one may assume it safe
to pool interaction variance into MS residual. If such a test does not rule out the possibility of an inter-
action, then pooling, in general, would be ill-advised, unless of course on a theoretical level you did not
hypothesize an interaction effect to begin with. As always, theory should be guiding your work, and if
not, then you should be noting that you’re engaging in exploratory pursuits rather than claiming each
“finding” as a theoretically driven result.
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6.5 ASSUMPTIONS FOR THE COVARIANCE MATRIX

Recall that in a between-subjects design, it was assumed that the covariance between treatment con-
ditions was equal to zero and that errors εi had a covariance equal to zero:

cov εij, εi'j' = 0

In between-subjects designs, we had no good reason to suspect that treatment conditions would be
correlated. For instance, in our melatonin example, we had no cause to suspect that subjects in the
1 mg group would be correlated to subjects in the 3 mg group. They were independently sampled sub-
jects, randomly assigned to conditions, and hence assuming a covariance of zero between independent
groups seemed reasonable. Even if you post-hoc correlated the groups and found a small correlation
(incidentally, all data are correlated to some degree in the sample, you will likely find one), it would still
not imply that the prior expectation of zero correlation between groups was violated. The key point is
that in a classic between-subjects design, a data point in one group has no reason for being “related” to a
data point in another group, assuming the experiment was conducted properly and subjects randomly
assigned to conditions.

In the randomized block design (and as we will see later, repeated measures design as well), as a
result of subjects being matched across treatments, there is now a reasonable expectation that meas-
urement occasions will have a covariance between them unequal to zero. The fact that we expect this
covariance to be unequal to zero requires us to consider the randomized block model in a dif-
ferent light than the classic between-subjects analysis of variance model. Instead of simply spe-
cifying an assumption about variances, we now need to also incorporate an assumption about
covariances between treatment levels (ormeasurement occasions, in the case of repeated measures).
That is, we need to also model the covariance structure that may be inherent in our data instead of
simply assuming it to be zero between treatments. As Hays (1994) put it:

The key point is that the identity or the matching of subjects not only introduces a dependency among the
resulting scores under different treatments but also creates dependencies among the treatment populations,
as reflected in the covariances. (p. 572)

That the covariance between treatments is expectantly unequal to zero will pose some challenges for
how we construe our analysis. But we can minimize or simplify this challenge by at least assuming that
the pairwise covariance across treatment populations is a constant value. Intuitively, such an assump-
tion would seem to make things “easier” than if we had to hypothesize a different covariance value for
each treatment-to-treatment pair. If we define the covariance as ρσ2T , where ρ is the population corre-
lation coefficient that is presumed constant between treatment populations (Kirk, 1995) and σ2T is the
variance in any of the treated populations (i.e., the variance of any treated group, which is assumed
constant from group to group), then we can define the common covariance between observations
sampled from any two population pairings yi1 and yi2 to be

cov yi1, yi2 = ρσ2T

We can see that ρ in ρσ2T is, in effect, drawing on a proportion of the variance. The extent to which
ρ 1.0 is the extent to which ρσ2T = σ2T , since 1 σ2T = σ2T .

The assumption of constant values for σ2T and constant values for ρσ
2
T for each treatment is known as

the compound symmetry assumption (Hays, 1994, p. 573). In a randomized block or repeated mea-
sures analysis, the assumption of compound symmetry is a sufficient condition for carrying on with the
analysis, though it is not a necessary condition. What this means is that even if compound symmetry is
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not achieved, so long as a “lesser” assumption (typically easier to achieve) known as sphericity is
satisfied, then the analysis can proceed without adjustment.

Though sphericity can be defined in terms of orthogonal contrasts (e.g., see Lane, 2016), it can also
be related to a different condition, known as homogeneity of treatment difference variances. This
states that for any two treatment levels, difference scores yi1 − yi2 will have identical variances. The
assumption of homogeneity of treatment difference variances asserts that these variances will be equal
across pairs of within-subject treatment levels. Satisfying this assumption has been shown to be equal
to satisfying the more complex definition of the assumption of sphericity (see Huynh and Feldt (1970)
and Rouanet and Lépine (1970) for details). Hence, historically it has been the assumption of spheric-
ity, not compound symmetry, that is the one under evaluation in randomized block or repeated mea-
sures models. Further details on the sphericity assumption can be found in Kirk (1995, pp. 274–279)
who provides a thorough treatment involving matrices.

Cutting to the chase, when sphericity is violated, the ensuing F-statistic from the ANOVA may not
be distributed as F from the theoretical density of F. The classic test, though not necessarily the most
powerful (e.g., see Cornell et al., 1992) used to test the null hypothesis of a spherical matrix is that
given by Mauchly (1940). Mauchly’s test has been shown to be somewhat problematic (Stevens,
2009), and the Greenhouse–Geisser adjustment to degrees of freedom is often recommended regard-
less of the outcome of Mauchly’s test.

Many researchers have evaluated the effect of violations of sphericity (e.g., see Box, 1954; Geisser
and Greenhouse, 1958; Huynh and Feldt, 1970). If sphericity is violated, one can compute an epsilon
value, ε, to assess the degree to which the covariance matrix departs from the ideal form under the null
hypothesis (Kirk, 1995). See Howell (2002, p. 487) for the computation of ε.

Some features of ε include the following:

• When the assumption of a spherical matrix is perfectly met, ε will equal 1.0.

• The extent to which the assumption of sphericity is not met, ε will decrease from 1.0.

• The minimum value of ε is 1/(J − 1), the lower bound on ε, where J is the number of levels of the
within-subjects factor.

When the assumption of sphericity is not tenable, the Greenhouse–Geisser conservative F-test
(Geisser and Greenhouse, 1958) is recommended by most authors (though other adjustments such
as the Huynh–Feldt exist, to be discussed in our software examples later). The Greenhouse–Geisser
adjusts degrees of freedom downward, making it more difficult to reject the null hypothesis than it
would be if sphericity were not violated (i.e., the test “punishes” for not attaining sphericity). We will
discuss and interpret the G–G adjustment when we perform a repeated measures analysis using soft-
ware later in this chapter.

6.6 INTRACLASS CORRELATION

Recall the population intraclass correlation of the previous chapter in our discussion of random effects
and mixed models, of which an estimate of ρ was given by:

ρ =
σ2A

σ2A + σ2e
=

σ2A
σ2y

In our discussion of random effects models, the intraclass correlation was based on the fact that within
any treatment population there existed two sources of variance, σ2A and σ

2
e, such that the total variation,

σ2y could be regarded as a sum of these two components, σ2y = σ2A + σ2e. We will now use the intraclass
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correlation to demonstrate the influence of pairwise treatment covariance in the randomized block or
repeated measures analysis of variance, where now σ2T replaces σ2y .

From our definition of ρ, some algebra reveals that

ρ =
σ2A
σ2T

ρσ2T = σ2A

which also implies that

σ2e = σ2T 1 − ρ (6.3)

which in words means that error variance is equal to a proportion of the variance σ2T. Equation (6.3) is
the case since the balance of whatever ρ is not accounting for in ρσ2T = σ2A is 1 − ρ, which yields the
right-hand side. And since whatever is not accounted for is error, this quantity of σ2T 1 − ρ is thus
defined as such, σ2e. This form of σ2e will be useful in our consideration of the expected mean squares
for repeated measures models. By (6.3), we can now assess the effect that ρ has on our estimate of σ2e.
For instance, for ρ = 0, it follows that

σ2e = σ2T 1 − ρ

= σ2T 1 − 0

= σ2T

That is, under the condition that the intraclass correlation is equal to 0, the factor (which is blocks in a
block design, and subjects in a repeated measures design) is accounting for no variance, and the total
variance σ2T within any treated group is made up of simply σ2e . When ρ is equal to 1, on the other
hand, then

σ2e = σ2T 1 − ρ

= σ2T 1 − 1

= 0

Under this scenario, the factor (again, which is blocks in a block design, and subjects in a repeated
measures design) is accounting for 100% of the variance, and hence σ2e is equal to 0. This would imply
that block (or subject) is accounting for all the variance. As noted by Hays (1994, p. 574), “a large
correlation ρ implies a large MS value, and hence a large proportion of variance accounted for by sub-
ject differences… a large correlation ρ actually lowers the proportion of MS treatments or (MS A) that
is caused by error variability.”

Of course, neither of these two extremes (i.e., ρ = 0 or ρ = 1) will usually dominate in practice, and ρ
will often be a value somewhere between the range of 0 and 1. The point of considering the upper and
lower limits of σ2e under maximum and minimum values for ρ is simply to reveal how influential ρ is in
either increasing or decreasing σ2e. That is, the intraclass correlation has an impact on the size of σ2e.
This should not be surprising, however, since the inclusion of any factor in an ANOVA, if the factor is
worthwhile, should typically help to reduce (or account for) error variance. In the current case, block or
subject is the factor we are considering, and what the above shows is that if the blocking or subject
factor is important to the design (i.e., if repeated measures are effective from a statistical point of view),
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then it should result in a reduction in error variance, which is precisely what an experimenter desires,
that of having a way to reduce unexplained variation as to isolate and emphasize treatment differences
for the factor of interest. For a classic (and excellent) discussion of intraclass correlation, see none other
than Fisher (1925).

6.7 REPEATED MEASURES MODELS: A SPECIAL CASE
OF RANDOMIZED BLOCK DESIGNS

A generalization of the randomized block design is the repeatedmeasures model, often calledwithin-
subjects or longitudinal models. Recall that in a randomized block design, each block consisted of
subjects homogeneous as possible on one or more nuisance factors. This was done to make subjects
“alike” as much as possible within each block. What if we wanted to take “likeness” to its absolute
extreme? Instead of blocking on subjects similar to one another, what if we blocked on the same sub-
ject? Repeated measures models take the idea of blocking to the limit, where now each block consists of
the same subject. As was true for the block design, the hope is that the similarity of a subject’s
responses under testing conditions can be exploited and the covariance between testing conditions
can be removed to boost sensitivity and power of the ensuing F-test.

Before we discuss repeated measures models further, it should be emphasized that since you have
already been exposed to randomized block designs, you are already “familiar” with repeated measures
models. The only difference is the criteria used to form the blocks. The skill required to understand
statistical modeling is in part disentangling the jargon used in different fields. Some writers, for exam-
ple, Kirk (1995), discuss the randomized block design at length and make only minor mention of
repeated measures. Other writers present repeated measures models without hardly any mention of
the underlying randomized block theory. This is fine too since longitudinal data dominates many fields,
and data analyzed on the same subjects over time have their own peculiarities that may not be present in
purely blocking designs. The approach followed in this book is that if one understands the randomized
block design, one has their foot in the door of even the most complex of analysis of variance models,
which include the repeated measures model as a special case. Indeed, a course or book of the sort “Ran-
domized Block Designs and Their Special Cases” would not be an unreasonable title for an all-
inclusive analysis of variance text, since so many ANOVA models can be subsumed under that title.
What unites them all is covariance and correlation as well as fixed and random factors. For instance,
time series analysis is another type of modeling technique that assumes a covariance between mea-
surements at different time points (Upton and Cook, 2002), often going by the name of autocorrela-
tion. These models are useful for analyzing such things as seasonal variation and other components that
help explain variance in the given sequence of measurements. These models are beyond the scope of
this book, though we make a brief note about them in Chapter 7. The interested reader is encouraged to
consult Chatfield (2019) for more details.

6.8 INDEPENDENT VERSUS PAIRED-SAMPLES T-TEST

We develop the idea of repeated measures by building on familiar tests previously learned, those of the
independent samples and paired samples t-tests. Recall the independent samples t-test:

t =
y1 − y2
s21
n1

+
s22
n2
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Recall that the denominator
s21
n1

+
s22
n2

is called the estimated standard error of the difference

between means. All else equal, the lower the standard error of the difference, the greater the resulting
t, because any observed difference in means y1 − y2 in the numerator compared to a number in the
denominator that gets increasingly smaller has the effect of making the numerator look quite large
and impressive.

For example, imagine for a given experiment that the difference in means were equal to y1 − y2 = 5.
Suppose the standard error of the difference were equal to 10. Then the value of the resulting twould be
5/10 = 0.5. Now, contrast this to the situation where the value of the standard error of the difference was
instead equal to 1. The value of the resulting t would be 5/1 = 5. Notice that in the second scenario,
where we have a much smaller standard error of the difference, this is equated with a much larger t-
statistic (and hence, yielding more strength against the null hypothesis). Anything that makes the
standard error smaller in any statistical test serves to boost power, because all else equal, it gives
us a bigger statistic. As Casella (2008) remarks in his discussion of a wide variety of models, “It’s all
about the denominator!” (p. 5). Indeed, from a statistical point of view, it is. From a scientific point of
view, we are much more concerned with the numerator. Being mindful of this distinction can facilitate
understanding a majority of significance tests.

Now, recall the paired-samples t-test:

t =
y1 − y2

s21
n1

+
s22
n2
− 2cov y1, y2

where the variance of the difference was equal to, in the denominator,

s21
n1

+
s22
n2

− 2cov y1, y2

The subtraction of 2cov y1, y2 in the denominator served to lower the variance of the difference. The
extent to which pairs of observations had a covariance unequal to 0 was the extent to which the paired-
samples t-test provided a more sensitive test (i.e., a more powerful test) relative to the independent-
samples t-test. The matching of subjects exploited the covariance among columns.

When we consider the wider and more elaborate repeated measures model, the concept is analogous
to the paired samples t-test used in matched-pairs designs. The essential idea is to exploit the corre-
lational structure between measurement conditions so that we may use this information to extract var-
iation from the error term in our ensuing F-ratios.

6.9 THE SUBJECT FACTOR: FIXED OR RANDOM EFFECT?

In the randomized block design, as mentioned, we usually regarded block as a random factor, since in
most circumstances we were not only interested in the particular blocks sampled but were interested
instead in generalizing to the population of blocks of which our selected sample was simply a randomly
chosen subset. Our argument was that in most contexts, block should be regarded as a random factor,
though ultimately this decision should be made by the investigator, assuming adequate information
(i.e., sample size per cell) to estimate the given model.

In repeated measures models, it stands to reason that our new blocking factor (i.e., subjects) again
be designated as a random effect. It is easy to understand why this should be so. If you have sampled,
say, 10 subjects in a repeated measures design, are you actually interested in these particular
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subjects? Usually not. What you are most often interested in is in generalizing to the population of
subjects of which your chosen subjects is merely a sample. This fits the precise definition of a random
effect, and hence in a repeated measures design, the blocking factor subject will under most circum-
stances be designated as random.

Indeed, in most statistical models, whether by the name of fixed, random, or mixed, “subject” or
“observation” is implicitly regarded as a random effect. Why is this so? In the hypothetical sample
of 10 subjects, if we were truly only interested in these particular 10 subjects, then subject would
no longer be considered a random effect. It would be considered a fixed effect, since in hypothetical
replications of the experiment, the same 10 subjects would be used again. Further, the same “level”
(not necessarily the samemeasured value) of error ε1, ε2, ε3, etc., would show up in accordance with the
same “level” of subjects s1, s2, s3, etc. However, beyond this correspondence, level of error could still
reasonably be expected to be sampled at random from a population of levels and hence fluctuate from
sample to sample regardless of whether subject is fixed or random. By its very nature then, εi is virtually
guaranteed to be a random effect because one can argue that its “level” is determined by more than
simply the level of subject chosen. Theoretically, its true levels from experiment to experiment
may not even be “knowable” if they are truly governed by a random process.

6.10 MODEL FOR ONE-WAY REPEATED MEASURES DESIGN

Recall that in the randomized block design, we distinguished between nonadditive and additivemod-
els. The nonadditive model contained a factor x block interaction. The additive model did not. For the
repeated measures model, we are usually not interested in modeling a factor x subject interaction, and
so our repeated measures model will usually be an additive one of the kind we are already familiar:

yjk = μ + α j + βk + εjk

where αj is a fixed effect and βk is the random effect associated with each subject. Aside from not hav-
ing much interest in modeling the interaction, there is an additional reason for not including the inter-
action effect. Recall the issues that presented themselves in the randomized block design when each
cell contained a single observation. In such situations, we could not distinguish an error term distinct
from the interaction term due to the fact that each cell contained only a single observation. In the
repeated measures model, since we will also have a single observation per cell, the same issue that
was present in the randomized block design exists in the repeated measures model. That is,MS error
in an unreplicated (i.e., n = 1 per cell) repeated measures design cannot be distinguished from the
factor x subject interaction term. Hence, by not specifically modeling (αβ)jk, we “free up” this term
to serve as the residual term for the factor in our model that we are interested in testing.

6.10.1 Expected Mean Squares for Repeated Measures Models

Just as we did for ANOVAmodels of previous chapters, the designation of fixed versus random effects
helps inform us on how to generate suitable F-ratios to test effects of interest. To learn of the appro-
priate denominators, we need to consider the expected mean squares for the various sources of
variation. In a one-way repeated measures model, we will have three sources of variation: (1) subjects,
(2) treatments, and (3) residual. As we will see, the residual term here will usually result from not
testing the subject x treatment interaction effect, and hence as we demonstrated earlier in the chapter
with the blocking design, the interaction term can be pooled into the residual so that the main effect(s)
of interest have a suitable denominator for generating the ensuing F-ratio.
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We do not detail the derivation of the expected mean squares here. The interested reader can find
details in Hays (1994) and Kirk (1995). It suffices, for now, to know why we are wanting to compute
expected mean squares and how to interpret them in generating F-ratios. The expected mean squares
for the additive repeated measures model turn out to be:

E MS subjects = σ2e + Kσ2subjects

E MS treatment = σ2e +

J
j
α2j

K − 1

E MS residual = σ2e = σ2T 1 − ρ

where J is the number of rows for subjects and K is the number of columns for treatment (i.e., the
treatment on which the repeated measurements are being taken). It is easy to see from the expected
mean squares that for a test of treatments, the correct denominator is MS residual, since when α2j =
0, we have

E MS treatment = σ2e +

J
j
02j

K − 1
= σ2e

for which σ2e is the expectation for MS residual alluded to just above, which recall, is conflated with the
subject x treatment interaction. That is, arithmetically, the residual is the subject x treatment
interaction term.

6.11 ANALYSIS USING R: ONE-WAY REPEATED MEASURES:
LEARNING AS A FUNCTION OF TRIAL

To demonstrate a simple, one-way repeated measures analysis of variance, consider the data in
Table 6.4 (also briefly featured in Chapter 4) where rats were tested three times to measure the elapsed
time it took to press a lever in an operant conditioning chamber. The response variable is the time
(measured in minutes) it took for the rats to learn the lever press response. We would expect that if
learning is taking place, the time it takes to press the level should generally decrease across trials.

TABLE 6.4 Learning as a Function of Trial (Hypothetical Data)

Trial

Rat 1 2 3 Rat Means

1 10.0 8.2 5.3 7.83
2 12.1 11.2 9.1 10.80
3 9.2 8.1 4.6 7.30
4 11.6 10.5 8.1 10.07
5 8.3 7.6 5.5 7.13
6 10.5 9.5 8.1 9.37
Trial Means M = 10.28 M = 9.18 M = 6.78
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We identify our object in R as learn and request R to read headers from the data:

> learn <- read.table("rat.txt", header = T)
> library(car)
> some(learn)

rat trial time
1 1 1 10.0
2 1 2 8.2
3 1 3 5.3

Note that the data are in so-called long format, with each record for rat having a single row (i.e.,
there are three rows for each rat representing the three different measurement occasions). When the
same data are analyzed in SPSS, we will require the data to be in wide format, where each variable
header will represent a given trial.

Before running any inferential tests, we generate a qplot to get a first glimpse of the data:

> attach(learn)
> library(ggplot2)
> qplot(trial, time)

12

10

8

6

1.0 1.5 2.0 2.5 3.0
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im

e

It is evident from the plot that response time generally decreases over trials. To prepare the data for
analysis, we first generate a factor variable from trial and from rat:

> f.trial = factor(trial)
> f.rat = factor(rat)
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We first conceptualize, for demonstration only, the model as one of a randomized block design:

> rat.block <- aov(time ~ f.trial + Error(block/f.trial), data = learn)

Note that in the above model formula, (block/f.trial) communicates the fact that trials are
nested within block. Of course, our block factor is actually rat. Hence, in the spirit of repeated mea-
sures, we write out the model as:

> rat.block <- aov(time ~ f.trial + Error(f.rat/f.trial), data = learn)

What we have just specified is a repeated measures analysis where trial measurements are nested
within rat. The point of the competing model formulations is simply to reveal the analogy of a block
design versus a repeated measures design so you may observe their similarity. In the latter, our blocks
are subjects (rats in this case). When we run the analysis, we obtain:

> summary(rat.block)

Error: f.rat
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 35.62 7.124

Error: f.rat:f.trial
Df Sum Sq Mean Sq F value Pr(>F)

f.trial 2 38.44 19.220 72.62 1.11e-06 ***
Residuals 10 2.65 0.265
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We note a statistically significant effect for trial (p = 1.11e–06).
We contrast this with a slightly different situation. Consider the data in Table 6.5, in which we have

added a second factor to the design (i.e., treatment). Perhaps some rats were treated with a drug before
the trials began, and in addition to response time, we were interested in estimating the effect of such a
treatment.

TABLE 6.5 Learning as a Function of Trial and Treatment (Hypothetical Data)

Treatment Rat

Trial

Rat Means1 2 3

Yes 1 10.0 8.2 5.3 7.83
No 2 12.1 11.2 9.1 10.80
Yes 3 9.2 8.1 4.6 7.30
No 4 11.6 10.5 8.1 10.07
Yes 5 8.3 7.6 5.5 7.13
No 6 10.5 9.5 8.1 9.37

Trial Means M= 10.28 M = 9.18 M= 6.78
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We run this analysis as follows in R:

> f.treat <- factor(treat)
> rat.two.way <- aov(time ~ f.trial*f.treat + Error(f.rat/f.trial),
data = learn)

Note carefully again how we specified the error term. The statement Error(f.rat/f.trial)
communicates that measurements on trial are nested within rat. Recall that this does not literally
mean that trials are nested within rat, since it is clear from the data layout that each rat is receiving the
same trials. To say that trials (or any other factor) are nested within rat would imply that some rats got,
say, trials 1, 2, and 3, while others received say, trials 4, 5, and 6. Of course, this would not make sense
in a repeated measures such as this, but it is still worth mentioning so that the distinction betweenmea-
surements being nested within rats versus trials being nested within rats is conceptually clear. In
the current situation, they amount to the same thing, yet this still serves as a good example to help
understand the nature of nesting. In general, when you come across nesting in research papers, pay
close attention to what exactly is being nested, as at times it may prove challenging to disentangle.

We obtain a summary of the fitted model:

> summary(rat.two.way)

Error: f.rat
Df Sum Sq Mean Sq F value Pr(>F)

f.treat 1 31.73 31.73 32.68 0.00463 **
Residuals 4 3.88 0.97
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: f.rat:f.trial
Df Sum Sq Mean Sq F value Pr(>F)

f.trial 2 38.44 19.220 91.403 3.09e-06 ***
f.trial:f.treat 2 0.96 0.482 2.293 0.163
Residuals 8 1.68 0.210
---

The effect for interaction f.trial:f.treat is not statistically significant (p = 0.163), however
there is a main effect for trial (p = 3.09e−06). Mauchly’s test of sphericity can be obtained in R via
mauchly.test(), though not demonstrated here (we demonstrate the test shortly in SPSS).

A nonparametric alternative to the one-way randomized block design is the Friedman rank sum
test, easily computed in R:

> friedman <- friedman.test(time ~ f.trial | f.rat)
> friedman

Friedman rank sum test

data: time and trial and rat
Friedman chi-squared = 12, df = 2, p-value = 0.002479

We note that though the observed p-value of 0.002 is sufficient to reject the null hypothesis, it is a
larger p-value than in the equivalent parametric test. For an explanation and demonstration of the test,
see Howell (2002, pp. 720–722).
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6.12 ANALYSIS USING SPSS: ONE-WAY REPEATED MEASURES: LEARNING AS
A FUNCTION OF TRIAL

We now demonstrate the one-way repeated measures on the same data analyzed previously in R.
Entered into SPSS, the learn data appear as follows:

trial_1 trial_2 trial_3

1 10.00 8.20 5.30
2 12.10 11.20 9.10
3 9.20 8.10 4.60
4 11.60 10.50 8.10
5 8.30 7.60 5.50
6 10.50 9.50 8.10

Notice that each column in the data represents a trial, and each of the rows represents a subject (rat in
this case). Entering the data is easy enough, but should you require further direction, see Denis (2019)
for a visual depiction of the data view for entering the data into SPSS, as well as a demonstration of the
syntax below in GUI format.

We request the analysis via the following syntax:

GLM trial_1trial_2trial_3 [requests a general linear model with levels 1 through 3 of trial]
/WSFACTOR=trial 3 Polynomial [requests a polynomial contrast for the within factor]
/METHOD=SSTYPE(3)
/PRINT=ETASQ
/CRITERIA=ALPHA(.05)
/WSDESIGN=trial. [requests a model that includes the within-subjects factor “trial” (which is

all the current model can produce anyway since it’s the only factor)]

Multivariate Testsa

Effect Value F
Hypothesis

df
Error
df Sig.

Partial
Eta-Squared

trial Pillai’s trace 0.942 32.251b 2.000 4.000 0.003 0.942
Wilks’ lambda 0.058 32.251b 2.000 4.000 0.003 0.942
Hotelling’s trace 16.126 32.251b 2.000 4.000 0.003 0.942
Roy’s largest root 16.126 32.251b 2.000 4.000 0.003 0.942

aDesign: Intercept within-subjects design: trial.
bExact statistic.

The above are multivariate tests of significance, which can be interpreted either in conjunction
with or in replacement of, the univariate tests. A multivariate model, discussed much more extensively
in Chapter 11, features more than a single response variable. In our current model, instead of conceiv-
ing trial (1 versus 2 versus 3) as a predictor of a single response, we can instead visualize it as three
different response variables (but related through their difference scores across trials 1, 2, 3, hence they
will be transformed into 2 variables (Stevens, 2009)). The fact that we now have three response vari-
ables (before transformation) instead of just the one makes the modelmultivariate, which is why SPSS
also presents us with such multivariate tests of significance. In the language of MANOVA, we are
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analyzing a linear combination of responses (i.e., on trials 1, 2, 3). Many authors have contributed to
the analysis of longitudinal data through a MANOVA approach (e.g., see Potthoff and Roy, 1964, for
an example of an early paper).

For our applied purposes, it is enough to be familiar with the conventional rule that one interprets the
multivariate tests or the Greenhouse–Geisser correction if one has evidence that sphericity has been
violated. However, since tests of sphericity such as Mauchly’s can be problematic in their own right
(e.g., sensitive to sample size), MANOVA or the Greenhouse–Geisser correction is often recom-
mended regardless of the results of Mauchly’s test of sphericity (Howell, 2002; Stevens, 2009).

All four multivariate tests suggest to reject the null hypothesis (p < 0.001). For a description of these
multivariate tests, refer to Chapter 11 or to Johnson andWichern (2007, p. 336). We do not detail them
here as matrix concepts cannot be avoided in their explanation, which are better left postponed to later
in the book.

Mauchly’s Test of Sphericitya

Measure: MEASURE_1

Within-Subjects
Effect

Mauchly’s
W

Approx.
Chi-Square df Sig. Epsilonb

Greenhouse–
Geisser

Huynh–
Feldt

Lower bound

trial 0.276 5.146 2 0.076 0.580 0.646 0.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables
is proportional to an identity matrix.
aDesign: Intercept within-subjects design: trial.
bMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed
in the tests of within-subjects effects table.

Mauchly’s test of sphericity evaluates the null hypothesis that, as noted by SPSS, the error covar-
iance matrix of the orthonormalized transformed dependent variables is proportional to an iden-
tity matrix (see Appendix for details on identity matrices). A statistically significant result for
Mauchly’s (p < 0.05 or similar) suggests the assumption of sphericity to be violated. For the test on
our data, we do not reject the null hypothesis (p = 0.076).

The output for Mauchly’s also reports epsilon values. Recall that these are values indicating the
extent to which one should correct the degrees of freedom associated with the univariate test results
in order to account for a violation of sphericity. We discuss these adjustments now in the context of the
univariate effects.

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum of

Squares df
Mean
Square F Sig.

Partial
Eta-Squared

trial Sphericity
assumed

38.440 2 19.220 72.620 0.000 0.936

Greenhouse–
Geisser

38.440 1.160 33.131 72.620 0.000 0.936

(Continued)
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(Continued)

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum of

Squares df
Mean
Square F Sig.

Partial
Eta-Squared

Huynh–Feldt 38.440 1.292 29.750 72.620 0.000 0.936
Lower hound 38.440 1.000 38.440 72.620 0.000 0.936

Error
(trial)

Sphericity
assumed

2.647 10 0.265

Greenhouse–
Geisser

2.647 5.801 0.456

Huynh–Feldt 2.647 6.461 0.410
Lower bound 2.647 5.000 0.529

The first correction on degrees of freedom in the SPSS output is the Greenhouse–Geisser. Notice
that the degrees of freedom for it are 1.160 and 5.801 (for error). These numbers were obtained by using
the correction factor epsilon listed under Greenhouse–Geisser in the report of Mauchly’s test of sphe-
ricity. That value is equal to 0.580. This means to take 0.580 of the original degrees of freedom (for both
numerator and denominator), and use this as our new “corrected” degrees of freedom. When we take
0.580 of 2, we get 1.16, which are the degrees of freedom given for the numerator of the Greenhouse–
Geisser.When we take 0.580 of 10, we get 5.801, which are the degrees of freedom for the denominator
of the Greenhouse–Geisser. The F-test for the G–G (i.e., Greenhouse–Geisser) correction is evaluated
on 1.16 and 5.801 degrees of freedom instead of the original 2 and 10. Note that the F-statistic produced
for G–G is the same as that produced when sphericity is assumed. The difference is only on the degrees
of freedom on which the obtained F is evaluated. When we evaluate on 1.160 and 5.801, we note the p-
value is greater than what it is for when sphericity is assumed (if you double-click on the p-values in
the SPSS output, you will get the representative decimal places). It makes sense that the p-value should
rise, since we are evaluating on less (and hence, more conservative) degrees of freedom. That is, G–G is
issuing a “penalty” of sorts on degrees of freedom to account for the violation of sphericity.

The second correction provided by SPSS is theHuynh–Feldt. This time, we take 0.646 (i.e., epsilon
value under Huynh–Feldt in Mauchly’s test of sphericity) of the original degrees of freedom. This
amounts to 0.646(2) = 1.29 and 0.646(10) = 6.46.

Finally, the third option for using a correction factor is the Lower Bound provided by SPSS. It is
computed as 1/(J − 1), equal to 1/(3 − 1) = 0.50 for our data (i.e., corresponding to degrees of freedom 1
and 5 for our data). Recall “J” here is the number of levels of the within-subjects factor (in our case, 3,
because there are three trials). This correction represents the most strict and conservative adjustment on
the degrees of freedom.

6.12.1 Which Results Should Be Interpreted?

We have explored five different options for interpreting the F-test in a repeated measures analysis: uni-
variate results with sphericity assumed, MANOVA, Greenhouse–Geisser, Huynh–Feldt, and the Lower
bound correction.Which to use, andwhen? The literature in this area is not conclusive, although a general
“workable” recommendation, primarily due to Girden (1992), is that when epsilon values are greater than
0.75, the Huynh–Feldt correction should be used. When epsilon values are less than 0.75, the Green-
house–Geisser correction should probably be interpreted. And if nothing is known about sphericity,
or one suspects that Mauchly’s test cannot be interpreted accurately due to small or large sample sizes
or questionable distributional assumptions, Greenhouse–Geisser is still usually the best option.
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A practical recommendation, for most cases, is to report Greenhouse–Geisser and multivariate
results. If one desired a less univariate conservative correction, Huynh–Feldt can be reported, keeping
in mind that relatively small differences in p-values should not lead to disparate scientific conclusions
regardless of the correction used (see Chapter 2, Section 2.28). For instance, if Greenhouse–Geisser
yielded a p-value of 0.07 while Huynh–Feldt yielded 0.04, since neither of these should be used exclu-
sively as a scientific indicator of the existence of a phenomenon from your experiment or study (i.e.,
recall you should be also simultaneously interpreting effect size), such small differences in p-values for
correction factors turns out to be much more a statistical issue than it is a scientific one (i.e., do not lose
sleep over which test to report given slightly different p-values). As a researcher, you presumably con-
ducted the repeated measures in the hope of finding a scientific effect. In this spirit, use the correction
factors as a guide to determining whether something occurred in the study, and interpret p-values only
as a means to this end. Given all we know about the behavior of p-values, a p-value of 0.05 versus 0.04,
for example, should not be causing you to make a drastically different scientific decision in each case.

SPSS next provides us with the between-subjects effects:

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source Type III Sum of Squares df Mean Square F Sig.

Intercept 1378.125 1 1378.125 193.457 0.000
Error 35.618 5 7.124

What is “Error” in the output above? What SPSS is calling error is actually the effect of “subjects”
(or rats, for our data). Indeed, in the R analysis featured earlier, R specifically designated the error as
that due to rat:

Error: f.rat
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 35.62 7.124

Notice the degrees of freedom for error are equal to 5, which is equal to the number of subjects (6)
minus 1. When we introduce a second between-subjects factor, as we will do shortly by including treat-
ment (i.e., recall some rats received treatment, some did not), we will further partition this SS due to
subjects. Hence, both SPSS and R are telling us that this is essentially the subjects variability that is
available for further partition upon introducing another between-subjects factor into the design.

There is no test for the subjects effect because we are not able to produce an error term distinct from
the subjects by trial interaction term used to test the within-subjects effect. We are usually not interested
in testing the effect of subject anyway, since it is usually considered nothing more than a nuisance
factor (Hays, 1994). One would expect subjects to differ from one another, which is a good thing, since
we are able to partial this variance out of the error term. That SPSS is not providing us a test for subject
is not a problem.

Within-subjects contrasts can also be generated, though not shown here. For example, a simple con-
trast would generate comparisons of trial 1 versus trial 3 and trial 2 versus trial 3, obtained through:

GLM trial_1 trial_2 trial_3
/WSFACTOR=trial 3 Simple
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Other contrasts can also be performed. Post-hocs can also be obtained in SPSS for the trial factor by:

GLM trial_1 trial_2 trial_3
/WSFACTOR=trial 3 Polynomial
/METHOD=SSTYPE(3)
/EMMEANS=TABLES(trial) COMPARE ADJ(BONFERRONI)

6.13 SPSS TWO-WAY REPEATED MEASURES ANALYSIS OF VARIANCE MIXED
DESIGN: ONE BETWEEN FACTOR, ONE WITHIN FACTOR

Having demonstrated the analysis of repeated measures data for the one-way model, we now demon-
strate an analysis of a two-way model in SPSS. We refer to the two-factor layout earlier cited in
Table 6.5, where, recall, in addition to being assessed over trials, some of the rats were given a medical
treatment hypothesized to promote efficiency at learning the task (treatment = “yes” in Table 6.5).

Recall this is now a 2 × 3 repeated measures ANOVA that contains both a between factor and a
within factor. Such a design is often referred to as a mixed design. The term “mixed design” here is
used to indicate the presence of a mix of between-subjects and within-subjects factors. It is not equiv-
alent in meaning to the term mixed model that we have been discussing. However, since subject, as
already discussed, is usually considered to be a random factor, the mixed design is more often than not
analyzed as a mixed model (still, you should not equate mixed design with mixed model, as it will
mislead you in the study of more advanced models).

When entered into SPSS, the data file appears as follows:

trial_1 trial_2 trial_3 treat

10.00 8.20 5.30 1.00
12.10 11.20 9.10 0.00
9.20 8.10 4.60 1.00
11.60 10.50 8.10 0.00
8.30 7.60 5.50 1.00
10.50 9.50 8.10 0.00

Notice that in entering the data into SPSS, as before, each level of the repeated measure has a unique
column (trial_1, trial_2, trial_3). The levels of the between-subjects factor are represented by a single
column (1 = yes treatment, 0 = no treatment) to denote the grouping effect. Again, if you require a
visual depiction of how the data are entered into SPSS along with window outtakes, see Denis (2019).

We request the repeated measures ANOVA:

GLM trial_1 trial_2 trial_3 BY treat [requests a general linear model with three
dependent variables trial_1 through trial_3 and a single independent variable “treat”]

/WSFACTOR=trial 3 Polynomial
/METHOD=SSTYPE(3)
/PRINT=ETASQ
/CRITERIA=ALPHA(.05)
/WSDESIGN=trial [specifies the within-subjects factor]
/DESIGN=treat.[specifies the between-subjects factor]
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SPSS first provides us with multivariate tests of significance:

Multivariate Testsa

Effect Value F
Hypothesis

df
Error
df Sig.

Partial
Eta-Squared

trial Pillai’s trace 0.963 38.569b 2.000 3.000 0.007 0.963
Wilks’ lambda 0.037 38.569b 2.000 3.000 0.007 0.963
Hotelling’s
trace

25.713 38.569b 2.000 3.000 0.007 0.963

Roy’s largest
root

25.713 38.569b 2.000 3.000 0.007 0.963

trial ∗
treat

Pillai’s trace 0.427 1.117b 2.000 3.000 0.434 0.427
Wilks’ lambda 0.573 1.117b 2.000 3.000 0.434 0.427
Hotelling’s
trace

0.745 1.117b 2.000 3.000 0.434 0.427

Roy’s largest
root

0.745 1.117b 2.000 3.000 0.434 0.427

aDesign: Intercept + treat within-subjects design: trial.
bExact statistic.

The multivariate tests all suggest the presence of a main effect for trial. Evidence for an interaction
effect is not supported across all multivariate tests (p = 0.434).

Next, we are given the findings of Mauchly’s test:

Mauchly’s Test of Sphericitya

Measure: MEASURE_1

Within-
Subjects Effect

Mauchly’s
W

Approx.
Chi-Square df Sig. Epsilonb

Greenhouse–
Geisser

Huynh–
Feldt

Lower
bound

trial 0.392 2.811 2 0.245 0.622 0.991 0.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables
is proportional to an identity matrix.
aDesign: Intercept + treat within-subjects design: trial
bMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed
in the tests of within-subjects effects table.

Mauchly’s test of sphericity is not statistically significant (p = 0.245), and hence if we were to trust
this test, it would suggest that we do not have a violation of the sphericity assumption. However, based
on our previous recommendation, we will nonetheless interpret both the multivariate tests and Green-
house–Geisser F-test when drawing conclusions regarding the within-subject effect, along with the
interaction involving the within-subjects factor.
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Next are provided the tests for the within-subjects effects:

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source
Type III Sum of

Squares df
Mean
Square F Sig.

Partial
Eta-Squared

trial Sphericity
assumed

38.440 2 19.220 91.403 0.000 0.958

Greenhouse–
Geisser

38.440 1.244 30.909 91.403 0.000 0.958

Huynh–Feldt 38.440 1.982 19.399 91.403 0.000 0.958
Lower bound 38.440 1.000 38.440 91.403 0.001 0.958

trial ∗ treat Sphericity
assumed

0.964 2 0.482 2.293 0.163 0.364

Greenhouse–
Geisser

0.964 1.244 0.775 2.293 0.194 0.364

Huynh–Feldt 0.964 1.982 0.487 2.293 0.164 0.364
Lower bound 0.964 1.000 0.964 2.293 0.205 0.364

Error (trial) Sphericity
assumed

1.682 8 0.210

Greenhouse–
Geisser

1.682 4.975 0.338

Huynh–Feldt 1.682 7.926 0.212
Lower bound 1.682 4.000 0.421

All univariate tests suggest the presence of a main effect (p = 0.000) while the trial by treat inter-
action term still has a relatively large p-value (i.e., p = 0.194 for the Greenhouse–Geisser). A plot of
means (insert after /METHOD) reveals (/PLOT=PROFILE(trial∗treat)):
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We can see that essentially, a similar “story” of mean differences between treatments is being told
across trials, though at the third trial, it would appear that the decrease in time for the treated group is
somewhat greater than for the nontreated group. But with such a small sample size, we likely did not
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have the power to detect such an effect. In this small sample, as evidenced by partial eta-squared,
approximately 36% of the variance in the dependent variable is accounted for by the interaction term.

Next are the between-subjects effects:

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Source Type III Sum of Squares df Mean Square F Sig. Partial Eta-Squared

Intercept 1378.125 1 1378.125 1419.122 0.000 0.997
treat 31.734 1 31.734 32.678 0.005 0.891
Error 3.884 4 0.971

Notice that we have a statistically significant effect for treatment (p = 0.005). This is the difference
in treatment means resulting from collapsing across levels of the repeated measure.

6.13.1 Another Look at the Between-Subjects Factor

For pedagogical purposes, we now run an ordinary between-subjects ANOVA, testing the null hypoth-
esis that population means on treatment are equal. Our only factor in the model is treat, hence, we run
the model as time BY treat:

UNIANOVA time BY treat
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN=treat.

Tests of Between-Subjects Effects

Dependent Variable: Time

Source Type III Sum of Squares df Mean Square F Sig.

Corrected model 31.734a 1 31.734 11.290 0.004
Intercept 1378.125 1 1378.125 490.315 0.000
treat 31.734 1 31.734 11.290 0.004
Error 44.971 16 2.811
Total 1454.830 18
Corrected total 76.705 17
aR-squared = 0.414 (adjusted R-squared = 0.377).

The above computation of the sums of squares for treatment is the same as seen in the between-
subjects effects in the repeated measures ANOVA (i.e., SS = 31.734). However, notice the error term,
it is not equal to 0.971 as it is in the repeated measures output. Why not? The above analysis inves-
tigates the effect of treatment, and what remains is relegated to the error term (i.e., effect due to trial and
subject). As discussed in this chapter, this is one advantage of performing repeated measures—it
allows you to remove variability due to subject that would otherwise make its way into the error
term. This is analogous to the simpler case of the paired samples t-test in which the covariance between
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treatments or testing conditions is removed from the error term. In paired t-tests, randomized blocks,
or repeated measures, all three methods remove variability due to block or subject that would
otherwise make its way into the error term, and consequently, often provide amore powerful test
of effects of interest.

Contrasts, post-hocs, and simple effects can also be calculated on this data. For simple effects, one
can compare trials at each level of treatment by (output not shown) the following:

/emmeans = tables(trial*treat) compare (trial) adj (Bonferroni)

6.14 CHAPTER SUMMARY AND HIGHLIGHTS

• In classical between-subjects designs, subjects or objects are randomly assigned to a condition
on the independent variable with the hope that nuisance factors more or less balance out across
groups.

• The goal of a randomized block design is to attempt to reduce the error term in the analysis of
variance by administering levels of the independent variable across homogeneous subsets of indi-
viduals that are relatively alike. In this way, randomized block designs attempt to capture within-
group homogeneity and model it out of the error term so that the factor(s) of interest in the design
can be tested with greater sensitivity and power.

• The randomized block design can be conceptualized as an extension of the simpler matched
samples design.

• Randomized block designs can be analyzed as fixed effects, random effects, ormixed models.
Most often, because it makes most sense to consider block as a random effect, the mixed model is
appropriate (assuming at least one other factor is fixed).

• A nonadditive model is one that includes an interaction term. An additive one is one that
does not.

• In designs where there is a single observation per cell (the so-called nonreplicated design), it
becomes impossible to generate an error term separate from the interaction term. This is an impor-
tant consideration both in planning a scientific investigation as it is in building and interpreting a
statistical model.

• The Tukey test for nonadditivity, as well as other so-called additivity tests, may be used for
testing the presence of an interaction effect in n = 1 per cell designs.

• In both randomized block designs and repeated measures, because measurements are nested
within block/subject, the expectation of zero covariance between treatments is no longer reason-
able. We must instead make assumptions about the correlational structure between treatments.
Compound symmetry and sphericity are common assumptions made for these models.

• There are many adjustments to degrees of freedom available if the assumption of sphericity is
violated or is suspect. Of these, the Greenhouse–Geisser conservative F-test is often
recommended.

• The intraclass correlation ρ is useful in demonstrating the influence of pairwise treatment covar-
iance in randomized block or repeated measures analysis of variance. When ρ = 0, σ2e is equal to
treatment variance alone. When ρ = 1, σ2e = 0.

• A repeated measures model can be conceptualized as a special case of a randomized block
design in which subjects are the blocks.

• Repeated measures can be conceptualized as an extension of the paired samples t-test.
• Randomized block designs and repeated measures models can be analyzed in both
R and SPSS.
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REVIEW EXERCISES

6.1. What distinguishes a between-subjects design from a repeated measures (or “within-
subjects” design)? Explain how these two designs are different from one another.

6.2. Define a randomized block design. What is the general purpose of such a design?

6.3. Explain how subjects are nested within blocks in a randomized block design.

6.4. Discuss how a randomized block design can be conceptualized as an extension of the
matched-pairs design.

6.5. Under what situations is a block best considered a fixed or random factor? Explain.

6.6. Distinguish between the additive and nonadditive randomized block designs.

6.7. In a randomized block designwhere n = 1 per cell, discuss the problems with designating both
effects as fixed effects and why a test of these effects is not possible under the nonaddi-
tive model.

6.8. Briefly explain the purpose of Tukey’s test for nondditivity.

6.9. Discuss how the intraclass correlation can be used to demonstrate the influence of pairwise
treatment covariance in a randomized block or repeated measures ANOVA.

6.10. Explain why repeated measures ANOVA is best considered a special case of the randomized
block design.

6.11. Consider the data in Table 6.6. Nitrogen in blood plasma was recorded in six rats across
360 days.

(a) Perform a one-way repeated measures ANOVA in R.

(b) Perform the same one-way repeated measures ANOVA in SPSS.

(c) Do you have evidence to doubt the assumption of sphericity? Why or why not? Any issues
with obtaining a test?

(d) Does interpretation of theGreenhouse–Geisser correction provide a different conclusion
than when sphericity is assumed?

(e) Estimate the trend of blood plasma from day 25 to day 360.What polynomial best accounts
for the trend?

TABLE 6.6 Nitrogen in Blood Plasma

Age 25 37 50 60 80 100 130 180 360

Rat 1 0.83 0.98 1.07 1.09 0.97 1.14 1.22 1.20 1.16
2 0.77 0.84 1.01 1.03 1.08 1.04 1.07 1.19 1.29
3 0.88 0.99 1.06 1.06 1.16 1.00 1.09 1.33 1.25
4 0.94 0.87 0.96 1.08 1.11 1.08 1.15 1.21 1.43
5 0.89 0.90 0.88 0.94 1.03 0.89 1.14 1.20 1.20
6 0.83 0.82 1.01 1.01 1.17 1.03 1.19 1.07 1.06
Means 0.86 0.90 1.00 1.04 1.09 1.03 1.14 1.20 1.23
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7
LINEAR REGRESSION

By this method, a kind of equilibrium is established among the errors which, since it prevents the extremes
from dominating, is appropriate for revealing the state of the systemwhich most nearly approaches the truth.

(Legendre, 1805, pp. 72–73)

I found it hard at first to catch the full significance of the entries in the table, which had curious relations that
were very interesting to investigate. They came out distinctly when I “smoothed” the entries by writing at
each intersection of a horizontal column with a vertical one, the sum of the entries in the four adjacent
squares, and using these to work upon. I then noticed that lines drawn through entries of the same value
formed a series of concentric and similar ellipses.

(Galton, 1886, pp. 254–255)

Suppose a biologist would like to be able to predict the heights of offspring once they are grown adults.
For a randomly chosen adult offspring, what is a good guess at its height? A reasonable guess might be
the population mean of all adult offspring, especially if it was desired to minimize the signed error in
prediction. However, guessing the mean would likely still result in imprecise predictions, and on the
whole, result in much error in prediction. Knowing that parental height is correlated to offspring
height, the biologist seeks a statistical method to exploit this correlation to reduce his error in predicting
offspring height. The statistical method that will be of use to the biologist is simple linear regression.

Simple linear regression is a statistical method useful for making predictions about a continuous
response variable based on knowledge of a second variable, usually also continuous, though catego-
rical variables can also be modeled via dummy-coded regressors. The designation simple linear regres-
sion denotes the fact that the regression model features only a single explanatory variable. Models with
two or more explanatory variables will be discussed in Chapters 8 and 9.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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More than simply making predictions, regression seeks to predict values on the response variable
such that the average error in prediction is less than what would be the case had the explanatory variable
not been used as a predictor. What this means statistically is that there must be a correlation between the
response and explanatory variable for linear regression to be effective. Otherwise, in the absence of
such a correlation, predictions would be generally no more accurate than if the explanatory variable
were not used at all.

Draper and Smith (1998) is a classic resource on regression analysis that also features topics on
weighted least-squares, ridge regression, nonlinear estimation, and robust regression. Fox (2016) is
a definitive thorough treatment of regression and related models, which includes generalized linear
models. Fox also provides a rather in-depth study of diagnostics for linear models and also includes
chapters on the geometry of such models. Cohen et al. (2003) is also a classic resource on applied
regression with a focus toward the behavioral sciences. Pedhazur (1997) provides a thorough treatment
targeted toward behavioral scientists. Neter et al. (1996) feature wide coverage of linear models in gen-
eral. Wright and London (2009) is a useful resource for fitting regression models in R.

7.1 BRIEF HISTORY OF REGRESSION

Regression analysis has a very deep history. The techniques of correlation and regression, as applied
to empirical observations, are generally attributed to Francis Galton (1822–1911), an English Victo-
rian who made countless contributions to science in fields such as anthropology, geography, psychol-
ogy, and statistics (Figure 7.1). For a discussion of Galton, see Fancher and Rutherford (2011). For a
read of some of Galton’s original works in the area of statistics, see Galton (1886, 1888).

Several historians, however (e.g., Hald, 1998), have noted that the mathematics of correlation and
regression predated Galton by many years. Adrien Marie Legendre (1752–1883) is generally credited
with the development of primitive least-squares theory, the exact method later employed by Galton in

FIGURE 7.1 Francis Galton. Innovator of correlation and regression.
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analyzing empirical observations (Stigler, 1986). Legendre published his method in 1805 in “Nou-
velles méthodes pour la détermination des orbites des comètes” which included a section on
“Sur la méthode des moindres quarrés” (which in English translates to “On the method of least-
squares.”).

In addition to Legendre, correlational theory was likely developed in one form or another by other
pioneers as well (see Denis (2001) andWalker (1929) for details). Among perhaps the most significant
of these is Auguste Bravais (1811–1863), a professor of astronomy and physics, who wrote a paper in
1846 titled “Analysemathématique sur les probabilités des erreurs de situation d’un point,”which
translated means “Mathematical analysis on the probability of errors of a point.” Karl Pearson (1920)
credits Bravais with having discussed the theorems of correlation in this paper. He essentially discov-
ered what Galton would later call the regression line by an investigation of elliptical areas, but is
thought to have not fully realized it. AsWalker (1929) notes, Bravais could notmake the “leap” required
for a full-fledged discovery of correlation and regression. Depicted in Bravais’ work was the geomet-
rical ellipse, which within it, for all purposes, was the regression line later discovered by Galton:

M

O

As Pearson (1920) noted regarding Bravais’ geometrical analysis:

He gets the line [i.e., “OM”] which corresponds to Galton’s regression-line [sic]. But this is not a result of
observing x and y and determining their association, but of the fact that x and y are functions of certain
independent and directly observed quantities. (p. 32)

If we compare Bravais’ work to that of Galton’s 50 years later, the similarity is apparent
(see Figure 7.2). Indeed, as noted by Friendly, Monette, and Fox (2013):

It is not stretching the point too far to say that a large part of modern statistical methods descend from these
visual insights: correlation and regression [Pearson (1896)], the bivariate normal distribution, and principal
components [Pearson (1901), Hotelling (1933)] all trace their ancestry to Galton’s geometrical
diagram. (p. 2)

Galton’s correlational diagram related the heights of mid-parents (the average adjusted height
(female heights were multiplied by a constant) of the mother and father) with their adult children.
The numbers in the table correspond to the numbers of mid-parent to adult children height combina-
tions. And though Galton’s correlational diagram is somewhat more complex than we shall detail in
this chapter, one can appreciate the general similarity between his work and that of Bravais. Most sig-
nificantly, both men obtained the correlational ellipse. In the case of Galton’s work, the ellipse repre-
sented an empirical reality first, whereas in the case of Bravais, it appeared to be mostly a theoretical
deduction. The distinction between the two discoveries is why Pearson (1920) referred to Galton’s
correlation as that of “organical association.”
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7.2 REGRESSION ANALYSIS AND SCIENCE: EXPERIMENTAL VERSUS
CORRELATIONAL DISTINCTIONS

Oftentimes researchers associate the use of analysis of variance models with experimental data and the
use of correlational and regression techniques with nonexperimental data. The reason for this is largely
historical rather than technical. There is nothing “experimental” or “nonexperimental” about a statis-
tical technique, any more than there is anything experimental or nonexperimental about your pocket
calculator. Either analysis of variance or regression can be used with either type of data, and often are.
Whether a scientific study is experimental or not has everything to do with the research design,
not the statistical model used to analyze findings.

The reason for the popular distinction is likely because analysis of variance designs arose in the
context of experimental studies, whereas regression analysis, predating ANOVA by about 30–40 years
(depending on when you consider the “origin” of regression to be), had its origins in the context of
nonexperimental, correlational investigations. As we will see, one might view ANOVA as a subcat-
egory of regression analysis, one for which the partitioning of variability is made much simpler for
models with categorical predictors than with continuous ones. Indeed, some have argued that had
high-speed computing machines been available during the advent of regression analysis, Fisher’s anal-
ysis of variance (beginning in the 1920s), as a distinct technique, may not have come into existence at
all, but rather may have forever been naturally subsumed under the wider regression model. Fisher’s
genius was in providing researchers with a useful and convenient (and marketable) statistical method-
ology for partitioning variability, originally in agricultural and biological settings. Mathematically,
however, the two statistical methods, that of ANOVA and regression, overlap a great deal. This is
why often in rather deep studies of regression analysis, analysis of variance models are presented
as special cases of regression models rather than as distinct models in their own right (Fox, 1997).
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FIGURE 7.2 Galton’s 1886 correlational surface. Source: Galton (1886).
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7.3 A MOTIVATING EXAMPLE: CAN OFFSPRING HEIGHT BE PREDICTED?

To help motivate our discussion of regression analysis, we consider the original data collected by
Galton in 1886 on the heights of parent and their grown offspring (we surveyed this data somewhat
in Chapter 2). Some of Galton’s data appears below (there are 928 cases in total):

> library(HistData)
> library(car)
> some(Galton)

parent child
32 65.5 63.2
56 69.5 64.2
84 67.5 64.2

The question we (as did Galton) would like to ask of this data is the following:

Is child height able to be predicted by knowledge of parent height?

If the answer to the above question is yes, then we would expect there to be a relationship between
these two variables. A plot and imposed regression line suggests there to be a somewhat linear
relationship. That is, the data points, which are a subset of the Cartesian product, hint at a polynomial
of degree 1 as perhaps the best functional rule for accounting for the scatter:

> attach(Galton)
> plot(parent, child, main = "Scatterplot of Child and Parent Heights")
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We conduct the linear regression using R’s lm hypothesizing child as a function of parent:

> reg.model <- lm(child ~ parent)
> reg.model
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Call:
lm(formula = child ~ parent)

Coefficients:
(Intercept) parent

23.9415 0.6463

We can fit a least-squares regression line using abline (a red one, see Figure 7.3):

> abline(reg.model)
> abline(reg.model, col = "red")

Referring to the coefficient estimates obtained in the lm output of 23.94 for intercept and 0.64 for
slope, the raw-score regression equation representing the line of the best fit in Figure 7.3 is given by

yi = a + bxi + ei
= 23 9415 + 0 6463 xi + ei

Using the estimated regression equation, we could obtain a predicted value yi for a given value xi.
For instance, what is the predicted height of offspring for a parent height of xi = 68? The predicted
height is computed:

yi = a + bxi + ei
= 23 9415 + 0 6463 xi + ei
= 23 9415 + 0 6463 68

= 67 89

That is, for a parent height of 68, the predicted child height is 67.89.
Informally, note how the least-squares regression was fit. It was fit in such a way that it provided the

best fit to the data swarm. How this “best fit” idea is operationalized and defined is an idea we will

74
Scatterplot of child and parent heights

72

70

68

66

64

62

64 66 68 70

Parent

C
h
ild

72

FIGURE 7.3 Regression line of child on parent.
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unpack shortly. For now, it is enough to intuit that the regression line is fit in the sense ofminimizing or
maximizing some function of the data. As we will soon see, the OLS (“ordinary least-squares”) line is
that which minimizes the sum of squared (vertical) errors around the line.

7.4 THEORY OF REGRESSION ANALYSIS: A DEEPER LOOK

As an introduction to the theory of regression, as is true when learning any new statistical method, it is
first helpful to recall where we have already been. Recall the one-way fixed-effects analysis of variance
model of previous chapters:

yij = μ + α j + εij

Recall that the purpose in coming up with a model equation was to be able to theorize, on a quan-
titative level, how the data were generated. We theorized that any randomly sampled observation
from the population in a random group, that is, yij (individual i in group j) was a function of three
components:

• μ, which was an overall grand mean of the population

• αj, which was the effect of being in one population versus another (i.e., the corresponding sample
effect was a j = y j − y )

• εij, which was random error that we assumed had a mean of 0 and finite variance σ2e

The first part of the model, that of μ + αj, was the systematic portion of the model, while the last
component of the model εij, represented, in a sense, our failure to account for individual differences
entirely. In other words, we may have been able to make reasonable predictions of yij via μ + αj, but in
the end, we had to concede that our predictions might still deviate from expectation. Recall that the
expectation for each group j was the mean for that group, E y j = μ j, which, if the null hypothesis

held, then E y j = μ across all groups. To account for our errors in prediction, we introduced the error
term in the model εij, and assumed it to behave in a random unsystematic fashion.

In regression, we put forth another model that serves as a “theory” for how data were generated.
Though at first glance the model may appear different than that studied in ANOVA, as we learn more
about the model and its variations, we will learn that it is not that different from the analysis of variance
setup. Though at first their similarities can be difficult to grasp, our study of regression, especially the
multiple regression models of the following chapter, will help in revealing their likeness.

The simple linear regression model is given by

yi = α + βxi + εi (7.1)

where,

• yi is an observed value of the dependent or “response” variable.

• α is the population intercept and is fixed for the given population, meaning that for a given pop-
ulation we are modeling, we are assuming it to have only a single intercept term.

• β is the population slope parameter, and like α, is also fixed for the given population, which as was
true for α, implies that we are assuming the given population to have only a single β term. We do
not cover the case of random intercepts and random slopes in this book. For a discussion, see
Raudenbush and Bryk (2002).
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• εi is the error associated with predictions of yi, and unlike α or β, is not fixed, but random (just as in
ANOVA models).

Let’s compare side-by-side for a moment the ANOVA model to the regression model:

yij = μ + α j + εij versus yi = α + βxi + εi

We note the following similarities:

• In both models, we are wanting to predict a randomly sampled observation. In the ANOVA
model, these observations are subscripted by ij to denote individual i in group j. In the regression
model, observations are subscripted only by i. This is because in a simple regression model such
as this, there are no “groupings” on the predictor variable. Or, if you wish, the actual groupings are
infinitely small “categories” of the continuously-natured predictor variable, which have a limiting
probability equal to 0 as the “slices” become smaller and smaller.

• The first term in the ANOVA model is μ, representing the overall grand mean. In the regression
model, the first term is α, which represents the intercept for the regression line. Recall that the inter-
cept of a line is where the line meets the ordinate axis. Though μ and α are different “things,” by cen-
teringourpredictor xi in the regressionmodel,wecan transformα to represent thepredictedvalueofyi
at themean of xi rather thanwhen xi=0 as in the uncentered case. The point to emphasize right now is
thatbothμ andα canbesaid to represent“startingpoints” to themodelbefore the actual“exciting”part
of themodel takes place (which is included inαj in theANOVAandβ in the regression).Bothμ andα
can be conceptually interpreted as all that is “common” to observations in the given data forANOVA
in terms of an overall mean, and the starting point of the line of best fit in regression.

• The second term in the ANOVA model is the population effect, αj, while the second term in the
regression model is the slope parameter, β. In each model, this is where the “action” is. Why is this
so? Consider the case where population effects αj are all equal to zero in the ANOVA model and
the slope effect β is equal to zero in the regression model. What would this imply? Under this
circumstance, the expectation for each model, if we allowed for error, would be E(yij) = μ + εij
for the ANOVA model and E(yi) = α + εi in the regression model. Notice the similarity between
these two expectations. In each case, where the treatment effect or slope “effect” is equal to 0, our
best prediction is that of the population mean in ANOVA and the population intercept in regres-
sion. Incidentally, do not confuse αj in the ANOVA model (i.e., population effects) with α in the
regression model, as they are not the same thing.

• The last term in each model is εi and represents deviation from expectation. That is, in both
models, εi represents that which is unaccounted for or unexplained by the systematic portion
of the model. When we work with sample data, we typically refer to ei instead of εi.

Once the intercept and slope have been estimated by respective estimators a and b, one enters a
value for xi to obtain the predicted value for yi. We will designate the predicted value of yi by the
notation, yi (i.e., yi “prime”). As mentioned, for the regression model under discussion, the values for xi
are assumed to be fixed rather than random quantities. That is, their individual values are assumed to be
selected in advance by the researcher, rather than being sampled at random as one would have with
random regressors. However, as noted by Fox (2016), much of the theory for fixed effects transfers
over to random effects in the more realistic case where values of the predictor are considered a random
sample from a wider population (e.g., such as one would have in an observational study). See Fox
(2016, p. 228) for required assumptions.

The constants α and β are traditionally estimated by ordinary least-squares (OLS), though other
estimation procedures are also available (e.g.,maximum likelihood,weighted least-squares, etc.). As
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we will discuss when we lay out the assumptions of the regression model later, the expectation of yi,
E(yi), is equal to α + βxi and the expectation of εi, E(εi), is equal to zero. We also assume that the expec-
tation of yi given any chosen value of xi, that is the conditional expectation, is equal to α + βxi. That is,
E(yi/xi) = α + βxi.

We see then that both the analysis of variance model and the regression model share very similar
characteristics in terms of their model equations. Which is the more general model? As we will con-
tinue to learn, the regression model is “king” of the two, since ANOVA can be subsumed under the
wider regression model by a relatively simple reparameterization.

7.5 MULTILEVEL YEARNINGS

For readers with at least some familiarity with hierarchical or multilevel regression modeling, you
may have experienced the temptation to “free” α and β in (7.1) thereby allowing them to be random
rather than fixed effects. Indeed, one advantage of extending the fixed linear regression model to one
with random effects is this ability to estimate variance components associated with these parameters
(as one ordinarily does in virtually all models with εi, since recall εi is a random effect (Fox, 2016)) to
learn howmuch variance in the response variable can be accounted for by such parameters. This idea of
freeing parameters and thereby conceiving obtained sample statistics to be a random sample of a wider
set of possible parameter values is analogous to how we conceptualized random effects and multilevel
models in the previous chapters on ANOVA. The only essential difference is the nature of the
parameters. For details on fitting multilevel regression models in R, see Gelman and Hill (2007).

7.6 THE LEAST-SQUARES LINE

Consider the depiction of the least-squares line in Figure 7.4.
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FIGURE 7.4 Linear regression of Y on X, where sy and sx are the standard deviations of Y and X, respectively;
b = r(sy /sx) is the slope of Y on X.

240 LINEAR REGRESSION



About Figure 7.4:

• sy is the sample standard deviation of values of the response variable.

• sx is the sample standard deviation of values of the predictor variable.

• b = r(sy/sx) is the regression slope for yi predicted from xi, computed in this case as the correlation
coefficient rmultiplied by the ratio of standard deviations sy to sx. Under the condition that sy = sx,
as such would occur if both variables were standardized to have variances each equal to 1, b
becomes simply a function of r for the single predictor case, since

b = r sy sx = r 1 = r

Such coefficients computed on standardized xi and yi are referred to as standardized regression
coefficients β, or “Betas.”

The regression line featured in Figure 7.4 can be conceptualized as a sort of floating mean, in
that it traces the conditional distribution of yi given a particular value of xi. The extent to which
the linear model accounts well for the data is the extent to which points fall perfectly along the
regression line. Though beyond the scope of this chapter, much insight into how regression (and
other statistical methods) works can be gleamed via a deeper understanding of ellipses (of the
kind depicted in Figure 7.4). See Friendly, Monette, and Fox (2013) for an exceptional treatment
and discussion.

7.7 MAKING PREDICTIONS WITHOUT REGRESSION

It is often taught that the purpose of regression analysis is to make predictions. However, are we not
able to make predictions without regression? Of course we are. For instance, if a meteorologist wanted
to predict tomorrow’s temperature, could she not do it without using predictive weather models? Of
course she could. Assuming she was not concerned with minimizing some function of the errors in
making her predictions, she could predict any temperature she chooses, perhaps even “ball-parking”
it based on her memory of last year’s daily temperatures over the course of the year. However, her
accuracy in prediction might not be very good. Yes, drawing informally on her memory of last year’s
temperatures might be better than if she simply drew temperatures “out of a hat” and completely at
random, but her accuracy in prediction would likely still be quite poor.

This is where regression analysis comes in. Regression analysis helps us improve our overall accu-
racy in making predictions. Oftentimes, we implicitly guess average values when predicting, but
regression tells us we can usually do better than that, especially if we have other variables correlated
to the variable we are seeking to make predictions about.

To illustrate, consider again Figure 7.3, the plot of Galton’s data, but now altered to denote virtually
zero correlation between parents and their grown-up children (Figure 7.5).

Suppose now, under this circumstance, Galton wished to make as accurate of predictions of child

height as possible. Which value should he guess? To keep the sum of squared errors
n

i = 1
ε2i to a min-

imum, it stands that he should guess themean child height. Why? Because under the condition of zero
correlation (or no predictor), the mean guarantees that the average squared deviation will be smal-
lest when it is used as the predicted value (Hays, 1994, p. 188). The mean child height is equal to
68.1, and thus his prediction for any given child, would be 68.1.

The Galton example here emphasizes the fact that if there is no correlation between xi and yi, then
our best “line” of prediction, so to speak, assuming our goal is to minimize squared errors in predicting,
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would be the horizontal line representing the mean. In such a case, our error in prediction would be
equal to the standard deviation of yi.This horizontal line is, in actuality, the regression line of yi on xi
under the situation of either no predictor, or equivalently, under the condition of zero linear cor-
relation between yi and xi. Understanding this idea is a powerful “first step” to understanding what
regression analysis is all about.

Now, consider the situation where there is a linear relationship between xi and yi, as depicted in
Galton’s original data (Figure 7.6). We will tilt the regression line upward so that it becomes our
new floating mean from which we will make predictions. With this tilted line in place, we will never
predict a single value yi for all values of xi as we did for the horizontal “regression line.” Rather, with
the tilted line in place (the one computed based on knowledge of the correlation between xi and yi), our
predictions will be values that fall on the line conditional upon our selection of values for xi (where xi is
subscripted here to emphasize that we are selecting a given value of the variable for input into the
regression equation).
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FIGURE 7.5 Galton data adjusted to show no correlation.
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FIGURE 7.6 Linear regression of child height on parent height.
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We can summarize the primary features of regression in the following statement:

In the absence of correlation, the regression line that minimizes the sum of squared error is the hor-
izontal line corresponding to the arithmetic mean. In the presence of correlation, the regression line
that minimizes the sum of squared error is the “tilted” line (titled up or down depending on the sign of
the correlation) corresponding to the “new” regression line about which we can make predictions
while keeping the average sum of squared errors of prediction to a minimum value compared to
any other place where we could fit the line.

7.8 MORE ABOUT εi

We said that the expectation, ormean of the random variable εi is equal to 0. But what does this imply,
exactly? It implies that on average, our predictions will be correct and without error. That is, on aver-
age, it will be true that yi = yi (i.e.,E yi = E yi (Hays, 1994, p. 601)). Recall that though the arithmetic
mean is a good summary statistic for a sample or population of data, it is not always a useful summary
statistic, at least in a practical sense, for any single observation from that set of data, especially if the
set of data exhibits much variability. For example, that the mean home price in your city is $250,000
does little to describe your home value of $200,000. Simply because the expectation of εi is equal to 0
does not definitively tell us what happens for any subset of values “on the road” to E(εi) = 0. Likewise
in regression, for any given value of xi, it is certainly reasonable that our model may generate an error
in prediction, which we denote, for our sample data by:

ei = yi − a + bxi

It seems natural that in fitting a function to a bivariate plot of data that we should want tominimize, on
average, errors in prediction. But like with any arithmetic mean, we cannot guarantee that for any given
value of xi we will not still make a relatively substantial error. What we can guarantee is that in esti-
mating parameters using ordinary least-squares, on average, and given that our regression assumptions
are more or less satisfied (to be discussed shortly), our errors of prediction will be smaller than
anywhere else we may have fit the line. This is the essence of ordinary least-squares regression.
It does not guarantee we will make few errors in prediction or even precise predictions each time,
no better than the mean house price of your city guarantees a precise prediction of your home value.
What it does guarantee, however, is that on average, squared errors will be minimized.

7.9 MODEL ASSUMPTIONS FOR LINEAR REGRESSION

As was the case in analysis of variance models, we likewise need to impose a set of assumptions on our
regression model before we can use the model to make inferences. We list and briefly discuss these
assumptions below that are typically held in ordinary least-squares (OLS) regression. Some of these
are properties of the regression model per se, while others are specifically required for OLS estimation.
We do not distinguish between the two, and for convenience, discuss them collectively in a single dis-
cussion. Other types of estimation do not necessarily require all of these assumptions. We state the
assumptions for linear regression:

• Linearity in Parameters. We assume that the relationship between yi and xi or x1, x2,…xk (in the
case of multiple predictors, see Chapter 8) is linear in the unknown parameters of α and β (or again
β1, β2,…βk in the case of multiple predictors). It is important to emphasize that linearity in the
parameters does not mean we cannot have higher-order powers of xi. For instance,
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yi = α + β1xi + β2xi
2 + εi

still exhibits linearity in parameters since α, β1, and β2 are still raised to the first power. In
contrast,

yi = α + β1xi + β22xi + εi

is not linear, since β2 is raised to a higher power than 1 (i.e., in this case, it is raised to the
2nd power).
We also assume that the expected value of yi (i.e., “E(yi)”), is equal to α + βxi, where α + βxi is
sometimes referred to as themodel function since it contains the systematic predictive element of
the model, whereas the random component is in the error term, εi. The expectation of the error
term, however, is equal to 0 (i.e., E(εi) = 0), and so

E yi = E α + βxi + E εi

= α + βxi + 0

= α + βxi

We also assume that the expectation of yi given any chosen value of xi, is equal to E(α + βxi + εi)
(i.e., E(yi/xi) = E(α + βxi + εi)) (Fox, 2016, p. 107), but again, since E(εi) = 0, this reduces to

E yi xi = α + βxi + 0

= α + βxi

• Normal and Identically Distributed Errors. That is, εi NID 0, σ2ε , which says that errors are
distributed with a mean of zero and a finite variance, σ2 > 0 (i.e., it has a positive variance which is
measurable). For each conditional distribution of yi, (i.e., yi/xi), normality should hold (Fox, 2016,
p. 107). We will see how we can visually and informally test this and other assumptions through
an examination of residuals toward the end of the chapter.

• Homoscedasticity. For each population denoted by values of the variable xi, the variances of
these populations on yi are equal (i.e., σ2ε xi

= σ2ε ). If distributions are not homoscedastic, then

a problem of heteroscedasticity is said to exist. Heteroscedasticity (sometimes written as “het-
eroskedasticity”) essentially means unequal variances. Equivalently, we may state this assump-
tion as one of the variance of errors being constant across values of xi and not conditional upon it.
If the variance of the errors is conditional upon the value of xi, then this will show up in residual
analysis plots as a potential “fan shape” or other irregularity, as we will see when we discuss resid-
ual analyses. In the case of a single predictor, one can simply inspect the original scatterplot to see
if distributions of yi have the approximate same variance for each xi, but in the case of multiple
regression, we shall require residual analyses proper to verify this assumption due to the high
dimensionality of the data.

• Independence of Errors. The errors εi both within conditional distributions of yi/xi and between
conditional distributions of yi/xi are independent. Practically, what this means is that no single
observation in the set of data is dependent (in a probabilistic way) on any other observation. That
is, it is assumed that observations are more or less sampled independently (Fox, 2016, p. 108). The
assumption is typically satisfied by themethod of data collection, although residual plots, as we
will see, may also be used to somewhat evaluate, in an imperfect sense at least, the tenability of the
assumption.

• Absence of Influential or Outlying Data. We assume that our data does not contain observations
that will influence the regression solution to such an extent that it is no longer feasible to believe
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that the fitted regression line is a suitable model for the obtained data. Though outliers should
generally never be removed from a sample unless there is good substantive (in addition to sta-
tistical) reason for doing so, the linear regression model assumes that there are no extreme obser-
vations that would otherwise contribute to gross misspecification of the fitted model.

7.9.1 Model Specification

There are two additional general assumptions we should make, or at minimum consider, when fitting a
simple linear regression model to empirical data. The first is thatwe have specified the correct model.
The assumption essentially implies that we have chosen predictors that are thought to account for var-
iance in the measured response variable (or “variables” in the case of the wider multivariate multiple
regression model), and that we have not left any “important” variables out of the regression model. At
its extreme, we would like to assume that all sources of variation accountable for explaining yi have
been incorporated into the model. Of course, this is fanciful and unrealistic thinking, since whatever
predictors we choose are likely to be only some of the many that may account for variance in yi. This is
one reason for generally preferring experimental designs over nonexperimental ones, since the process
of randomization helps to ensure (but in no way guarantees) that the innumerable nuisance factors,
either observable or latent, are distributed somewhat evenly across treatment levels. Regardless, how-
ever, of whether you are working in the context of an experimental or nonexperimental design, if you
are aware of additional variables that account for significant sources of variance in your dependent
variable and you do not include such variables in your model, then the model can be said to be
incorrectly specified. When a model is incorrectly specified, not only is it substantively less mean-
ingful, but parameter estimates are likely to also be biased (see Draper and Smith, 1998,
pp. 235–242).

As an example, suppose we are studying the predictive ability of depression scores based on a meas-
ure of anxiety. We know a priori, however, that socioeconomic status (SES) is also an important pre-
dictor of depression rates. Then simply regressing depression on anxiety would constitute a
misspecified model. Further, as we will discuss in the following chapter on multiple regression, other
predictors included in the model can have a significant impact on the interpretation of statistical out-
comes and the estimation of parameters. In brief then, we may summarize with the following:

A properly specified model is one in which you are identifying and accounting for, at minimum, the
correct “already-known” sources of variation in yi, to the extent that you are knowledgeable or able
to. If you are testing amodel for which you are aware that important predictors are being left out, and
could have a significant impact on the model under consideration, then your model is misspecified.

It does not take long to realize that, on an idealistic level, all models are misspecified to some
degree, especially if we stretch our definition to include all possible sources of variation, both known
and unknown. Even models emanating from experimental designs can be a struggle to specify well.
We gain solace and comfort in George Box’s wise words, in that all models are wrong, some are
useful. Beyond that, we must do the best we can.

7.9.2 Measurement Error

Speaking of unrealistic or otherwise unattainable assumptions, a final assumption implicitly made in
linear regression is that there is no measurement error in predictors. As Fox (1997) notes:

The regression model accommodates measurement error in the dependent variable, because measurement
error can be conceptualized as a component of the general error term ε, but the independent variables in
regression analysis are assumed to be measured without error. (p. 130)
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The consequences of measurement error in a given predictor is generally to attenuate (i.e., lower)
the regression coefficient, and in the context of multiple predictors (see Chapter 8), to diminish the
utility of the predictor as a statistical control (see Fox, 1997, pp. 130–132). The assumption of no meas-
urement error is an unrealistic one for the most part, and the degree to which it is violated will depend to
some extent on the sophistication and accuracy of measurement instruments used. For example, if one
is measuring reaction time, one can probably do so with a relatively small amount of measurement
error. If one is measuring IQ, on the other hand, the risk of measurement error will likely be of greater
concern, unless of course your operational definition of IQ implies it can be measured simply and quite
precisely. The bottom line is that if you have “sloppy” measurement, the regression equation will not
somehow “cure it.” Rather, as mentioned, it will have an influence on the computed regression coeffi-
cients. Measurement error exists in virtually all measurement, and it is the careful scientist who guards
against this by developing quality tools (whether in the physical or social sciences) to access the phe-
nomena for which he or she is assigning a number to according to a set of rules (i.e., the process of
measurement).

7.10 ESTIMATION OF MODEL PARAMETERS IN REGRESSION

From a purely technical standpoint, the problem of linear regression boils down to estimating model
parameters subject to particular constraints. In the model equation yi = α + βxi + εi, we wish to estimate
parameters α and β such that they are estimated in such a way that conforms to the overall purpose of
building the model. What constraint or condition is appropriate? As mentioned, on both technical and
commonsense substantive grounds, it seems appropriate to choose a and b, which are estimators of α
and β respectively, such that the sum of squared errors

n

i = 1

e2i =
n

i = 1

yi − a + bxi
2

is kept to aminimum value, which means the line we are fitting to the data, the least-squares regres-
sion line, guarantees that we are fitting the line that, overall and “on average,” has the least amount of
prediction error compared to any other line we could fit to the data.

Methods of estimation in linear regression include the aforementioned ordinary least-squares, but
also maximum likelihood, weighted least-squares, among others. Under the assumptions of the lin-
ear model, least-squares estimation equates to being the maximum-likelihood estimator (Fox, 2016).
Weighted least-squares is suitable for situations where the variance of the response variable varies over
the range of predictor values. That is, when we have nonconstant error variance. Instead of

minimizing
n

i = 1
ε2i as is true of least-squares, WLS seeks to minimize

n

i = 1
wi ε2i , where wi is some

weight applied to the errors ε2i . Reciprocals of the variance can be used as weights, although other
weights can also be applied. For details on fitting weighted least-squares models, see Fox (2016)
and Venables and Ripley (2002).

We now briefly discuss some of the principles behind ordinary least-squares estimation and briefly
review how to obtain the least-squares estimators. Though our primary goal is the application of linear
regression, a brief overview of how the least-squares estimators are obtained can prove fruitful for an
understanding of estimation in general.
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7.10.1 Ordinary Least-Squares (OLS)

Recall the regression model of (7.1) for a single predictor:

yi = α + βxi + εi

where α, β are parameters to be estimated from sample data. To be able to fit the least-squares line, we
require good estimators (i.e., statistics based on the sample data) for these parameters, analogous to
how we required good estimators for other parameters such as the population mean, μ (which recall
turned out to be the sample mean, y).

The least-squares estimators are obtained by first taking partial derivatives of
n

i = 1
ε2i with respect to

both α and β. Recall what it means to take a partial derivative. It means to differentiate the function
with respect to one variable while holding the other variable(s) in the equation constant. In the
case of least-squares, we wish to:

• differentiate
n

i = 1
ε2i with respect to α while holding β constant

• differentiate
n

i = 1
ε2i with respect to β while holding α constant

First, with respect to α, in terms of sample quantities, we have (Draper and Smith, 1998, p. 23):

∂
n

i = 1
e2i

∂a
= − 2

n

i = 1

yi − a− bxi (7.2)

Then, with respect to β,

∂
n

i = 1
e2i

∂b
= − 2

n

i = 1

xi yi − a − bxi (7.3)

Solutions to (7.2) and (7.3) generate the ensuing normal equations:

n

i = 1

yi − na− b
n

i = 1

xi = 0

n

i = 1

xiyi − a
n

i = 1

xi − b
n

i = 1

xi
2 = 0

From these equations, we obtain the least-squares coefficients:

a = y − bx

247ESTIMATION OF MODEL PARAMETERS IN REGRESSION



as an estimator of α, and

b =
xi − x yi − y

xi − x
2

as an estimator of β.
In words, the formula for b requires us to sum the cross-products of xi and yi, and then divide by the

sum of squares for xi. The estimate for b can also be computed by

b =
covxy
s2x

since when expanded,

b =
covxy
s2x

=

n

i = 1

xi − x yi − y

n− 1
n

i = 1

xi − x xi − x

n− 1

=

n

i = 1
xi − x yi − y

n− 1
n− 1

n

i = 1
xi − x xi − x

=

n

i = 1
xi − x yi − y

n

i = 1
xi − x xi − x

=
xi − x yi − y

xi − x
2

Least-squares estimators are unbiased. That is, E(a) = α and E(b) = β, which in words, means the
expectation of their sample quantities is equal to the parameters they seek to estimate. Furthermore,
as noted by Fox (1997):

If the errors are independently distributed with zero expectation and constant variance, then the least-
squares estimator b is the most efficient linear unbiased estimator of β. That is, of all unbiased estimators
that are linear functions of the observations, the least-squares estimator has the smallest sampling variance
and, hence, the smallest mean-squared error. (p. 217)

This result is generally known as the Gauss–Markov theorem. Consult Fox (1997) for a discus-
sion, as well as Hastie, Tibshirani, and Friedman (2009).

Recall that ordinary least-squares is often mistaken to be the only method by which parameters in
regression can be estimated, since it is usually the preferred choice for estimating parameters and is
most often taught in introductory regression courses. Indeed, historically, OLS (“ordinary least-
squares”) has become more or less synonymous with regression (see Stigler, 1986 for details). How-
ever, as mentioned already, even if you should never require alternative methods of estimation in your
practice of statistical regression, you should be aware that there are several other methods of estimation
available, which include maximum likelihood, weighted least-squares, etc. Nonparametric approaches
to regression also exist and may prove useful from time to time. Regression analysis is much more than
one particular way of estimating parameters, which would explain why entire books and courses are
devoted to the subject.

7.11 NULL HYPOTHESES FOR REGRESSION

Obtaining estimates of α and β is one thing, but testing null hypotheses about their population values is
quite another. We are most interested in testing the null hypothesis H0 : β = 0 against the alternative
hypothesis H1 : β 0, where β is the population regression coefficient. As with all significance tests,
we require the requisite estimate of the standard error. Recall why we require standard errors. Even if
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our sample data yield a sample slope of say, b = 0.7, this in no way, on its own, suggests that the null
hypothesis is false and that β 0 in the population from which the sample data were drawn, analogous
to how in the analysis of variance a mean difference in our sample did not by itself imply a mean dif-
ference in the population.

What is needed is an estimate of how much sampling variability exists from sample to sample if we
were to draw repeatedly from a population for which the null hypothesis were “true.” That is, if we
sampled repeatedly from a population such that β = 0, how much variation around expectation
(i.e., 0) would we experience in our sampling? If the estimate of b = 0.7, for instance, was sampled
from a population (and its corresponding sampling distribution) in which there is expected much var-
iation in slopes, then 0.7 may not be regarded as that unlikely under the null hypothesis. However, if
b = 0.7 were sampled from a population for which there is exceedingly little variation in slopes, then 0.7
may very well suggest to us that β = 0 is not true and that β 0 is a more accurate reality. We need an
estimate of variability of our sample statistic, b. In other words, we need to know the standard error of
the slope.

The variance of b is given by

s2b =

n

i = 1

yi − yi
2

n − 2
n

i = 1
xi − x

2

where,

• s2b is the variance of the slope estimator.

•

n

i = 1
yi − yi

2

n − 2
is the variance of residuals, or variance of the estimate, or again, MS residual. Its

square root is the standard error of the estimate (which is the standard deviation of residuals, but
with n − 2 in the denominator rather than n − 1 for simple linear regression).

•
n

i = 1
xi − x

2 is the sum of squares for the predictor.

We can appreciate why s2b is the way it is. We are taking a ratio of error variance (i.e., numerator)
relative to a measure of variability in our predictor (i.e., denominator). The extent to which average
prediction error is large relative to variability in the predictor is the extent to which b will be estimated
imprecisely, meaning that there is expected to be much fluctuation from sample to sample. On the
other hand, if average prediction error is small relative to variability in the predictor, bwill be estimated
more precisely, which implies less fluctuation in b from sample to sample.

Computing the standard error from the variance of b is straightforward. As usual, we simply take the
square root:

sb =

n

i = 1

yi − yi
2

n − 2
n

i = 1
xi − x

2
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Though in most contexts (other than perhaps in multilevel models), we are not especially concerned
with estimating the intercept parameter, in some cases, we like to center predictors so that the intercept
value corresponds to a value on the response variable at the mean of the predictor. Either way, an infer-
ential test on α may sometimes be of interest. Also, since the intercept plays a much more significant
role in advanced modeling techniques such as mixed models and the aforementioned multilevel model,
understanding how to obtain a significance test is worthwhile.

As we did for b, we require an estimate of the variance of a. The variance of a turns out to be

s2a =

n

i = 1
yi − yi

2

n − 2

n

i = 1
x2i

n
n

i = 1
xi − x

2

where,

• s2a is the variance of the intercept estimator.

•

n

i = 1
yi − yi

2

n − 2
is, as before, the variance of residuals (i.e., MS residual).

To get the standard error of s2a, we again take the square root:

sa =

n

i = 1
yi − yi

2

n − 2

n

i = 1
x2i

n
n

i = 1
xi − x

2

Having now obtained sampling variances (and their corresponding standard errors) for the slope and
intercept parameters, we are now in a position to test null hypotheses on these parameters. We consider
these tests next.

7.12 SIGNIFICANCE TESTS AND CONFIDENCE INTERVALS FOR MODEL
PARAMETERS

Recall that we said that if predictor xi does not afford additional predictive power over and above sim-
ply predicting the mean of yi, then it implied a horizontal slope (i.e., a horizontal “regression line”),
which also implied that we have no basis for rejecting β = 0. When we obtain a sample estimate of β,
say, b = 0.7, we ask the question:

Does b = 0.7 deviate enough from expectation that we can reject the null hypothesis β = 0 and infer
β 0?

Now that we have measures of sampling variability for b (i.e., the variance and standard error we
discussed earlier), we can now test the observed deviation b − β relative to expectation under H0. That
is, we can test the statistical significance of b against a value of the parameter β under the null hypoth-
esis using a t-statistic:
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t =
b − βnull

sb

where t is distributed on n − 2 degrees of freedom and βnull represents some value under the null
hypothesis, usually equal to 0. The logic of the t-test is clear: we are comparing an observed deviation
b − βnull to a deviation we would expect, sb, under the null hypothesis, or equivalently, under repeated
sampling of b statistics from a population for which βnull is true.

Likewise, the statistical significance of a can be assessed by a t-statistic:

t =
a − αnull

sa

where t is again distributed on n − 2 degrees of freedom. The logic of the test is analogous to that for b.
We are comparing an observed deviation of the kind a − αnull to an average deviation sa we would
expect under the null. As was true for βnull, with some programming, we are free to specify αnull as
a value different from zero if we really so desired, and incorporate this into our test, but in the absence
of any particular reason to do so, the default test value will be zero (remember, null hypotheses can
always be rejected if they are unreasonable or unrealistic to begin with; youmust choose the null wisely
so the significance test makes substantive sense for your given research problem).

A 100(1 − α) confidence interval for b can be constructed as follows:

b ± t α 2 sb

where b is the sample estimate of β, t(α/2) is the two-tailed critical value for the 100(1 − α) confidence
level on n − 2 degrees of freedom, α is the significance level for the level of confidence, for which the
confidence interval divides it by 2 (i.e., α/2) to make it “two-sided,” and sb is the estimated standard
error of the slope.

Likewise, a 100(1 − α) confidence interval for a can be constructed:

a ± t α 2 sa

where a is the sample estimate of α.
We will see significance tests and confidence intervals “in action”when we consider software appli-

cations shortly. Tests for comparing slopes from two different samples are also available as are tests
that two correlation coefficients are equal to some number, usually zero (see Howell, 2002, p. 276). An
alternative to estimating confidence intervals analytically is to employ a bootstrap procedure. For an
example of how the bootstrap can be used in this regard, see Crawley (2013, pp. 478–481). The jack-
knife procedure, which has been shown to be an approximation to the bootstrap, is also an alternative
strategy for obtaining confidence intervals, though as noted by Fox (1997), may not perform as well
when compared to the bootstrap.

7.13 OTHER FORMULATIONS OF THE REGRESSION MODEL

In addition to specifying the regression model as we did in (7.1), we can express the model via other
configurations. Not only does doing so constitute an interesting algebraic exercise, but also formulating
the regression model in different formats helps us better understand just what regression is doing in
terms of its mechanics. That is, greater insight into regression can be “experienced” by representing the
model in a variety of algebraically equivalent formats.
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For instance, we have already seen that the equation for computing the intercept term is given by
a = y − bx. When we substitute this into the model equation of (7.1), for any sample of observations, we
obtain:

yi = a + bxi + ei
= y − bx + bxi + ei

Removing the parentheses, we have

yi = y − bx + bxi + ei

Notice that b is common to the terms bx and bxi, which means we can factor b out and get

yi = y − bx + bxi + ei
= y + b xi − x + ei

(7.4)

What is the advantage of the formulation in (7.4)? It emphasizes the fact that yi is a function first of
its mean, y, which is the expected value of yi under the circumstance of zero correlation between yi and
xi, adjusted by the extent to which the term “xi” changes the prediction, over and above εi (though
recall, E(εi) = 0, so this is not a concern, it is not a systematic component). This idea of y being
“adjusted” is a powerful way to understand regression. If our best prediction of yi given no information
is the mean of yi, then when we do havemore information in the form of xi, we adjust our prediction line
accordingly to reflect this influence. The sample estimator b tells us the degree and direction for which
we should be making such an adjustment to our original horizontal line.

We can use the formulation (7.4) to show that when xi is equal to x, the best prediction for yi is indeed
y, in the sense of minimizing sum of squared errors, e2i :

yi = y + b xi − x + ei
= y + b x − x + ei
= y + b 0 + ei

= y + ei

That is, when xi is equal to x, then x− x, and so b(0) is equal to 0, leaving us with only yi = y + ei.

7.14 THE REGRESSION MODEL IN MATRICES: ALLOWING FOR MORE
COMPLEX MULTIVARIABLE MODELS

The simple algebraic model formulations thus far employed, though sufficient for simple linear regres-
sion, will not be for discussing the multiple regression model of the following chapter. The “vehicle”
for multiple regression and multivariable methods, in general, is that of vectors and matrices.

In this section, we briefly introduce and detail the simple linear regression model in matrix form so
that when we arrive at multiple regression, we will be in a position to extend on this simple formulation
for multiple predictors, and in some cases, multiple response variables as well (analogous to the case of
multivariate analysis of variance).

In a simple regression model, we can write each component of the model as its own vector. The
expectation for the response variable yi, that is, E(yi), is now written as an expectation of a vector of
responses, E(y), which is a matrix containing n rows and a single column. We write E(y) as
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E y =

E y1
E y2
E y3

E yn

(7.5)

In (7.5), we are now simply denoting each value of the response vector as a single column, of which we
take the expectation on each yi.

Since in the simple linear regression model the expectation of a randomly chosen value for the
response is E(yi) = α + βxi, we can express the vector E(y) as

E y =

E y1
E y2
E y3

E yn

=

α + βxi = 1

α + βxi = 2

α + βxi = 3

α + βxi = n

where α + βxi = 1, α + βxi = 2, …α + βxi = n represents the systematic portion of the model applied to
each observation y1 through yn in the data. It stands that the error termwill also have its own n × 1 (i.e., n
rows and 1 column) vector:

ε =

εi = 1

εi = 2

εi = 3

εi = n

When we put all the pieces together, the full expression of the simple linear regression model is
given by

E yi = 1

E yi = 2

E yi = 3

E yi = n

=

α + βxi = 1

α + βxi = 2

α + βxi = 3

α + βxi = n

+

εi = 1

εi = 2

εi = 3

εi = n
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More compactly, and adjusted slightly, we may write the model as:

y = E y + ε
= α + β X + ε

(7.6)

where, all we did to get from [E(y)] + ε to [α + βX] + ε was to recognize that E(y) = α + βX.
Note that in this formulation, we are grouping the intercepts α (which once estimated, are a constant

for all observations) into their own vector α.
The formulation (7.6) of the regression model is fine, but it becomes awkward when one considers

such things as multilevel models in which the intercept term (and potentially the slope) is a random
variable and hence not fixed. That is, in suchmodels, often researchers wish to free the intercept term so
that each particular individual or specified subgroup in the data has their own intercept. Conse-
quently, it would be useful to format the regression model such that the inclusion of the intercept term
α for each yi is designated as a potentially unique quantity. In the formulation of the regression model
in (7.6), all intercepts are assumed to be a constant for all observations on the response.

We can accomplish this more easily in our notation by re-expressing α + βX into two components,
one component representing the values for xi and the other component the parameters of our model. We
need two vectors to accomplish this, being sure to appropriately index the intercept parameter with a
column of 1’s:

X =

1 xi = 1

1 xi = 2

1 xi = 3

1 xi = n

β =
α

β

The components of the full simple linear regression model can thus now be written as

y =

yi = 1

yi = 2

yi = 3

yi = n

X =

1 xi = 1

1 xi = 2

1 xi = 3

1 xi = n

β =
α

β
ε =

ε1

ε2

ε3

εn

or more compactly as:

y = Xβ + ε (7.7)

To summarize,

• y is a vector of responses on a single response variable in the case of simple or multiple regression.
In the case of multivariate regression, this vector could include several response variables (see
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our discussion of MANOVA in Chapter 11 for an introduction to the multivariate landscape,
though in the context of ANOVAmodels). In this book, we typically designate such a vector with
potentially several responses as Y (whereas the smaller case bold vector y has only a single col-
umn of scores on a given response variable).

• X is generally known as themodel or design matrix; in regression analysis, it typically contains
values on one or more predictors; in ANOVA models, it can be adapted to represent group mem-
bership in the form of indicator variables such as “0” or “1” to denote classification on a catego-
rical predictor.

• β is a matrix of regression coefficients, including the constant α.

• ε is a vector of errors; this vector is typically a single column in most models because no matter
how complex our regression model, only a single error exists for any predicted value of the
response. In multilevel models, one could parameterize error terms for each level of the hierarchy
or grouping structure, though we do not consider such possibilities here.

7.15 ORDINARY LEAST-SQUARES IN MATRICES

Having surveyed the use of matrices in the representation of a regression model, it follows that we
should be able to express the least-squares solutions and estimators in matrices as well. That is, all that
was done on scalars in simple regression should have their corresponding matrix counterparts. Our
formulation to follow mirrors that of the formulation of least-squares using scalar quantities. The only
difference is that now, instead of formulating the model in terms of scalars with a single predictor, we
generalize the least-squares solutions in matrices to better prepare for more complex modeling to
come, including multivariate modeling and structural equation models.

Formally, the method of least-squares and of minimizing ε ε (squared error) is analogous to finding
an orthogonal projection of observed data in y onto a new space that is said to be spanned by the pre-
dictor variable(s), where the span is the set of matrices (or vectors) that is expressible as linear com-
binations. One may think of a projection in this case as merely the estimated regression line, of which
the information contained in predictor(s) is used in “projecting” points onto this line (or surface, in the
case of multiple regression).

In both (7.1) and (7.7), the systematic portion of the model is contained in α + βxi and Xβ, respec-
tively. The error εi in (7.1), recall, was equal to εi = yi − yi. The equivalent for expressing a difference
between an observed and predicted value (i.e., yi − yi) using matrices is thus

ε = y−Xβ

The matrix equivalent of minimizing the sum of squared errors
n

i = 1
ε2i in scalar quantities becomes

ε ε = y −Xβ y −Xβ
= y y −β X y − y Xβ + β X Xβ
= y y − 2β X y + β X Xβ

where (βX y) = y Xβ yield the same result (Draper and Smith, 1998, p. 135).
We can clearly see that the expression ε ε is nothing more than the equivalent of ε2i in scalar algebra,

since (y −Xβ) (y −Xβ) essentially translates to (y −Xβ) “squared.”
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After taking the relevant partial derivatives as we did in the simpler regression situation where we
were not using matrices, the normal equations using matrices end up being

X X b = X y

We can now solve for b. The analog in scalar algebra would be to divide the left and right-hand sides
by XX as to isolate b. That is, if we were to express the above formulation naively in matrix terms,
pretending for a moment that we were still doing scalar algebra, solving for b would look like this:

X X b = X y

b =
X y
X X

In matrix algebra, however, as reviewed in the Appendix, division such as just performed is not per-
mitted. Rather, to “divide” in this case, we multiply by the inverse:

b = X X − 1X y

Hence, the solution for obtaining the least-squares estimators is b = (XX)−1X y. We note that should
XX not be invertible, solutions for b cannot be obtained using this set of equations since if (XX)−1

cannot be computed, we end up with

b = X X − 1X y

= X y

=

where , in this case, simply represents a quantity that cannot be calculated. If we cannot solve (XX)−1

(since it does not exist, (Draper and Smith, 1998, p. 136)), we cannot solve for b in the given model.
Again, what was the purpose of demonstrating the matrix development in simple regression if using

“ordinary” algebra would have sufficed? That is, we certainly did not require matrices to conceptualize
the simple linear regression model. However, when we get to multiple regression models, those con-
taining several predictors, or multivariate models, those containing several dependent variables, the
employment of matrices is not simply an equivalent way of conceptualizing these models. It is a
requirement. Matrices allow for the generalization from simple to complex statistical models, and
hence our brief survey above was simply a preparation for this further work and for when the com-
plexity we encounter will not be reducible to simpler configurations. It should be noted that under-
standing the matrices underlying regression (and other) models does not necessarily provide one
with greater insight into the nature of regression, but it does allow one to be able to understand
how statistical models, even complex ones, are configured in the most general of cases.

7.16 ANALYSIS OF VARIANCE FOR REGRESSION

When we run a simple linear regression, in addition to parameter estimates, we obtain an analysis of
variance table. At first sight, students familiar with ANOVA, but newcomers to regression are often
somewhat surprised to see an ANOVA table in regression output. What is an ANOVA table doing in a
regression chapter? However, remember that ANOVA and regression are both versions of the general
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linear model, and at their base, seek to accomplish very much the same thing, that of partitioning the
variance of a response variable into explained and unexplained components. The analysis of variance
method or procedure was that featured in earlier chapters. However, we come across the analysis of
variance partition in both ANOVA and regression models. Further, as will become clearer the more
you study these models, you will see that though model specifications and parameterizations are dif-
ferent in each one, at their respective cores, both accomplish a remarkably similar analytical goal.

Table 7.1 shows the partition of the sums of squares in a simple linear regression.
We unpack each of the terms in the table:

•
n

i = 1
yi − y

2
is the sum of squares due to regression.

•
n

i = 1
yi − yi

2
is the sum of squares due to error (often called SS residual in this context).

•
n

i = 1
yi − y

2 is the sum of squares total for the entire data.

• Degrees of freedom for regression are k, where k is the number of predictors.

• Degrees of freedom for error (residual) are n − k − 1, where n is the number of data points.

• Degrees of freedom for total are n − 1, where again n is the number of data points.

• Mean squares are computed by taking the relevant sums of squares and dividing by respective
degrees of freedom, analogous to what is done in ANOVA models.

• F-ratio is computed by MS regression/MS residual and is evaluated on k and n − k − 1 degrees of
freedom.

The identity SS total = SS regression + SS residual in regression is conceptually (though not com-
putationally) analogous to the identity SS total = SS between + SS within in the analysis of variance.
Hence in regression, the partition is:

n

i = 1

yi − y
2 =

n

i = 1

yi − y
2
+

n

i = 1

yi − yi
2

The identity tells us that we can break down the total variation in a data set into two parts, the sums
of squares due to regression and the sums of squares due to residual. Naturally, as a researcher, your

TABLE 7.1 Analysis of Variance for Linear Regression

Source Sum of Squares df Mean Square F

Regression n

i = 1
yi − y

2 k n

i = 1
yi − y

2

k

n

i = 1
yi − y

2
k

n

i = 1
yi − yi

2 n− k − 1

Residual n

i = 1
yi − yi

2 n − k − 1 n

i = 1
yi − yi

2

n – k – 1
Total n

i = 1
yi − y

2 n − 1 n

i = 1
yi − y

2

n− 1
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hope is that the sums of squares due to regression is much larger than the sums of squares due to resid-
ual. To the extent that SS regression is small relative to SS residual is the extent to which the model is
not very effective at accounting for observed data (e.g., there is far too much scatter around the esti-
mated regression line for SS regression to be dominating SS residual).

Having laid out some of theory of regression in matrices, we can also represent the ANOVA sum-
mary table in matrix form (see Table 7.2). Because we are using matrices, such a summary table is
applicable to either simple or multiple regression.

We do not discuss or describe Table 7.2 at any length. Given the matrix formulation of the regres-
sion model discussed earlier, you should be able to recognize familiar elements in Table 7.2. The pur-
pose of showing it is mostly to reveal how ANOVA for regression can be generalized to matrices for
more complex cases than that of a single predictor. For instance, the sums of squares for regression in

the simple bivariate case are equal to
n

i = 1
yi − y

2
whereas the equivalent matrix formulation is that of

b X y− 1
n y Jy, where b is a vector of regression coefficients, X is a matrix of predictors, y is a vector

of response variables, n is the sample size, and p are the number of estimated parameters (e.g., intercept
and slope in the case of simple regression). The matrix J is defined as a square matrix of 1’s.

TheHmatrix is the so-called hat matrix defined asH =X(XX)−1X , whereH is used in estimating
the fitted values of y by y =Hy. The sums of squares for regression, b X y− 1

n y Jy in Table 7.2 can be
expressed as y H− 1

n J y, which, as can be seen, explicitly usesH. As we will discuss shortly, the hat
matrix is often used in defining various regression diagnostics. The sums of squares for error y y −
b X y can likewise be expressed in terms of the hat matrix by y (I −H)y.

To reiterate, in a simple linear regression problem, one would not use nor need to refer to such
matrix formulations as in Table 7.2. The advantage of presenting these results now, however, is that
it readily prepares the reader to handle larger more complex models as one would see in a more “gen-
eral” multivariable context (i.e., it “unpacks” the SS in more detail), as well as initiates him or her to
the use of matrices in the specification of linear models in general. It is essential that if you plan on
specializing in statistical modeling to any advanced degree, that you become familiar with matri-
ces and how linear models are depicted using them. When multivariate techniques such as themul-
tivariate analysis of variance (MANOVA) and factor analysis are considered later, the requisite
employment of matrix formulations should not catch the reader by surprise. All simpler model formu-
lations which do not explicitly require matrix operations can be considered “special cases” of the wider
matrix framework. Hence, the initial “complexity” of matrix operations actually, in the end, makes
things a whole lot simpler because it widens the landscape. It may be said that perspective in and under-
standing of whatever craft one studies is facilitated by aspiring to a comprehension of the most global
and universal principles, of which all others are special cases. Always strive to see the “bigger pic-
ture” so that smaller pictures are interpreted from that vantage point.

TABLE 7.2 Analysis of Variance Summary Table in Matrices

Source Sum of Squares df Mean Square F

Regression b X y − (1/n)y Jy p − 1 b X y – 1 n y Jy
p− 1

b X y – 1 n y Jy p− 1
y y – b X y n− p

Error y y − b X y n − p y y – b X y
n− p

Total y y − (1/n)y Jy n − 1 y y – 1 n y Jy
n− 1

Source: Adapted from Neter et al. (1996, p. 229).
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To demonstrate the use of matrix operations in computing least-squares solutions, we will consider a
simple example using R shortly in which all computations are done “manually” (i.e., by matrix
computations). Familiarity with this example will help greatly “demystify” matrix calculations in
regression and will open the door for the reader to much more complex modeling employing matrices.

7.17 MEASURES OF MODEL FIT FOR REGRESSION: HOW WELL DOES
THE LINEAR EQUATION FIT?

Fitting a regression model to data is relatively easy. It is essentially and simply the imposition of a
functional polynomial form on what is usually, relatively speaking, a messy data surface, especially
if one’s data arise from social processes (i.e., lots of variability). Determining how well the model actu-
ally fits is where our interests really lie. Any data can accommodate a regression line, meaning it is
possible to fit a regression line to any quality of data. Good models, however, accommodate that
data well. We must define more precisely a measure of “wellness” or “goodness” of fit.

The most popular measure of model fit in a simple regression setting is the coefficient of determi-
nation, r2. In a multiple regression context, the statistic is usually referred to as R2 and denotes the
coefficient of multiple determination. Regardless of whether the model is simple or multiple, we
compute these by the ratio of sums of squares of regression to sums of squares total. The resulting
coefficient will range from 0 to 1 (coefficients of determination cannot typically be negative under
normal parameterizations of the regression model), with low values indicating poor fit and increasingly
larger values indicative of a model that fits increasingly well. We can define R2 as:

R2 =

n

i = 1
yi − y

2

n

i = 1
yi − y

2

We interpret R2 to be the proportion of variance in the response variable accounted for by knowl-
edge of the predictor variable(s). Hence, if R2 = 0.70, the interpretation is that 70% of the variance in
the response variable is accounted for or “explained” by knowledge of the set of predictors (even if that
set consists of only a single variable). R2 is also simultaneously the squared correlation between
observed values on yi and predicted values yi based on the regression.

But what does R2 tell us exactly? In the case of zero linear correlation between xi and yi, R
2 is equal

to 0. Why is this so? This is the case because under the condition of zero linear correlation, our “best”
prediction (in the sense of minimizing sum of squared errors) is that of the mean, y (Hays, 1994). That
is, yi must equal y, which means the numerator of R2 will equal 0. That is,

R2 =

n

i = 1
yi − y

2

n

i = 1
yi − y

2
=

n

i = 1
y − y 2

n

i = 1
yi − y

2
=

0
n

i = 1
yi − y

2
= 0

Notice that since the numerator of the second term is now
n

i = 1
y − y 2, R2 can be nothing else other than

0 regardless of howmuch the denominator
n

i = 1
yi − y

2 is greater than zero. That is, even if there is a lot
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of variability in one’s data (i.e.,
n

i = 1
yi − y

2may be large in the particular data set you are considering),

one still obtains an R2 equal to 0 since
n

i = 1
y− y 2 = 0.

7.18 ADJUSTED R2

A related statistic to R2 is adjusted R2 given by (Draper and Smith, 1998, p. 140):

R2
adj = 1 − 1 −R2 n − 1

n − p

where n, as before, is the number of observations in the sample and p is the number of parameters being
estimated, including the intercept term, α. The logic behind R2

adj is to make an adjustment for the num-
ber of parameters being fit in the model relative to their additive “value” in the regression. This adjust-
ment may be meaningful for a given model because R2 can typically only increase given the inclusion
of additional predictors. Hence, a model that fits “everything under the sun”may at first glance appear
impressive, yet due to a lack of parsimony, may be less so relative to a competing model that contains
lesser predictors but explains similar amounts of variance. As noted by Heumann and Shalabh (2016),
because of this “correction,” R2

adj can be used to compare the fit of models with differing numbers of
covariates. Not all statisticians find this use helpful, however, and recommend it only as a “gross indi-
cator” when comparing models (see Draper and Smith, 1998, p. 140). If one attempts to do the same
(i.e., model comparison) with R2 rather than R2

adj, one should inquire more into each model that is being
compared to learn of the number of covariates utilized in each. As sample size increases, the expected
difference between R2 and R2

adj goes to zero. For smaller sample sizes, however, differences between
the two statistics can be fairly substantial. Even if you are to report R2 in your manuscript, a glance over
at the behavior of R2

adj is always a good idea.

7.19 WHAT “EXPLAINED VARIANCE” MEANS AND MORE IMPORTANTLY,
WHAT IT DOES NOT MEAN

We have said that R2 and R2
adj both measure the extent to which one or more predictor variables

“explain” variance in a response variable. But what does this mean, exactly? To understand what it
means, let us first consider what it does not necessarily mean, arbitrated by the context in which it
is used. It does not necessarily mean that if you change values of the predictor(s), this will lead
to a change in values of the response. R2 presumes to know nothing whatsoever about your research
design. It can be computed on nonexperimental data just as it can on experimental data, but beyond
that, the exact interpretation of “variance explained” is completely up to the researcher to disentangle
given the particular research context, the degree of experimental controls, and other research-related
(not statistically-related) matters. For instance, consider the following statement:

Melatonin ingestion explains 30% of the variance in sleep duration.

The above statement does not alone tell us the true strength of the evidence we might have for the
effectiveness of melatonin as a sleep aid. Were subjects randomly assigned to dose conditions? If so,
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then we can interpret the 30% figure in the context of a true experimental design. If subjects were not
randomly assigned and we simply correlated the amount of drug subjects took with their sleeping
behavior, our strength of evidence, even if still at 30% variance explained, is not nearly as strong.
Simply put, there could be an inordinate number of covariates linked to melatonin ingestion on such
a nonexperimental study, that it is impossible, on methodological grounds, to associate the number
30% with any kind of strong, directional claim. If an experiment had been performed, then presumably
an effort was made to exclude or control the infinite number of nuisance factors that may have played a
role, and hence the 30% figure would mean something more on a scientific level.

The point of this discussion is to emphasize that both experimental evidence and nonexperimental
evidence can generate impressive R2. Even made up fictitious data can generate moderate to large R2.
However, not all R2 should be considered equal in scientific credibility or worth. Experimental
evidence, due to the process of random assignment and the attempt to balance out nuisance factors,
is typically always more credible.

Furthermore, just as is true for evaluating the size of such measures as Cohen’s d, R2 values should
never be evaluated in a “vacuum”without some reference knowledge of the given research area. Is 30%
variance explained for melatonin on sleep latency a strong effect? Perhaps in an absolute sense
explaining 30% may be impressive in its own right. However, if a competing medication explains
70% of variance in sleep (with no side effects and at reasonable cost), then suddenly the 30% figure
is not quite as impressive. When it comes to interpreting effect sizes, one should only rarely rely on the
absolute size of the effect. Ideally, one should rather have enough prior knowledge of the research
area to knowwhether the effect before them is impressive or not. Seasoned researchers do not need any
arbitrary guidelines or “rules of thumb” to tell them whether an effect is impressive or not. Rather, they
are well aware of current and past findings in the area and are in that sense prepared to properly interpret
results from their study. This highlights the importance of always conducting a thorough prior review
of the research area before attempting to interpret new findings.

At the same time, explaining 20% of the variance yet speaking as though “X explains Y” without
highlighting that most of the phenomenon remains unexplained, is unethical or misunderstood sci-
ence, and is seen everyday in both conference presentations and in publications. In this case, X explains
“some” of the variance in Y, yet to speak of it as if it simply “explains Y” (especially when commu-
nicating to the media) without de-emphasizing the phrase, is severely misguided. Of course, it is a
much “sexier” account of reality than concluding “Most of the variance in Y remains unexplained, and
what we found is quite minimal. We essentially know quite little thus far about the phenomenon.”
A discussion of ethics in science is beyond the scope of this book. Simply be aware that many
researchers absolutely love to exaggerate their findings way (way) beyond what the data actually
say (it is called “career-building” and has little to do with good science), and no branch of science
(whether physics, psychology, medicine) is immune to this. Science is, fundamentally, a social disci-
pline, which means it is not immune to these factors. Complete “objectivity” in science is a fruitful
goal, but also, and sadly, too often a myth.

7.20 VALUES FIT BY REGRESSION

Recall that a purpose in performing a regression is to obtain a vector (i.e., a “column”) of fitted values
that are conditioned on the observed value of the predictor xi entered into the model. For the case of
simple linear regression, we can express the fitted or predicted values as a function of our model
equation:

yi = a + bxi
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For larger models cast in matrices, predicted values for y are computed as

y = Xb

It stands that if a given observation is perfectly predicted, that is, yi = yi, then the observed residual is
equal to

ei = yi − yi = 0

or

ε = y − y = 0

in matrices.
It should be emphasized that in the formulation of the regression model (7.1), yi = α + βxi + εi, εi is

considered to be the actual true error in terms of what would exist had we actual model parameters and
the population (instead of merely sample estimators of those parameters as we have in the case of sam-
ple data), whereas ei is an observed error (or “residual”) in an empirical application of the regression
model. If the assumptions that are made about εi are correct, then the observations for ei should be at
least somewhat representative of their behavior; however, a true error is still not the same as a residual
and they should not be equated. This distinction is further elaborated on in Chapter 15 when we survey
the structural equation model.

7.21 LEAST-SQUARES REGRESSION IN R: USING MATRIX OPERATIONS

One of the joys of learning and performing matrix algebra in R is that one can reproduce virtually any
relatively elementary statistical analysis by the simple, and perhaps at times complex, manipulation and
construction of basic matrices.

As an example, we once again consider the problem of least-squares, but this time instead of invok-
ing a canned “routine” in software, we demonstrate how the solution can be obtained by simple matrix
construction and operations. Such a demonstration provides some insight into what the actual regres-
sion procedure is “doing” when working behind the scenes in software, and also helps the user better
understand possible computer error messages if and when they arise.

Readers unfamiliar with general matrix operations, and who choose to study this section, are
encouraged to consult the Appendix where these concepts are reviewed. For the following demonstra-
tion, we assume some familiarity with such operations as matrix multiplication, and move rather
quickly to computing least-squares estimates using a hypothetical and easy example. The purpose
of doing it the “long way” is simply to demonstrate the matrix computations and the principles
involved. Rarely, if ever, baring a software power outage, will you need to calculate regression the
long way with the matrices we are about to compute, given that virtually all the regressions you will
perform will be via software.

To generate some hypothetical data, suppose we took a measurement of one’s quantitative and ver-
bal abilities on some standardized test and wished to predict one’s quantitative score based on knowl-
edge of that person’s verbal score. Hence, quantitative (or “Q”) is the response variable. Verbal (or “V”)
is the predictor. For each scale, a score of 0 represents minimal ability (it cannot represent no ability, it
is not measurable on a ratio scale) while a score of 10 represents maximal ability. The data are given in
Table 7.3.
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Our first step is to create the respective vectors for Q and V:

> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10)
> V <- c(2, 1, 3, 7, 9, 8, 8, 10, 9)

We next obtain a plot of the data:

> plot(V, Q)

2

2

4

Q 6

8

10

4 6 8

V

10

Though the sample size is very small and the number of data points are sparse, we can see, in gen-
eral, that a somewhat linear relationship appears to exist between Q and V (try imposing a line on the
bivariate data to confirm the general linear trend).

Recall that we need to compute XX b = X y. To get the matrix X needed to compute XX b = X y,
we generate the first vector by the name of I (for “intercept”) then bind both I and V into X. Since
everyone in our data gets the intercept, the vector I will simply be a list of 1’s:

> I <- c(1, 1, 1, 1, 1, 1, 1, 1, 1)
> V <- c(2, 1, 3, 7, 9, 8, 8, 10, 9)
> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10)
> X <- cbind (I, V)
> X

TABLE 7.3 Quantitative and Verbal Scores on Nine Subjects
(Hypothetical Data)

Subject Quantitative Verbal

1 5 2
2 2 1
3 6 3
4 9 7
5 8 9
6 7 8
7 9 8
8 10 10
9 10 9
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I V
[1,] 1 2
[2,] 1 1
[3,] 1 3
[4,] 1 7
[5,] 1 9
[6,] 1 8
[7,] 1 8
[8,] 1 10
[9,] 1 9

We could have also used I <- rep(1,9) to generate I (try it). We can now solve for XX quite
easily by premultiplying X by the transpose of X (t(X)):

> XTX <- t(X)%*%X
> XTX

I V
I 9 57
V 57 453

Likewise, we solve for X y, only this time using Q:

> XTY <- t(X)%*%Q
> XTY

[,1]
I 66
V 483

Making the appropriate substitutions, our equation thus far reads:

X X b = X y

9 57

57 453
b =

66

483

Our next step is to solve for b:

b = X X − 1X y

b =
9 57

57 453

− 1 66

483

The inverse of XX is computed by solve in R:

> XTX.I <- solve(XTX)
> XTX.I

I V
I 0.54710145 -0.06884058
V -0.06884058 0.01086957
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Now that we have the inverse, (XX)−1, the solution for b is thus:

> XTX.I %*% XTY
[,1]

I 2.8586957
V 0.7065217

Hence, the estimate of the intercept term is 2.859 while the estimate of the slope parameter is 0.707.
For this data, we conclude that for a one-unit increase in verbal ability, one can expect, on average,
an approximately 0.71 unit increase in quantitative ability.

7.22 LINEAR REGRESSION USING R

We now perform the equivalent regression using R’s lm function that will also allow us to obtain a
measure of model fit, which we did not bother with in our manual computations:

> reg.fit <- lm(Q~V)
> reg.fit

Call:
lm(formula = Q ~ V)

Coefficients:
(Intercept) V

2.8587 0.7065

We request a more complete picture of the regression output via the summary function:

> summary(reg.fit)

Call:
lm(formula = Q ~ V)

Residuals:
Min 1Q Median 3Q Max

-1.5652 -1.2174 0.4891 0.7826 1.1957

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.8587 0.8874 3.221 0.014626 *
V 0.7065 0.1251 5.648 0.000776 ***
–––
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.2 on 7 degrees of freedom
Multiple R-squared: 0.8201, Adjusted R-squared: 0.7944
F-statistic: 31.9 on 1 and 7 DF, p-value: 0.0007758
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Notice that R’s output for the linear model requested by summary(reg.fit), though containing
much of the same information as SPSS (as we will soon see), is organized much more succinctly than in
SPSS. R also includes quartile information about residuals before presenting the main results of the
regression. Some general features of the output include the following:

• Multiple R-squared for the model is equal to 0.82, with an adjusted R-squared of 0.79. Though
as discussed, magnitude of effect sizes should never be appraised or otherwise evaluated in a vac-
uum (i.e., they are usually only considered “large” or “small” in comparison to other effect sizes in
the area of investigation), it might be safe to assume in this case that an R2 of 0.82 likely indicates a
rather large effect. Indeed, if we could predict 82% of the variance in quantitative scores based on
knowledge of verbal scores, we are definitely “on to something” in a scientific sense. Recall that
“relative to the research area” simply means to position the obtained effect in contrast to other
results in the particular area. An R2 of say, 0.20, is still small in the big scheme of things. It
may be relatively large in a given research area, but it still does not permit us to say a “lot”
of variance is being explained. Humility when interpreting effect sizes is a must for serious
scientists.

• The regression model, evaluated on 1 and 7 degrees of freedom, yields an F-statistic of 31.9 with
an associated p-value of 0.00078, which is statistically significant at even a very conservative
significance level. There is a single degree of freedom for numerator (k = 1) and 7 degrees of
freedom for denominator because there is a total of nine cases (i.e., n − k − 1 = 9 − 1 − 1 = 7).

• The regression coefficient for V, equal to 0.7065, yields a p-value of 0.00078, which is statistically
significant when evaluated against conventional significance levels (e.g., 0.01, 0.05).

• Since there is only a single predictor, both the inferential question regarding both the model and
that of the predictor yield identical p-values (i.e., of 0.000776). In the presence of multiple pre-
dictors (i.e., as one would have in multiple regression), the p-values for predictors will usually not
be identical to the model p-value. In multiple regression models, statistical significance of indi-
vidual predictors is not equivalent to the statistical significance of the model taken as a whole for
reasons that will be better understood when we survey multiple regression.

Recall that in every regression, there is a partition of variance of total variability into SS reg + SS
residual. This is known as the analysis of variance for regression featured earlier in this chapter. To
view the ANOVA table from the regression, we request:

> anova(reg.fit)

Analysis of Variance Table

Response: Q
Df Sum Sq Mean Sq F value Pr(>F)

V 1 45.924 45.924 31.904 0.0007758 ***
Residuals 7 10.076 1.439
–––
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can surmise directly from the output how multiple R2 was computed, that of the ratio 45.924 to
(45.924 + 10.076) = 45.924/56 = 0.82. We can also request confidence intervals for model parameters
with confint:
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> confint(reg.fit)

2.5 % 97.5 %
(Intercept) 0.7602728 4.957118
V 0.4107442 1.002299

The above is a 95% confidence interval for V. It is interpreted to mean that with 95% confidence,
the true regression slope likely lay between the lower limit of 0.41 and the upper limit of 1.00.
Note that this interval is symmetrical about the actual sample value of 0.7065 that was estimated. Recall
as well that when interpreting confidence intervals, it is the sample on which the interval is computed
that is the random component. The parameter we are seeking to estimate is assumed to be a fixed value.

7.23 REGRESSION DIAGNOSTICS: A CHECK ON MODEL ASSUMPTIONS

Recall that whenever one fits a model to data, and more importantly, interprets that model, one is
doing so under the assumption that the model assumptions originally postulated are more or less sat-
isfied. Even though your regression analysis may boast statistical significance, this result is only as
good as the “goodness” of the model assumptions that underlie the analysis. If your assumptions
are not at least tentatively reasonable, then the ensuing inferential statistics and p-values may not
be accurate. For instance, you may underestimate or overestimate the probability of a type I error.

There is a whole field of expertise in the area of so-called “regression diagnostics,”which comprise
a host of statistical indicators and tools used for the specific purpose of revealing, both through numer-
ical summaries and graphics, potential problems with a fitted regression model. These include ways in
which the model might be improved by either altering the functional polynomial form or implementing
data transformations of empirical variables (e.g., taking square roots or logarithms, for instance). Fol-
lowing Fox (2016), who has written thoroughly on this topic with tremendous precision and accuracy,
diagnostics can be generally divided into three very broad categories:

• Unusual and influential data: This includes the attempt to detect data that does not conform to
our model.

• Nonlinearity, nonconstant error variance, and nonnormality: These are methods used to
detect deviations from the model assumptions on which our regression model is based.

• Collinearity, where one or more predictors in the model are highly correlated: These are mean-
ingful only in regression models with multiple predictors (i.e., multiple regression models) and
can be evaluated using such measures as the variance inflation factor or tolerance, to be dis-
cussed in the following chapter.

We must warn the reader that our treatment of regression diagnostics is very brief and incomplete
compared to more thorough treatments on the subject. We literally only scratch the surface so that the
reader may gain at least some rudimentary understanding of how model assumptions may be evaluated
using residuals and other techniques. This is not to suggest that diagnostics are not important, espe-
cially those relating specifically to verifying model assumptions. To the contrary, evaluating the ten-
ability of model assumptions is important. For instance, if the assumption of linearity is more or less
violated, then fitting an alternative polynomial (other than a line) to one’s data may be called for. Like-
wise, if two variables are highly collinear, this may also pose consequences for one’s regression model.
And though the detection of unusual and influential observations is also important, we regard it as less
so largely because of the view generally advanced in this book concerning outliers. Recall that though
comparing models with and without designated outliers or other otherwise influential points is good
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practice, we do not generally recommend the deletion of such data points unless there is a very good
scientific rationale for doing so. Detecting an observation that is influential to the model is one thing.
Excluding that observation from the science you have undertaken is quite another.

To reiterate, never casually and automatically delete an observation simply because it is distant
from the others. Such constitutes dishonest data analysis, unethical science, and if you are to be that
careless about your empirical observations, it is questionable whether you should be analyzing data at
all. If the data point was sampled correctly, and you have no substantive reason to delete it, it should
remain in your data and be a part of your conclusions. If you delete it for the sake of making your model
“fit better,” you are no longer practicing science, but rather are demonstrating that you know how to
make a sample of data points conform neatly to a model, which is usually of little use or interest to
anyone on a scientific level. Anyone can make a model fit well through such means. A scientist’s
model fits well because of the knowledge and insight that went into hypothesizing, data collection,
and eventual analysis of that data.

If in doubt, a practical solution would be to run the analysis with the outlier, then run it without,
and present both results to your audience (whether your audience be readers of your publication, and/or
conference attendees). Of course, if you do find a serious substantive anomaly with the given case (e.g.,
the participant was sleeping during the memory task, or someone in your sample had a learning dis-
ability which may have influenced your measurement), then by all means, consider deleting the case,
but record your deletion in your manuscript write-up, and inform the reader exactly why the case was
deleted.

Another possibility is to run a model in which outliers have a lesser influence such as robust regres-
sion or plotting a “resistant” regression line (see Venables and Ripley, 2002, pp. 156–163). Never sim-
ply ignore data, however, even data that you “dislike.” Science is about uncovering empirical truths,
not getting caught up in the aesthetics of model-fitting. Too often researchers “massage” their data
so much through both deletion of points and replacement of missing values that the true empirical
nature of their investigation becomes suspect. In this age of advanced computing techniques and
the facility of fast data analysis, the temptation to delete “offending” data may exist. However, the data
analysis should never be placed above the science. If you collected the data properly, and your model
does not fit well, it is most likely the model that is in error, not the data.

7.23.1 Understanding How Outliers Influence a Regression Model

To help appreciate the effect of extreme observations on a regression model, one need only draw a
simple analogy to an empirical distribution of a sample on which a mean is computed. To demonstrate,
consider the following distribution of numbers:

2 5 7 8 9

The mean of these numbers is 6.2. If we added another data point, 30, our new distribution becomes

2 5 7 8 9 30

The mean of this new distribution is 10.2. By simply adding one rather extreme data point relative to
the others, our arithmetic mean has shifted in magnitude from 6.2 to 10.2.

Extreme data points have a similar effect on a regression model. Recall that least-squares regression
guarantees to fit the line such that the sum of squared errors is kept to a minimum value. In both cases,
that of the simple arithmetic mean and regression line, extreme data points demand a shift toward the
center of gravity of the distribution. This was easily demonstrated for the mean with a shift from 6.2
to 10.2. In regression, we can demonstrate the effect as follows. Consider the regression line of yi on xi
in Figure 7.7.
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We see the effect that the bivariate outlier has on the least-squares regression line. Since the regres-
sion line can be conceived as a “floating mean,” it is being pulled down in effort to “accommodate” all
data points (the effect is somewhat exaggerated in the right-hand figure to motivate our discussion).
And though the regression line (Figure 7.7b) is still keeping the sum of squared errors to a minimum,
this minimum value is larger because of the outlier. The regression line, just as is true of the arith-
metic mean, must find a way to “appease” all data points, even those that are quite extreme. In this way,
means and regression lines can be said to be quite “democratic,” in that analogous to political affili-
ation, even those holding extreme positions, whether on the far right or far left, are incorporated into the
gravitational center of the political climate, and “good” politicians must find a way to appease them.
The reader should be forewarned that outlying observations can at times greatly influence the regres-
sion solution. For a good example of this effect, see Dalgaard (2008, p. 221). If in doubt, fit the model
with, thenwithout the given data point(s) if for no other reason than to get a clearer picture of its influ-
ence. Then, on a scientific basis (as opposed to statistical), you can make the decision as to whether to
include or exclude the observation from your data.

7.23.2 Examining Outliers and Residuals

In an attempt to evaluate outliers and other assumptions in a regression model, we can investigate
residuals. Recall that the residual ei is the difference between an observed score yi and a predicted
score yi, that is, yi − yi.

A standardized residual is simply a raw score residual ei divided by an estimate of its standard
deviation:

est =
ei
sei

where ei is the given raw-score residual and sei is an estimate of its standard deviation. However, as
noted by Fox (2016, p. 272), s2ei (i.e., the square of sei) is not a satisfactory estimate of the variance of εi
(the error term). A better estimate of the variance of errors εi is s2ei (1 − hij), where hij represents a value
along the principal diagonal of the “hat matrix” briefly discussed earlier. Incorporating this estimate of
the variance of errors into our formula for the standardized residual gives us
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FIGURE 7.7 Least-squares regression line of Y on X (a). Dotted line is the new least-squares regression line (b)
after adding outlier. Arrow shows the “pulling down” of the regression line to accommodate the gravitational
center of the “floating mean.”
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est =
ei

sei 1 − hij

It is possible to define other residuals as well. The studentized residual is the same as est only that sei is
based on all observations except that for the given residual. The logic is to estimate deviations of the
kind yi − yi, but where the given observation (on which we are computing the residual) is not involved
in the computation of fitted values. See Fox (2016, p. 272) for further details.

7.23.2.1 Errors Versus Residuals Recall the distinction between an error and a residual. The
error, εi can be said to be the difference between the observed value from the true value (i.e., E
(yi)), whereas the residual can be conceptualized as the difference between the observed value and that
predicted by the model. Since we can never actually obtain “true” values, we cannot compute errors
directly. We are relegated to working with residuals which essentially represent that source of variance
which is left over from the fitted model, that unaccounted for by the model equation.We will revisit this
distinction between an error versus a residual in Chapter 15 when we discuss structural equation mod-
eling, as it is in such latent variable modeling where the distinction becomes even more important and
relevant to appreciate.

7.23.2.2 Residual Plots Residual plots are useful because they allow us to evaluate whether at
least some of the model assumptions we stated before the fitting of our model are actually valid in
some sense. Keep in mind that in any statistical model, no assumption will typically ever be perfectly
satisfied. The goal, however, through residual analyses is to learn whether or not most assumptions
are at least tenable. In some cases, it may be exceedingly difficult to even know whether some
assumptions are satisfied or not, even through residual analyses. However, residual plots are definitely
helpful in attempting a verification of them. Though many plots and variations thereof are possible (see
Fox, 2016 for more plots), we focus our attention on a single plot that can usually suffice as a quick
diagnostic in terms of evaluating the behavior of residuals.

Consider the plot of residuals against predicted values in Figure 7.8. The absence of a relationship
(whether linear or otherwise) between residuals and predicted values is ideal. A violation of this
assumption could, at least in theory, take the form of the plot on the right side of Figure 7.8 in which
a positive linear relationship is evident (Johnson andWichern, 2007, p. 382). However, as noted by Fox

1

0

–1

1

0

–1

0 2 3 4 5 6

Predicted y

R
e
s
id

u
a
ls

(a) (b)

R
e
s
id

u
a
ls

Predicted y
1 0 2 3 4 51

FIGURE 7.8 Absence of correlation between residuals and predicted values (a). Linear relationship between
residuals and predicted values (b).

270 LINEAR REGRESSION



(2016), since the least-squares fit guarantees that the correlation between the fitted values and residuals
is equal to 0, a linear form that dominates the plot (and is not simply present in a subset of the plot)
would usually suggest numerical calculations are not correct and/or the intercept has been omitted from
the model (Johnson and Wichern, 2007). Indeed, any kind of systematic pattern in the plot (e.g., a cur-
vilinear trend) may also suggest the need for more terms in the model. Overall, and in general, the
important point to remember is that any lack of independence of the residuals from predicted values
(whether linear, curvilinear, etc., in any sub-area of the plot) may suggest that revisions or
double-checks on the model are required.

Residual plots can also be used to identify potential problems with the variance of errors. Distri-
butions of residuals (or their standardized counterparts) should be relatively evenly distributed across
values of the predicted value or predictor(s) (in the case of multiple regression) as is the case in
Figure 7.8a. A violation of this assumption might look something like that shown in Figure 7.9, where
it is clear that the distribution of residuals is not constant across predicted values.

Though not demonstrated here, problems of heteroscedasticity (i.e., unequal variances) can be
potentially remedied through power transformations or through a weighted least-squares solution
instead of traditional OLS. For details, see Fox (2016) or Draper and Smith (1998).

7.23.2.3 Time Series Models Serial correlation, also generally known as autocorrelation, can
sometimes exist in residuals, especially in time series models which feature the behavior of a response
variable over time. TheDurbin–Watson test is useful in detecting such patterns (see Neter et al. 1996,
p. 504 for details). As an example of a time series, consider data from Arbuthnot’s analysis of the ratio
of males to female births in London from 1629 to 1710. Recall that Arbuthnot used this analysis to
argue that more males were being christened than females over the course of this period. As an example
of some of his data, consider the time series for males:

> library(car)
> library(HistData)
> attach(Arbuthnot)
> scatterplot(Year, Males)
> library(ggplot2)
> qplot(Year, Males, data = Arbuthnot, geom = "line")
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FIGURE 7.9 Evidence of heteroscedasticity of errors.
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We can see that after a gradual dip from 1629 to about 1660, christenings (i.e., “baptisms”) for males
increased quite rapidly. A goal of time series analysis is to study the frequency of an event over a spe-
cified period of time as to make inferences about trend. Of interest as well is to estimate the extent to
which events in previous time periods are related to events in later time periods. The so-called time lag
allows one to forecast future data based on data from previous periods. Often in time series, residuals
(as proxies for errors) are autocorrelated, which may imply, for instance, that residuals from recent
periods are more related to current residuals than residuals from more distant past periods. Such indi-
cators are used in models as predicting stock market share prices over time. Though because all models
are based on data we actually have and not data we are going to have, even for seasoned time series
specialists, making money from the stock market can still be quite challenging! A time series cannot tell
you if a competitor will release a new (and better) product in the near future thereby causing your stock
price to potentially drop. Only substantive knowledge of the research domain (in this case, economics
and business, and perhaps insider trading) can do that. Statistical modeling on its own is not a pan-
acea in any field.

Times series models are a huge topic and other than our brief commentary are beyond the scope of
this book. Many books have been written on the topic. Our purpose in mentioning them at all was
simply to highlight circumstances that may feature highly correlated residuals. Such models have often
proved useful in modeling econometric, geographical, financial, and astronomical data, among
other uses. For details on both fitting and decomposing time series in R, consult Crawley (2013,
pp. 785–808) or Venables and Ripley (2002, pp. 387–418). Teetor (2011) also provides a useful chap-
ter on how to extract a variety of indicators for time series, such as computing percentage change over
time, moving averages, and testing for autocorrelation.

7.23.3 Detecting Outliers

Outliers that fall relatively near the mean or center of the predictor(s) are usually not considered to be
that influential on the final regression solution. Outliers that are relatively far from the mean of
predictor(s) and somewhat distant from the regression line or plane (i.e., high or strong leverage data
points) have greater influence on the final regression solution. As noted by Fox (2016), “The combi-
nation of high leverage with a regression outlier therefore produces substantial influence on the regres-
sion coefficients” (p. 267).
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Hence, influence can be defined as the product of leverage and discrepancy, where discrepancy is
a measure of how “outlying” an observation is relative to the fitted regression model. Influential obser-
vations are those that are both outliers away from the mean of the predictor(s) and have a rather strong
impact on the regression solution because they are also relatively distant from the regression line (or
plane, in the case of multiple regression). For example, in Figure 7.7 discussed earlier, the outlier in
question would likely exhibit a relatively strong influence on the regression solution.

To compute a measure of leverage, recall once more that predicted values in regression can be
defined as a function of hat values in

y = X X X − 1X y

= Hy

whereX(XX)−1X is the so-called “hat matrix.”Hat values provide a measure of leverage (Izenman,
2008). Values that exceed twice to three times their average, where their average is computed as
h = k + 1 n (where k is the number of predictors and n is sample size) are usually considered to
be noteworthy (Fox, 2016, p. 270). For our Q-V linear regression, we can compute hat values in R by:

> hatvalues(reg.fit)

1 2 3 4 5 6 7 8

0.3152174 0.4202899 0.2318841 0.1159420 0.1884058 0.1413043 0.1413043 0.2572464

9

0.1884058

The mean hat value for our data is 0.22 (i.e., h = k + 1 n = 1 + 1 9). Hence, values exceeding
2h, or 2(0.22) = 0.44, might be of concern. For our small data set, we have no such extreme values,
though the hat value for the second observation (i.e., 0.42) is fairly close to meeting this criterion.

As a measure of influence, dfbeta (“difference in beta values”) and their standardized counterparts,
“dfbetas” (note that the standardized versions are simply designated as plural) can be computed.
A dfbeta is defined as the difference between a regression coefficient computed with the given
observation included and then without. That is, the dfbeta is defined as

dij = b j − b j − i

where dij is the dfbeta for the given observation, bj is the regression coefficient(s) computed with the
observation i included in the model, and bj(−i) is the regression coefficient(s) computed with the obser-
vation i not included in the model (Fox, 2016, p. 276). Dfbeta values capture influence by deleting the
given data point from the estimated regression coefficient and recomputing it to assess how different it
would be with that observation removed. In this way, it is measuring the degree of influence for the
given observation on the regression solution. For more details, see Fox (2016, Chapter 11).

Cook’s D statistic provides a useful index combining information about discrepancy and leverage:

Di =
e 2
i

k + 1
hi

1 − hi

where e 2
i is the squared standardized residual for the ith observation and hi is the given hat value for

the ith observation. Cook values are a general measure of multivariate distance. Relatively large
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values suggest the given data point may exert a rather strong influence on the estimated regression
coefficients. To get Cook d values in R, we compute:

> cooks.distance(reg.fit)

1 2 3 4 5 6

0.1238382524 1.0642718447 0.1425192487 0.0736656900 0.1472491909 0.1519522308

7 8 9

0.0159258458 0.0009376835 0.0608529820

A relatively large value occurs for the second case (value of 1.06), and hence may be one worth
looking into as a potentially statistically (yet recall, perhaps not scientifically) problematic observa-
tion. We could also obtain Cook values along with a host of other indicators (e.g., dfbeta) using
influence.measures(reg.fit). One can also compute what are known as partial regression
plots to visualize the joint influence of observations on a given model. For details, see Fox (1997).

7.23.4 Normality of Residuals

Recall that another of the assumptions of the regression model is that errors follow a normal distribu-
tion with constant variance. That is, εi ~ NID(0, σ

2). A failure to meet this assumption can weaken the
efficiency with which parameters are estimated.

We can generate Q–Q plots which allow us to informally evaluate the normality of residuals
assumption. The Q–Q plot should reveal an approximate linear trend between theoretical quantiles
and residuals:

> library(car)
> qqPlot(reg.fit)
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This particular plot features that of studentized residuals against t quantiles. The dashed lines are a
point-wise confidence envelope (Fox, 2016, p. 298) that R includes automatically when generating the
plot. For such a small data set, the assumption of normality can be quite challenging (and more or less
hopeless) to assess.
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7.24 REGRESSION IN SPSS: PREDICTING QUANTITATIVE FROM VERBAL

We now demonstrate linear regression on the Q–V data in SPSS. Our results will, not surprisingly,
parallel those obtained earlier in R. We nonetheless provide a rather thorough explanation of findings
to ensure that the reader has the opportunity to master the interpretation of essential statistics learned
in this chapter, as well as how they are reported in SPSS, since “regression in SPSS” will likely be a
common strategy for him or her in a multitude of research contexts.

First, we generate a plot of Q on V:

GRAPH
/SCATTERPLOT(BIVAR)=V WITH Q
/MISSING=LISTWISE.

0.00

10.00
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V

Q

As can be seen from the plot (and as we noted in our previous analysis using R), the relationship
betweenQ and V appears to be more or less linear. We proceed with the regression analysis, requesting
only the most essential output:

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/NOORIGIN
/DEPENDENT Q
/METHOD=ENTER V.

Variables Entered/Removeda

Model Variables Entered Variables Removed Method

1 Vb Enter
aDependent variable: Q.
bAll requested variables entered.
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The first piece of output above simply states which variables have been entered into the equation,
and which have been left out. Since we are performing a simple linear regression, there will always
only be a single variable entered, and no variables removed. In a multiple regression, the topic of the
following chapter, this report will prove useful as a quick verification that the predictors we intended to
include in the model are indeed included, while the ones we wished to not include have been left out.
Under “Method,” we see the word “Enter.” This simply means that we are conducting a full entry
regression (also known as simultaneous regression) in which all predictors are entered into the model
at the same time, and hence all parameters (in our case, α and β) are estimated simultaneously. Such
output will again prove more useful to us when we analyze multiple regression models, where we are
able to choose one of several techniques for performing the multiple regression (e.g., forward regres-
sion, stepwise regression, etc.).

Model Summary

Model R R-Square Adjusted R-Square Std. Error of the Estimate

1 0.906 0.820 0.794 1.19977

The model summary contains the essential information regarding how well our regression model
fit the observed data. We see that R is equal to 0.906. Since this is a model with a single predictor, R is
equal to the Pearson product-moment correlation coefficient for Q and V.

R-square is equal to (0.906)2, which yields 0.820. Recall that this expresses the proportion of var-
iance in Q that is “explained” or “accounted for” by knowledge of V. For our data, this means that
approximately 82.0% of the variance in Q can be accounted for by knowledge of V. Recall the sub-
stantive issues with interpreting this number, the statistic itself in no way suggests verbal ability “leads
to” or “causes” quantitative ability. It simply means that if you know one’s verbal ability, you can rea-
sonably well predict their quantitative ability. When interpreting any statistics, be very cautious about
“over-interpreting” what they are able to tell you. Evidence for any type of causation or stronger state-
ments on the evidence must come from your research design, not the statistics used to model the data.

Next, we come to the ANOVA summary table:

ANOVA

Model Sum of Squares df Mean Squares F Sig.

Regression 45.924 1 45.924 31.904 0.001
Residual 10.076 7 1.439
Total 56.000 8

Recall that the regression sum of squares tells us how much variability is accounted for by the
regression model based on the fitting of the least-squares line. The residual sum of squares tells
us how much variability is unaccounted for by the regression model. The total variability is the
sum of both regression and residual variability, due to the identity that total variability is a sum of these
two components (i.e., regression + residual). Recall that the extent to which the regression sum of
squares is large relative to the residual sum of squares is the extent to which more variability than
not is accounted for by our model. Note that we also get R2 from the summary table by taking the ratio
45.92/56.00 = 0.82, which agrees with R2 reported earlier (and as we computed in R). The value of
adjusted-R2, as expected, is less than R2.
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Recall that the mean squares are computed just as they are in ANOVA-type models, that is, by tak-
ing the relevant sum of squares and dividing by the corresponding degrees of freedom. Mean squares
regression is computed by dividing SS regression by df for regression, which for our data is 45.92/
1 = 45.92. Mean squares residual is computed by dividing SS residual by df for residual, which for
our data is 10.08/7 = 1.44.

The F-ratio for the regression model is computed by taking the ratio of MS regression to MS resid-
ual, that is, 45.924/1.439 = 31.91. The test of significance reveals that the probability of obtaining an F
statistic as the one we have obtained or more extreme from an F distribution on 1 and 7 degrees of
freedom is very small with an associated p-value equal to 0.001. Hence, we can reject the null hypoth-
esis that R2 in the population is equal to zero, and conclude the statistical alternative hypothesis that it is
not equal to zero. That is, we conclude H1 : R

2 0.
Next in our output are provided the regression model coefficients. Included are significance tests for

the intercept (which SPSS calls “Constant”), as well as for predictor variable V.

Coefficients

Unstandardized Coefficients Standardized Coefficients Beta t Sig.

B Std. Error

Constant 2.859 0.887 3.221 0.015
V 0.707 0.125 0.906 5.648 0.001

Our estimated regression equation is thus:

yi = 2 859 + 0 707 xi

Recall the correct way to interpret the coefficient for b: For a one-unit increase in V, on average, we
expect Q to increase by 0.707 units.

Recall why we need to include the statement “on average” or at minimum, “expect.” Though our
regression line is a functional relation (it is a perfect polynomial of degree 1), the data on which we are
fitting the perfect functional form is less than perfect. It is rather messy and contains much variation. So
in interpreting the coefficient 0.707, it would be technically incorrect to say that a one-unit increase
in V is associated with a 0.707 unit increase in Q. We need “on average” or “expected” (or both) to
denote the fact that we are dealing with a statisticalmodel rather than a functional or otherwise purely
deterministic one that assumes no error in prediction. If we are speaking only of the regression line
itself, then avoiding the words “expect” and “on average”would be fine. However, since we are apply-
ing the line to data, and interpreting the regression line in this context, including these words provides a
more accurate interpretation. This is a good example of what differentiatesmathematics (e.g., precal-
culus, where lines are drawn) and statistics (where lines are fit, and estimation takes precedence).
These are not trivial distinctions and should be appreciated and recognized by the reader.

The constant is equal to 2.859, which means that the least-squares regression line touches the ordi-
nate axis at that particular value. It can be interpreted as the predicted value for Q when V = 0, as easily
demonstrated:

yi = 2 859 + 0 707 xi

= 2 859 + 0 707 0

= 2 859
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Though in this circumstance the interpretation of the intercept as a predicted value is somewhat mean-
ingful since it is presumably theoretically possible to get a value of zero on our scale of verbal ability
(perhaps not on actual verbal ability itself, as a construct, however), recall that in many situations the
substantive (as opposed to strictly mathematical) interpretation of the intercept term is ambiguous at
best. For example, if the predictor was that of weight and the response was that of height, then it would
indeed be nonsensical to conclude that when one weighs zero pounds, one’s predicted height is yi. In
such cases, the intercept should not be interpreted without further adjustment to the model. The prin-
ciple here is that though the intercept is usually estimated for all linear models, it is only as sub-
stantively interpretable as it makes good research, scientific, or even common sense to interpret.
Having said this, there are ways of making the intercept more interpretable if it is not already readily
interpretable. One common method is to mean-center predictors such that one obtains a predicted
value for yi when xi is equal to its mean, instead of 0. We survey this possibility in Chapter 9 when
we consider the case of interaction regressors.

Next are the estimated standard errors associated with both the intercept and the slope parameters.
Recall that the standard errors, in this case, provide us with a measure of how much we should expect
the given estimated coefficient to vary under the assumption of the null hypothesis. The standard error
is the standard deviation of the corresponding sampling distribution of the statistic, which in this case,
the statistic is that of the sample regression slope. Consider the standard error for the intercept, equal to
0.887. What this means is that even if the null hypothesis is true (i.e., that α = 0), we would expect
repeated samplings of the sample intercept to vary on average by 0.887 units. Recall that this variation
from expectation usually goes by the name of sampling error or chance. The question we want to ask
is as follows:

How large is our obtained value of the intercept relative to how much we should expect it to vary
across theoretical repeated samplings?

If the value of the intercept is large relative to its standard error, it gives us reason to believe the true
intercept in the population (from which these data were presumably drawn) is not equal to zero. This
forms the logic of the t-test that follows (on the right-hand side of the output), in which the obtained
intercept term is compared to its standard error by means of a ratio. For the intercept, the t-ratio is equal
to 2.859/0.887 = 3.22. Evaluated for statistical significance on n − k − 1 degrees of freedom (which in
our case is equal to 7), we have evidence to reject the null hypothesis that the population intercept is
equal to 0, since the obtained p-value is relatively small (p = 0.015). In other words, we have evidence
to infer H1 : α 0, which is a statement that the intercept is not equal to zero in the population from
which these data were drawn.

We interpret the standard error for the slope analogously. The null hypothesis is that the population
regression slope is equal to zero, H0 : b

∗ = 0, where b∗ is the population slope parameter (we use b∗ in
this case to represent the population parameter instead of β, which we reserve for the standardized coef-
ficient, Beta, in our current example). The statistical alternative hypothesis isH1 : b

∗ 0. If we were to
repeatedly sample slope statistics from this given population, howmuch should we expect them to vary
from sample to sample? The answer lies in the standard error, equal to 0.125. Since the obtained slope is
relatively large compared to its standard error, as confirmed by the t-ratio, we reject the null hypothesis
and inferH1 : b

∗ 0. The probability of obtaining such sample slopes underH0 is relatively small (p =
0.001). In other words, the deviation from 0 that we are witnessing in our particular sample is likely not
simply a byproduct of sampling error. It could be, but it probably is not. Does the slope of 0.707 rep-
resent a substantively meaningful slope? We cannot answer this question based on the significance
test alone, and any measure of importance ascribed to the size of effect, represented by R2, recall, must
be tempered by the size of effects in the given literature for the phenomenon under investigation, or at
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minimum, knowledge of the researcher. Remember that effect sizes should only rarely be interpreted in
a vacuum, and rough guidelines should be used only when no other reference points are available. And
if the effect is small, you should not speak of it as if it is large or that it simply “exists” without men-
tioning how small it is. An R2 of 0.30 may be relatively large in relation to your field, but it is still
absolutely quite small. Hence, concluding that “X predicts Y” as a blanket statement without contex-
tualizing howweak the effect is would be entirely misleading, regardless of whether you rejected or did
not reject the null hypothesis. Recall that in most cases, simply because you rejected the null does not
on its own necessarily imply anything scientifically (as opposed to statistically) meaningful has
occurred. What it does mean is that you witnessed a relatively unlikely statistic, which on a scientific
level, may be quite trivial. Size of effect and whether experimental controls, etc. were implemented
are much more relevant to the scientist.

Next in the output is the value for β (Beta), which recall is the standardized regression coefficient.
This is the slope coefficient that is generated when Q and V are both standardized to have a mean of 0
and standard deviation equal to 1 (i.e., transformed into z-scores). The value for β for our data is 0.906.
The interpretation for β is as follows:

For a one-standard deviation increase inV, on average, we expectQ to increase by 0.906 of a standard
deviation.

Notice as well that 0.906 for this model is actually equal to coefficient r, the bivariate correlation
between V andQ. This is as a result of the model having only a single predictor. In multiple regression,
where we have several predictors and are required to interpret partial regression coefficients, this
relationship will, of course, no longer hold.

7.25 POWER ANALYSIS FOR LINEAR REGRESSION IN R

The function pwr.f2.test in the pwr package (Champely, 2020) can be used to estimate power for
linear regression models. We once again require the transformation of f 2 into R2, originally featured in
our discussion of power estimation in the context of ANOVA models (see Chapter 3):

f 2 =
R2

1−R2

To demonstrate the estimation of power, suppose a researcher hypothesized or expected an R2 of 0.40
for a simple linear regression model. Suppose also the degrees of freedom for the model were 1
(for numerator) and 7 (for denominator), which implies there to be a total of nine observations
(i.e., n − k − 1 = 9 − 1 − 1 = 7). The value for f 2 is therefore equal to 0.66 (i.e., 0.40/(1 − 0.40)). We
enter these parameters, specifying power = NULL so that power is estimated:

> library(pwr)
> pwr.f2.test(u = 1, v = 7, f2 = .66, sig.level = .05, power = NULL)

Multiple regression power calculation
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u = 1
v = 7

f2 = 0.66
sig.level = 0.05

power = 0.5552861

The estimated power for this regression is approximately 0.55. That is, the probability of rejecting
the null hypothesis in such a model given that the null is actually false is a bit higher than that of getting
a head or tail on a flip of a fair coin. Even with a relatively large effect size (0.40), we would require a
greater sample than nine to achieve respectable power levels (e.g., power equal to 0.90 or higher).

Power and sample size for regression can also be quite easily estimated using G∗Power. We select:
Tests -> Correlation and regression -> Linear multiple regression: Fixedmodel, R2 deviation from zero.
We enter the same parameters as we did in R: f 2 = 0.66, α = 0.05, power = 0.55, and number of
predictors = 1:

We see that the total sample size of nine matches that estimated in R. How much of a sample size
would we require to achieve 0.90 power? We keep all other numbers the same, but adjust our power
level to 0.90:
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We can see that to reach power of 0.90 or so, requires a total sample size of approximately
19 subjects.

7.26 CHAPTER SUMMARY AND HIGHLIGHTS

• Linear regression is a statistical method that capitalizes on the correlation between two variables
to aid in or improve upon the prediction of a response variable based on knowledge of a predictor
variable. The goal of regression analysis is not simply to make predictions, as we can make pre-
dictions without using regression. Rather, the goal is to on average, minimize error in
prediction.

• Simple linear regression features the use of a single variable in predicting a continuous response.
Multiple regression models feature multiple predictor variables predicting a continuous
response.

• The history of regression analysis has its roots with Legendre, Bravais, and Galton, among
others. The distinguishing feature of Galton’s discovery is that he “saw” regression in real, empir-
ical data.
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• Regression models can be used to model both experimental and nonexperimental data. The sta-
tistical tool of regression is no more experimental or nonexperimental than is the arithmetic of
ANOVA models.

• By comparing the regression model to the analysis of variance models of previous chapters, one
can more easily assimilate and understand the technique of regression. Whereas ANOVA models
contain population effects (estimated by sample effects), regression models contain slope para-
meters. Both models include εi, error terms. Since error terms are not observable and hence can-
not be known, we usually study residuals as estimates of the errors, which are differences
between predicted and observed values on the response variable.

• The reader familiar with multilevel models can easily note how the regression model of the cur-
rent chapter can be extended to allow the intercept and slope terms to vary, thereby designating
them as random effects arising from a probability distribution.

• The assumptions of regression analysis include linearity in parameters, normality of errors,
homoscedasticity, independence of errors, absence of influential or outlying data, and that
the correct model has been specified. The classic regression model also assumes that predictors
are free frommeasurement error. Most assumptions in regression on real data are rarely if ever
definitively “true,” but it generally suffices if we can verify that we do not have evidence that they
are grossly violated. Through residual analyses and plots, many of the assumptions can be exam-
ined, though often imperfectly. “Assumption-checking” in regression or any other statistical
model is by no means an “exact science.”

• The estimation of parameters in linear regression usually takes the form of ordinary least-
squares, though maximum-likelihood estimators (as well as others) are also available (e.g.,
weighted least-squares).

• The null hypothesis for a regression model usually takes the form H0 : b ∗ = 0 and is tested
against an alternative hypothesis of the form H1 : b ∗ 0.

• Alternative formulations of the regression model exist, such as yi = y − bx + bxi + ei. One advan-
tage of conceptualizing the regression model in different forms is that it allows one to appreciate
the role played by various inputs to the model.

• The regression model can be constructed using matrices, which is especially useful for multiple
(and multivariate) regression models. For simple linear regression, scalar algebra is usually suf-
ficient for describing and working with the model.

• R2, the “coefficient of determination,” is the typical measure of model fit for the regression
model, having a minimum value of 0 and an upper maximum value of 1. R2 provides us with
the proportion of variance explained in the response variable by knowledge of the predictor
variable(s).

• Adjusted R2 is a useful alternative (or supplementary statistic) to R2, and is adjusted to incorporate
the number of parameters being fit in the model and the extent to which they serve to increase R2.

• Regression analysis can be performed in R through matrix operations. Understanding such
matrix operations is useful, but pragmatically, regressions are typically run through “canned” rou-
tines such as lm in R or REGRESSION in SPSS.

• The area of regression diagnostics is a field unto itself. Its purpose is to help identify outlying or
influential data, as well as to aid in verifying assumptions of the regression model. Diagnostics
can generally be divided into three categories: unusual and influential data, nonlinearity, noncon-
stant error variance and nonnormality, and collinearity.

• Power analyses and estimating sample size can be conducted either in R or G∗Power, as well as
with several other on-line power estimation programs.
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REVIEW EXERCISES

7.1. Describe the overall goal and purpose of regression analysis.

7.2. Why can it be said that the phrase “The purpose of regression is to make predictions” is not a
complete description of what regression is about? Why is such a description necessarily
incomplete?

7.3. Discuss how analysis of variance is no more “experimental” of a statistical method than is
regression analysis.

7.4. Compare the classic one-way ANOVAmodel with the simple linear regressionmodel of this
chapter. How are they similar? Different?

7.5. Discuss the nature of the least-squares regression line. What is its objective, and how does it go
about accomplishing this goal?

7.6. A colleague says to you, “By fitting the least-squares regression line to data, one is guaranteed
to achieve a small sum of squared errors term.”Comment on your colleague’s statement, and
correct it if appropriate.

7.7. Discuss how averages can be misleading, and how this lesson can be extended to cautions
regarding regression analysis. Can you provide a simple demonstration to illustrate that you
understand the concept?

7.8. Distinguish between the standard error of a statistic and the standard error of the estimate
as employed in regression.

7.9. Distinguish between the standard error of the estimate and its square.

7.10. List and briefly discuss the assumptions of a regression analysis estimated by ordinary least-
squares.

7.11. Discusswhat linearity in the parametersmeans by comparing and contrasting themodel yi= α
+ β1xi + β2xi

2 + εi with the model yi = α + β1xi + β22xi + εi.

7.12. Discuss what is meant by a model function.

7.13. Discuss the difference between a mathematical model and a statistical one, with reference to
the model function and error term.

7.14. Why is the assumption of a correct model specification virtually never met in practice, but is
nonetheless an assumption that should be carefully considered when formulating regression
models?

7.15. Discuss why the assumption of no measurement error in variables is usually unrealistic with
virtually any data, especially those arising from the social and behavioral sciences.

7.16. What does it mean to estimate a parameter in regression analysis?

7.17. Explain the role of differentiation as it relates to obtaining the least-squares solutions in linear
regression. Why are derivatives necessary?

7.18. Under what condition(s) are the least-squares estimators of α and β also maximum-
likelihood estimators?
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7.19. Give a research example whereH0 : β = 0 may not be regarded as a suitable null hypothesis for
the particular problem at hand.

7.20. For sb > 0, under what condition(s) would t = 0 in t =
b− βnull

sb
?

7.21. Referring to the following form of the regression equation,

yi = y + b xi − x + ei

what is the predicted value for yi under the condition that xi = x? Why does this make good
sense given what you know about regression analysis?

7.22. Why is expressing the regression model in matrices typically not essential for simple linear
regression, but necessary for multiple linear regression and more complex models?

7.23. Describe each component of the classic linear regression model y = Xβ + ε.

7.24. Define what is meant by a residual in regression analysis. What is the difference between it and
an error?

7.25. Discuss why solving for b in XX b = X y is problematic if XX is not invertible.

7.26. Describe and explain each of the equations in Table 7.1. (Analysis of Variance for Linear
Regression.)

7.27. Distinguish between R2 and R2
adj. How are they similar? Different? What is the potential benefit

to interpreting R2
adj over R

2?

7.28. Describe the overall purpose of regression diagnostics, what they are for, and how they should
be used. How might the assumptions of normality of residuals and homoscedasticity be
checked?

7.29. Consider data by Snedecor in Calculation and Interpretation of Analysis of Variance and
Covariance (1934). These data consist of 14 freshman mathematics classes (Table 7.4) with
mean ability scores and final grades recorded for each class.

TABLE 7.4 Mean Ability Scores and Final Grades for 14 Mathematics Classes

Class Number in Class Mean Ability Score Mean Final Grade

1 17 5.00 4.12
2 20 2.55 2.55
3 20 1.95 2.45
4 19 2.84 3.11
5 17 2.18 2.47
6 21 2.33 2.24
7 18 2.94 2.94
S 18 4.17 4.22
9 20 3.05 2.90
10 20 3.20 3.25
11 21 3.33 3.14
12 21 2.33 2.05
13 19 0.95 1.47
14 20 3.00 2.50

Source: Based on Snedecor (1934).
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(a) Run a regression analysis in R using lm denoting mean final grade as the response
variable and mean ability score as the predictor.

(b) Assess the model fit in the analysis run in part (a). Is it a well-fitting model? Why?

(c) Using graphical displays and plots, evaluate whether the assumptions of normality of
residuals and independence of errors are at least tentatively satisfied. Why might it
be difficult to confirm that the assumption of independence of errors is not violated for
these data?

Further Discussion and Activities

7.30. As briefly discussed in the introduction to this chapter, there are many who contributed to the
invention of regression analysis as we know it today. Most associate Francis Galton with the
history of regression, though as mentioned, a character by the name of Auguste Bravais was
also influential in discovering the bivariate normal surface. Read Denis (2001) and comment on
the historical evidence that exists for and against claims that Bravais is more relevant to the
origins of correlation and regression than is Galton.
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8
MULTIPLE LINEAR REGRESSION

If there is any good reason to fear disturbances of results by other variables than the one with which we are
immediately concerned, the proper method to be employed is, it seems to me, that of ‘multiple correlation.’
This method enables us to deal with facility with three variables, and if need be with more, and to form
coefficients of correlation between any two of the variables while eliminating the effects of variations in
the third. Such ‘net coefficients’ will probably play an important part in future statistical researchers.

(Yule, 1896, p. 615)

Whereas the simple linear regression model of Chapter 7 featured a single explanatory variable, the
more general multiple regression model is able to accommodate several predictors, given by

yi = α + β1x1 + β2x2 + … + βkxk + εi (8.1)

where, as was the case of simple regression, yi is an observed value of the response variable and α is the
population intercept. Note that instead of only a single population coefficient β, (8.1) now contains
terms β1, β2, βk, where β1 is the partial regression slope parameter for predictor x1, β2 is the partial
regression slope parameter for predictor x2, and βk is the partial regression slope parameter for predictor
xk. As before, εi is the error associated with predictions of yi. Parameters α, β1, β2,… βk are also typically
estimated by ordinary least-squares (OLS). The expectation for yi is now α + β1x1 + β2x2 +… + βkxk,
which also implies E(εi) = 0. Finally, we also assume:

E yi x1, x2,…, xk = α + β1x1 + β2x2 + … + βkxk (8.2)

Analogous to simple regression, the systematic portion of the model featured in (8.2) is sometimes
called the model function.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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The origins of multiple regression lay with Yule (1871–1951) and Pearson (1857–1936) in late
nineteenth-century Britain. One of the earliest complete multiple regressions was published by Yule
(1899) in an article titled “An investigation into the causes of changes in pauperism in England,
chiefly during the last two intercensal decades” published in Journal of the Royal Statistical Soci-
ety. The paper featured a thorough analysis of the then debated predictors of pauperism in England,
which followed Yule’s “tour de force” (Stigler, 1986) work of 1897 in which he laid out much of the
theory of correlation. The social and political factors that motivated the use of multiple regression are
discussed elsewhere (e.g., see Denis and Docherty (2007)). A largely unknown figure in the history of
regression, Charles Stewart Loch (then secretary of the Charity Organization Society in London), in
responding to Charles Booth’s study The Aged Poor in England and Wales, also figured somewhat
prominently in the social (as opposed to technical) uprise of multiple regression.1

Before surveying the theory of multiple regression, a review of partial and semipartial correlation is
pedagogically useful.

8.1 THEORY OF PARTIAL CORRELATION

Multiple regression has its roots in the theory of partial correlation. Recall that the Pearson coefficient
of correlation is a measure of the linear relationship between two variables. The coefficient of partial
correlation is a measure of the linear relationship that still exists when the linear influences of one or
more variables are removed. In a sense, partial correlation attempts to provide an after the fact estimate
of what the bivariate correlation might have been had we been able to control for the aforementioned
linear influences. The partial correlation coefficient, however, is not an antidote for the absence of
experimental controls.

Partial correlations may be obtained in more than a single way. A partial correlation between vari-
ables x1 and x2 controlling for zi is obtained, the “long way,” as follows:

• Regress x1 on zi and obtain a column of residuals.

• Regress x2 on zi and obtain a column of residuals.

• Correlate the residuals from x1 on zi to those from x2 on zi.

The logic of the partial correlation is to first account for the predictive power of zi in both cases, then
correlate what is “left over.” This remainder is contained in the residuals. Hence, we see that partial
correlation is actually a correlation of residuals.

An easier way for computing partial correlations, though perhaps less pedagogical, is through the
following:

r12 3 =
r12 − r13 r23

1 − r213 1 − r223

(8.3)

where r12.3 is the correlation between variables 1 and 2 after removing the variability due to variable 3.
So long as its limitations are appreciated, we can interpret the partial correlation as the correlation
between variables 1 and 2 after controlling for variable 3. As already mentioned, however, nothing

1 The interested reader is encouraged to consult Stigler (1986), Desrosières (1998), Denis and Docherty (2007) for details on the
social and political forces that helped motivate the use of multiple regression in the poverty debate. See also Further Discussion
and Activities of the current chapter. This is not to say that multiple regression would not have arose without such a rich social
history. It is only to emphasize the fact that statistical techniques rarely, if ever, come into mainstream use without some purpose,
often social or political in nature.
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is actually being “controlled” when computing partial correlation. We are simply partialling out var-
iability, nothing more. We will have much more to say on this matter later in this chapter when we
survey multiple regression in its entirety. The concept of “statistical control” is a key feature across
the majority of statistical models, not just multiple regression.

Some features of (8.3) are worth noting. For one, notice that the numerator starts with r12, which is
the actual correlation coefficient we want to obtain. We then subtract out the product (r13)(r23), which
has the effect of removing the linear influence of variable 3 on both variables 1 and 2. If variable 3 has
no linear influence, then it stands that (r13)(r23) will equal 0, which then the numerator becomes r12
− 0 = r12.

We can demonstrate the computation of partial correlations using the package corpcor (Schäfer
et al., 2014) in R. Our demonstration uses data from Hotelling (1936) which we will discuss more
extensively in our upcoming discussion of canonical correlation in Chapter 12. For our purposes here,
we wish simply to demonstrate the computation of partial correlations. Hotelling’s matrix on four vari-
ables, which we name cancor.matrix, is the following:

> library(corpcor)
> cancor.matrix

[,1] [,2] [,3] [,4]
[1,] 1.0000 0.6328 0.2412 0.0586
[2,] 0.6328 1.0000 -0.0553 0.0655
[3,] 0.2412 -0.0553 1.0000 0.4248
[4,] 0.0586 0.0655 0.4248 1.0000

We now generate all partial correlations in the matrix:

> library(corpcor)
> cor2pcor(cancor.matrix)

[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.6758534 0.3852133 -0.1558443
[2,] 0.6758534 1.0000000 -0.3229349 0.1770043
[3,] 0.3852133 -0.3229349 1.0000000 0.4520026
[4,] -0.1558443 0.1770043 0.4520026 1.0000000

Be sure to note the correct interpretation of the coefficients in the matrix. For example, the partial
correlation between variable 1 and 2 is 0.676 (row 1, column 2). Consistent with our definition, this is
the correlation between 1 and 2 after removing linear influences of both variables 3 and 4. In this case,
two variables were partialled out of the relationship of interest. There is no limitation to partialling out
several more variables had we also wished to remove their influence from the relationship. For
instance, theoretically, in a five-variable problem, one could compute the partial correlation between
variables 1 and 2 removing the linear influences of variables 3, 4, and 5.

8.2 SEMIPARTIAL CORRELATIONS

When we computed a partial correlation, both variables x1 and x2 were adjusted to remove the linear
regression on variable zi. As we have seen, the partial correlation r12.3 is actually the correlation
between the two adjusted variables, x(1.3) and x(2.3). That is, both variables have been adjusted for
the 3rd variable, which, as mentioned, ends up being a correlation of residuals.

288 MULTIPLE LINEAR REGRESSION



Considering now the part or semipartial correlation, we will still want to remove the part of x2 due
to zi to form the new variable x(2.3), but we do not want to adjust variable x1 at all. That is, in computing
the semipartial correlation, we want the correlation between the unadjusted variable x1 and the
adjusted variable x(2.3). This correlation can be symbolized as r1(2.3).

Computing the semipartial correlation between x1 and x2, where only x2 is adjusted for zi, we follow
these steps:

• Regress x2 on zi and obtain a column of residuals.

• Correlate the residuals from x2 on zi to the unadjusted values of x1.

Notice carefully that in the computation of the semipartial correlation, only x2 is adjusted, while x1 is
left unadjusted.

We can compute the semipartial correlation between x1 and x2 in which only variable x2 has been
adjusted for zi:

r1 2 3 =
r12 − r13r23

1− r223
(8.4)

Again, as was true for partial correlation, it is evident from (8.4) that if the linear influence of variable 3
is nonexistent, then the numerator reduces to simply r12, since r12 − 0 = r12. The point of noting this fact
is to emphasize that r1(2.3) starts off with r12, and then “adjusts” it accordingly through the subtraction
of r13r23.

One can use the ppcor package (Kim, 2012) in R to compute semipartial (and partial, for that mat-
ter) correlations in R, though we do not demonstrate their computation here. Both partial and semipar-
tial correlations are also easily obtainable via SPSS.

8.3 MULTIPLE REGRESSION

Having surveyed partial and semipartial correlation, we can now build up the multiple regression
model from these first principles, where the idea of partialling out variability due to other variables
will again be featured.

Recall that in simple linear regression, the least-squares normal equations were given by

a = y − bx

and

b =
xi − x yi − y

xi − x
2

Recall we could also compute b by

b =
covxy
s2x

These solutions guaranteed that the line fit to the sample data would be the best fit line in the sense of

minimizing the sum of squared errors,
n

i = 1
ε2i , the so-called least-squares regression line.

In multiple regression, we again seek estimators for our model equation that guarantee a “best fit” in
the least-squares sense and from which we can draw inferences regarding parameters α, β1, β2,… βk.
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Parameters β1, β2, … βk we will call by the name of partial regression coefficients. The raw partial
regression coefficient of yi on x1 holding zi constant is interpreted as follows:

For a one-unit increase in x1, we expect, on average, yi to increase (or decrease, depending on the sign)
by b1 units, controlling for zi.

Going from the raw, or unstandardized partial regression coefficients to the standardized ones is
straightforward, since they are simply linear transformations of one another. A bit of algebra shows that
given b1, β1, the standardized coefficient, is easily obtained:

β1
sy
sx1

= b1

β1 =
b1
sy
sx1

= b1
sx1
sy

where sy, as before, denotes the standard deviation for yi, and sx1 denotes the standard deviation for
variable x1. That is, the standardized partial regression coefficient is computed by multiplying the
raw partial regression coefficient by the ratio of standard deviations of x1 to yi. The interpretation
of the coefficient is:

For a one-standard deviation increase in x1, we expect, on average, yi to increase (or decrease, depend-
ing on the sign) by β1 standard deviations, controlling for zi.

A key point to remember is that in multiple regression, whether for raw or standardized coefficients,
these coefficients are always only interpretable relative to the model in which they are estimated,
and never independently of the testedmodel. This is the very nature of multivariable relationships, to
incorporate dependencies of variables in the context of other variables and not independent of them.Be
sure you are aware of the distinction between interpreting a simple linear regression and a mul-
tiple linear regression as it pertains to interpreting regression coefficients. Partial coefficients
should never be interpreted as though they were computed in a simple linear regression context.

8.4 SOME PERSPECTIVE ON REGRESSION COEFFICIENTS:
“EXPERIMENTAL COEFFICIENTS”?

Partial regression coefficients, regardless of the complexity of the model in which they are interpreted,
estimate howmuch a response variable will change, on average, given a 1-unit increase in the predictor
while holding all other variables in the model “constant.” It is important to realize that slight changes in
regression coefficients, given the addition or subtraction of additional predictors, do not necessarily
carry with them any importance, nor should such small deviations be overanalyzed by the researcher.

For example, should a partial regression coefficient change from 0.72 to 0.70 given the inclusion of
an additional predictor in a regression model, this change, though numerically noteworthy, does not
necessarily equate to being scientifically meaningful, nor should investigators in most cases busy
themselves with trying to explain such small changes. Regression weights are not “experimental” coef-
ficients. Adding a new variable to a regression model and observing the change in coefficients currently
in the model is not an experimental exercise of manipulation and control. Rather, it is simply an exer-
cise in variance partitioning. Unless one is working in the context of a controlled experiment or is
otherwise dealing with extremely sensitive material as objects of measurement, such slight changes
usually cannot be attributed to an underlying substantive mechanism or process, nor should researchers
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in most cases look for one. This is true especially in cases where there is significant measurement error
in variables employed in the regression.

The author has noted that in some circles, researchers exercise a ritual in which correlational vari-
ables are added then subtracted from a model and even slight changes in partial regression coefficients
are then subjected to critical analysis in hopes of giving them substantive meaning, almost akin to
believing they are manipulating an independent variable and observing the effect on a measured
response. True, for those who wish to test mediational hypotheses, and canmuster a philosophical basis
for doing so (see Section 8.15), huge drops in coefficients may be both statistically and substantively
meaningful. However, small coefficient changes on what is in many cases error-prone, and very sam-
ple-specific data, usually has little if any meaning. On the other hand, if measurements are precise and
virtually error-free, then even small changes in coefficients may be noteworthy. The key point is to not
“over-theorize” on the outcomes of variance partitioning, which in the end, is all that ANOVA or
regression (or virtually any statistical model) can promise to accomplish. The scientific claims should
usually and properly arise from one’s research design.

8.5 MULTIPLE REGRESSION MODEL IN MATRICES

The essential statistical theory for the regression model was surveyed in Chapter 7 for the case of a
single predictor variable. It is a simple matter to extend on that model to obtain the multiple regression
model of the current chapter. Recall the expectation for the simple linear regression model:

E y =

E y1
E y2
E y3

E yn

=

α + βxi = 1

α + βxi = 2

α + βxi = 3

α + βxi = n

where E(y) was the expectation of the vector of responses on y1, y2,…yn, E(y1)… E(yn) was the expec-
tation of each response y1, y2,…yn, and α + βxi = 1 … α + βxi = n constituted the so-calledmodel func-
tion which was the systematic portion of the model. It was the expectation of each response.

The expectation for the multiple linear regression model can be easily extended to incorporate addi-
tional predictors:

E y =

E y1
E y2
E y3

E yn

=

α + β1x1 i = 1 + β2x2 i = 1 + … + βkxk i = 1

α + β1x1 i = 2 + β2x2 i = 2 + … + βkxk i = 2

α + β1x1 i = 3 + β2x2 i = 3 + … + βkxk i = 3

α + β1x1 i = n + β2x2 i = n + … + βkxk i = n

where, instead of the expectation E(y1)… E(yn) being equal to α + βxi = 1… α + βxi = n as in the case of
the simple linear regression model, the expectation is now equal to
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α + β1x1 i = 1 + β2x2 i = 1 + … + βkxk i = 1 …α + β1x1 i = n + β2x2 i = n + … + βkxk i = n

for observations y1…yn. Associated with each y1…yn is still ε1…εn, which once more is given by a
single column vector:

ε =

εi = 1

εi = 2

εi = 3

εi = n

8.6 ESTIMATION OF PARAMETERS

Recall that in the simple linear regression model constants α and β were chosen so that
n

i = 1
ε2i is mini-

mized. In a multiple regression model, because there is more than a single predictor variable, we choose

scalars α, β1, β2, β3,…βk so that
n

i = 1
ε2i is again kept at a minimum. Analogous to the simple regression

case, estimators for α, β1, β2, β3,…βk are obtained by again taking partial derivatives of
n

i = 1
ε2i with

respect to each of α, β1, β2, β3,…, βk instead of simply α and β as in the case of simple linear regression.
We do not detail the derivation here, as on an applied level, it is not enlightening. For details on the
estimation of model parameters in a multiple regression, see DeGroot and Schervish (2002, p. 648).

8.7 CONCEPTUALIZING MULTIPLE R

There are various algebraically equivalent ways of both conceptualizing and computing multiple R, and
its square, the coefficient of multiple determination. R2 can be defined as the ratio of SS regression to
SS total,

n

i = 1
yi − y

2

n

i = 1
yi − y

2

or as the squared Pearson product-moment correlation between observed values yi and predicted values
yi on the response variable yi:

r yi, yi
2

(8.5)
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We also noted in Chapter 7 how R2 could be computed via matrices. All of these ways of concep-
tualizing and computing R2 are applicable to the multiple regression case, the only difference is that
now yi is a function of more “information” (i.e., predictor variables) than in the case of simple regres-
sion. Regardless of the number of predictors, however, there is still only one way to compute the bivar-
iate correlation between observed and predicted values, and hence (8.5) will still apply even for the case
of multiple predictors.

8.8 INTERPRETING REGRESSION COEFFICIENTS: CORRELATED VERSUS
UNCORRELATED PREDICTORS

Partial regression coefficients in a multiple regression model should not be interpreted as if they were
zero-order regression coefficients in a simple regression model. The reason for this is that correlation
between predictors makes the zero-order interpretation incorrect. When predictors are correlated,
which is virtually the case in all samples, Ry x1,x2,…xk is a more complex function of zero-order correla-
tions, and can be written as the square root of a weighted sum of the relevant β1, β2, βk weights (Hays,
1994, pp. 697–698):

Ry x1,x2,…xk = β1ry 1 + β2ry 2 + … + βkry k (8.6)

Equation (8.6) tells us what Ry x1,x2,…xk actually is. It is a linear combination of zero-order correlation
coefficients, each weighted by variables’ respective standardized regression coefficients. When
we square Ry x1,x2,…xk , we get the aforementioned coefficient of multiple determination.

8.9 ANDERSON’S IRIS DATA: PREDICTING SEPAL LENGTH FROM PETAL
LENGTH AND PETAL WIDTH

We demonstrate a simple example of multiple regression on Fisher’s iris data where a single response
variable is hypothesized as a function of two predictors. These data were first made available by Ander-
son (1935), and hence the iris data has come to be also known also as Anderson’s iris data. The data
consist of a total of 150 observations on three species of iris, 50 on iris setosa, 50 on iris virginica, and
50 on iris versicolor. The length and width of both sepals and petals were recorded. The data are of
historical significance and have been used in countless papers as a model demonstration of numerous
statistical methods. We request some of the iris data in R:

> attach(iris)
> library(car)
> some(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
3 4.7 3.2 1.3 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
14 4.3 3.0 1.1 0.1 setosa
33 5.2 4.1 1.5 0.1 setosa
37 5.5 3.5 1.3 0.2 setosa
86 6.0 3.4 4.5 1.6 versicolor
116 6.4 3.2 5.3 2.3 virginica
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122 5.6 2.8 4.9 2.0 virginica
129 6.4 2.8 5.6 2.1 virginica
148 6.5 3.0 5.2 2.0 virginica

For this analysis, we concern ourselves only with predicting sepal length from knowledge of petal
length and petal width.

We would first like to get a picture of the data. We can generate a 3D scatterplot in R using the
scatterplot3d package (Ligges andMächler, 2003). For example, we obtain a plot of sepal length
by petal length by petal width:

> library(scatterplot3d)
> scatterplot3d(Sepal.Length, Petal.Length, Petal.Width)
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The above plot is useful if for nothing more than to gain an appreciation of the complexities
associated with analyzing and visualizing multivariate data even in only three dimensions. An
at least approximate linear relationship among the three variables appears to be present. The
actual initial screening of multivariate data usually takes the form of univariate histograms
or stem-and-leaf plots, as well as bivariate scatterplots. These plots are useful in the early
detection of potential outliers and as a quick check on whether the hope for “multivariate linear-
ity” (i.e., linear relationships holding other variables constant) is at least tenable. Even if linearity
holds for yi on x1 and yi on x2, this does not necessarily imply multivariable linearity.
Marginal relationships (e.g., yi on x1) are not equivalent to partial relationships (e.g., yi on
x1 controlling for x2), and hence bivariate plots can typically only help rule out problematic
nonlinear data in two dimensions. They also cannot in any way guarantee that our empirical
observations are multivariate normal. Generally, satisfying assumptions in lower dimensions
does not guarantee that these same assumptions will hold in higher dimensions. In
verifying assumptions in multiple dimensions, the analysis of residuals from the fitted model
is a must.

We carry on now with the regression analysis, designating the response variable to be Sepal.
Length and predictor variables Petal.Length and Petal.Width:

> reg.fit.iris <- lm(Sepal.Length ~ Petal.Length + Petal.Width)
> summary(reg.fit.iris)
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.19058 0.09705 43.181 < 2e-16 ***
Petal.Length 0.54178 0.06928 7.820 9.41e-13 ***
Petal.Width -0.31955 0.16045 -1.992 0.0483 *
–––
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4031 on 147 degrees of freedom
Multiple R-squared: 0.7663, Adjusted R-squared: 0.7631
F-statistic: 241 on 2 and 147 DF, p-value: < 2.2e-16

Some general features of the output:

• The estimated model equation is yi = 4 19 + 0 54 x1 − 0 32 x2 .

• The overall model yields an F-statistic of 241 on 2 and 147 degrees of freedom and is statistically
significant yielding a p-value of 2.2e−16. Degrees of freedom for numerator are equal to 2 since
there are two predictors, whereas degrees of freedom for denominator are equal to 147 (computed
as n − k − 1 = 150 − 2 − 1 = 147).

• Both petal length and petal width are statistically significant predictors of sepal length, with p-
values of 9.41e−13 and 0.0483, respectively.

• For a 1 unit increase in petal length, we can expect, on average, sepal length to increase by 0.54
units, when petal width is held constant (or equivalently, given the model currently under test).

• For a 1 unit increase in petal width, we can expect, on average, sepal length to decrease by 0.32
units (i.e., negative coefficient), when petal length is held constant (or again equivalently, given
the model currently under test).

• The value of multiple R2 is equal to 0.7663, indicating that the model as a whole accounts for
nearly 77% of the variance in sepal length.

• The value for adjusted R2 is equal to 0.7631, slightly smaller than R2, but still indicative of the
overall effect.

• The standard error of the estimate (residual standard error) is equal to 0.4031. This is the standard
deviation of residuals around the fitted regression line, but with n − k − 1 = 150 − 2 − 1 = 147 in the
denominator (Fox, 2016, p. 87). It is an estimate of the standard deviation of errors (James et al.,
2013, pp. 68–69). The variance of the estimate (i.e., MS residual) is the square of 0.4031, equal to
(0.4031)2 = 0.1625. Notice that the variance of residuals is quite small, suggesting a relatively
good fit of the model to the empirical data (which is also confirmed by a relatively large R2).

We can obtain the predicted (or fitted) values for our model, where we print only the first five:

> fitted(reg.fit.iris)

4.885160 4.885160 4.830983 4.939338 4.885160

What are these fitted values? The first fitted value, that of 4.885, is the predicted value for the first
observation in our sample data. The first observation has values

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
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For demonstration, we can compute the predicted value using our model equation for the first obser-
vation to match that generated by R:

yi = 4 19 + 0 54 x1 − 0 32 x2
= 4 19 + 0 54 1 4 − 0 32 0 2

= 4 19 + 0 756− 0 064

= 4 88

We could likewise generate the remainder of the fitted values using the regression equation. How well
did the model predict this first observation? To evaluate how well it did, we compute the residual (after
rounding 4.88 up to 4.9):

ri = yi − yi
= 5 1− 4 9

= 0 2

We can see that for this observation, we are in slight error. The model did not predict this obser-
vation perfectly. We can obtain residuals for all observations by computing (we print only the
first five):

> residuals(reg.fit.iris)

0.214839668 0.014839668 -0.130982616 -0.339338047 0.114839668

We note that the residual for the first observation, 0.21, matches that which we computed manually.
How much variability is there in these residuals? A model with large residuals, overall, would sug-

gest the model does not fit very well. A model with small residuals, would, on the other hand, imply a
well-fitting model. Recall that simply summing the residuals will not answer our question, since the
sum of residuals will always equal 0. Of course, the solution, as always, is to sum the squared resi-
duals. We compute a standard deviation of residuals:

> sd(residuals(reg.fit.iris))
[1] 0.4003412

The standard deviation of residuals is equal to 0.4003. Note however that this standard deviation of
residuals is slightly different from the standard error of the estimate featured earlier (which recall was
an estimate of the true standard deviation), equal to 0.4031. For practical purposes, they will be vir-
tually the same (as in the current case) especially for large n, but the standard error of the estimate recall
uses n − k − 1 in its denominator, not n or n − 1 as in the typical standard deviation. Still, it is convenient
to simply refer to the standard error of the estimate as the standard deviation of residuals, so long as
you keep in mind the loss of greater degrees of freedom in the denominator due to estimation. The
above standard deviation of 0.4003 will still give you a reasonable estimate, it is just not the most accu-
rate one, since, as mentioned, the degrees of freedom will be slightly off.

Recall that one way of conceptualizing multiple R is that it is the bivariate correlation between
observed values of yi and predicted values yi. We can easily compute this:

> pred <- fitted(reg.fit.iris)
> cor(Sepal.Length, pred)

[1] 0.8753635
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Notice that, within slight rounding error, the value of 0.875 is the value of the square root of multiple
R2 reported by R (0.766), as it should be.

We can also obtain confidence intervals for the estimated regression coefficients by confint in R:

> confint(reg.fit.iris, level = 0.95)
2.5 % 97.5 %

(Intercept) 3.9987971 4.382367716
Petal.Length 0.4048602 0.678694143
Petal.Width -0.6366424 -0.002458754

With 95% confidence, the interval from 0.40 to 0.68 likely covers the true population partial regres-
sion coefficient for petal length. Similarly, with 95% confidence, the interval from −0.64 to −0.002
likely covers the true population partial regression coefficient for petal width. We could request
R to compute 99% intervals as follows:

> confint(reg.fit.iris, level = 0.99)
0.5 % 99.5 %

(Intercept) 3.9373230 4.44384187
Petal.Length 0.3609733 0.72258101
Petal.Width -0.7382818 0.09918069

Our interpretation of these is analogous to the 95% intervals. That is, with 99% confidence, the
interval 0.36 to 0.72 likely covers the true population partial regression coefficient for petal length.
With 99% confidence, the interval −0.74 to 0.099 likely covers the true population partial regression
coefficient for petal width.

Be sure to note that the limits for the 99% confidence intervals are wider than those for the 95%
confidence intervals. Recall from our review of confidence intervals in Chapter 2 that more certainty
(in terms of adjusting the confidence limits) entails a widening of the interval, not a narrowing. An easy
way to remember this principle is to recall what, in theory, a 100% interval would look like. An interval
with ranges −∞ to +∞would have to theoretically exist for 100% of samples drawn (on which intervals
are computed) to capture the true parameter. Conversely, a 0% interval is equivalent to a point estimate,
for which the probability of it equaling the parameter has a limiting value of 0. This is precisely why we
often prefer interval estimates over point estimates. They give us a bit more flexibility for covering the
true parameter and provide a sense of precision in the given estimate.

8.10 FITTING OTHER FUNCTIONAL FORMS: A BRIEF LOOK
AT POLYNOMIAL REGRESSION

We have up to now assumed a linear model, but there is nothing preventing us from trying out other
polynomials to see which best fits the iris data. The general name for this is polynomial regression, of
which linear regression can be considered a special case. Recall that linear forms are but one type of
function. Others include quadratic, cubic, quartic, quintic, and so on, each representing terms raised
to a different exponent. Polynomial regression is not necessarily synonymous with nonlinear regres-
sion. A polynomial regression model is still linear in the parameters. For instance, consider the fol-
lowing model in which a quadratic term is included:

yi = α + β1x1 + β2x
2
2 + εi
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The model is still a linear model, even though x22 (a quadratic term) is included. What makes it still
linear is that the parameters β1 and β2 are still raised to the first exponent. Hence, though polynomial
regression is useful for capturing nonlinear trends in data, it is still a linear model.

As an example of polynomial regression, we could have tried the following quadratic model for the
iris data, where the term I(Petal.Width^2) is the new squared term added to the model:

> quad.fit.iris <- lm(Sepal.Length ~ Petal.Length + Petal.Width + I
(Petal.Width^2))
> summary(quad.fit.iris)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.26600 0.09283 45.955 < 2e-16 ***
Petal.Length 0.71892 0.07621 9.433 < 2e-16 ***
Petal.Width -1.52224 0.30775 -4.946 2.05e-06 ***
I(Petal.Width^2) 0.34795 0.07759 4.484 1.47e-05 ***
–––
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3792 on 146 degrees of freedom
Multiple R-squared: 0.7946, Adjusted R-squared: 0.7903
F-statistic: 188.2 on 3 and 146 DF, p-value: < 2.2e-16

We note that fitting a quadratic term for petal width appears to be worthwhile, as it is statistically
significant and the overall model fit has improved somewhat. The AIC for this model is 140.69 (AIC
(quad.fit.iris)) while the AIC for the model without the quadratic term was 158.05. Inciden-
tally, a convenient way to test different competing models in R is to use the update function (request
>?update in R to learn more or consult Venables and Ripley (2002)). Regression splines are a tech-
nique that can be used in place or in conjunction with polynomial regression, which provide a flexible
(and often preferable) way of dealing with nonlinearity while keeping the degree of the polynomial
fixed. Essentially, the technique works by fitting lines in regions of the predictor space, for which these
spaces are defined by what are called “knots.” For details, see James et al. (2013).

8.11 MEASURES OF COLLINEARITY IN REGRESSION: VARIANCE INFLATION
FACTOR AND TOLERANCE

In addition to the typical model assumptions one must make for simple least-squares regression, for
multiple regression, we must also make the assumption that the rank of the datamatrix is equal to the
number of columns in the data matrix. Rank of a matrix is the number of linearly independent
rows or columns of that matrix (see Appendix). Such independence translates more substantively
in an applied setting to the assumption of a lack ofmulticollinearity among predictors. If one predictor
is an exact linear combination of another predictor, then the data matrix is not of full rank since one or
more columns are linearly dependent. As multicollinearity increases to the point of linear dependence,
the matrix product X X in b = (X X)−1X y is singular (Fox, 2016), which means the least-squares
equations cannot generate a unique solution. That is, perfect collinearity results in least-squares coef-
ficients that are not unique (Fox, 2016, p. 342). However, even less than perfect collinearity will cause
serious difficulty. As summarized by Fox (2016):
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When the regressors in a linear model are perfectly collinear, the least-squares coefficients are not unique.
Strong, but less-than-perfect collinearity substantially increases the sampling variances of the least-squares
coefficients and can render them useless as estimators. (p. 344)

To help diagnose problems with collinearity, both the variance inflation factor (VIF) and its recip-
rocal, tolerance, have been proposed. To understand VIF, consider first howwemay write the variance
for a given ith partial regression coefficient (Cohen et al., 2003, p. 423):

s2bi =
s2y
s2xi

1 −R2
y 12…k

n− k − 1
1

1 −R2
i 12… i …k

(8.7)

where R2
y 12…k is the variance explained by the hypothesized model (i.e., the regression that is being run

based on all predictors), and R2
i 12… i …k is the variance explained by the model in which the given pre-

dictor (xi) is being regressed on the remaining predictors in the model. For instance, if we are calcu-
lating the variance for x1, R2

i 12… i …k is computed by taking predictors x2 and x3 and using them

simultaneously to predict x1.
The variance inflation factor is the last term in (8.7):

VIF =
1

1 −R2
i 12… i …k

Since the denominator of VIF is 1 −R2
i 12… i …k, where recall R

2
i 12… i …k represents the regression of the

predictor of interest (i.e., for which VIF is being computed) on the remaining predictors, what this
means is that the extent to which the given predictor is highly correlated with the remaining pre-
dictors is the extent to which VIF will be large. That is, as R2

i 12… i …k approaches 1.0, VIF will be

increasingly large. For instance, suppose R2
i 12… i …k were equal to 0.90, which is, in most contexts, an

impressive coefficient of determination. This means that the predictor on which we are computing VIF
is highly correlated with the remaining predictors in the model. The computation of VIF would be:

VIF =
1

1 −R2
i 12… i …k

=
1

1 − 0 90
= 10

The VIF of 10 in this case suggests that the variance of the regression coefficient will be quite
“inflated.” This implies that the standard error, which recall is simply the square root of s2bi, will likewise
be large. A large standard error suggests that the given parameter (in our case, βi) is not being esti-
mated precisely. That is, in theoretical samplings of the given partial regression statistic from a pop-
ulation in which the null hypothesis is true (i.e., population β = 0), a large standard error indicates that
we can expect quite a bit of sampling fluctuation in the infinite number of samples we theoretically
collect. The variance inflation factor then is just what the name suggests: it is a factor by which
the variance of the given partial regression coefficient increases due to the given variable’s extent
of correlation with the other predictors in the model.

The minimum VIF can be is 1.0. A VIF of 1.0 can only occur when R2
i 12… i …k is equal to 0, which

implies that the given predictor has zero linear relationship with other predictors in the model. With
R2
i 12… i …k equal to 0, we find VIF to have no influence on the estimation of s2bi :

299MEASURES OF COLLINEARITY IN REGRESSION: VARIANCE INFLATION FACTOR AND TOLERANCE



s2bi =
s2y
s2xi

1 −R2
y 12…k

n − k − 1
1

1−R2
i 12… i …k

=
s2y
s2xi

1 −R2
y 12…k

n− k − 1
1

1 − 0

=
s2y
s2xi

1 −R2
y 12…k

n− k − 1

Such also reveals that VIF values cannot be less than 1.0, since 1.0 represents the ideal situation of no
correlation with other predictors. Also implied is that VIF cannot be negative.

Tolerance is simply the reciprocal of VIF and is thus computed as

Tol = 1 VIF

Whereas large values of VIF are undesirable, large tolerances are preferable to smaller ones. It
stands as well that the maximum value of tolerance must be 1.0. Cohen et al. (2002) suggest VIF values
of 10 or more to be of potential concern. Using a strict cutoff here, however, is probably not the best
strategy. Increasingly larger values for VIF, in addition to inflating variance, are also of potential con-
cern for they may indicate a substantive issue with your model in the sense that scientific parsimony is
likely not being achieved. Given a relatively large VIF statistic, it may be worth re-hypothesizing your
model by possibly dropping the given predictor that is largely a function of other predictors in the
model. One can easily compute vif in R (vif(model)).

Another measure that may be used to detect the presence of multicollinearity is known as the con-
dition index, though not discussed here. See Lattin, Carroll, and Green (2003) for details.

8.12 R-SQUARED AS A FUNCTION OF PARTIAL AND SEMIPARTIAL
CORRELATIONS: THE STEPPING STONES TO FORWARD AND
STEPWISE REGRESSION

To set the stage for the consideration of model-building procedures such as forward and stepwise
regression to be discussed shortly, it is imperative to get a sense of how R2 can be decomposed into
partial and semipartial correlations. It can be shown (Hays, 1994, p. 713) that R2 can be written as a
function of the following product of partial correlations:

1 −R2
y 12 = 1 − r2y1 1 − r2y2 1 (8.8)

where, as before, R2
y 12 is the variance explained in yi by x1 and x2, r

2
y1 is the variance explained in yi by

x1, and r2y2 1 is the variance explained in yi by x2, after partialling out x1. By rearranging (8.8) slightly,
we get

1 −R2
y 12 = 1 − r2y1 1 − r2y2 1

R2
y 12 = 1− 1− r2y1 1 − r2y2 1
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That is, R2
y 12 can be expressed as a function of 1 minus the product of partial correlation “variance

unexplained” terms (i.e., 1 − r2y1 1 − r2y2 1 ). The essential point to grasp here is that the coefficient

of multiple correlation can be decomposed into partial correlations.
Similarly, for the three-variable case, we write R2

y 123 as

R2
y 123 = 1− 1 − r2y1 1− r2y2 1 1 − r2y3 12

and for the four-variable case,

R2
y 1234 = 1 − 1 − r2y1 1 − r2y2 1 1 − r2y3 12 1− r2y4 123

We can also decompose R2 as a function of semipartial correlations. Again, for the case of two
predictors, we can define R2

y 12 as

R2
y 12 = r2y1 + r2y 2 1 (8.9)

where r2y1 is, as before, simply the proportion of variance explained from regressing yi on x1. The quan-

tity r2y 2 1 is the proportion of variance explained from regressing yi on x2, of which the influence of x1 is

removed from x2. That is, r2y 2 1 is the squared semipartial correlation between yi and x2. Be sure to

note the difference in notation between r2y2 1 and r
2
y 2 1 . The first is the partial correlation, the second is

the semipartial correlation. As discussed earlier, each tells us something different.
Equation (8.9) is especially relevant because understanding it is the “gateway” to understanding

stepwise regression. The equation tells us that the proportion of explained variance in yi based on
a regression of yi on x1 and x2 is a function of yi on x1, plus the additional contribution of x2 after
“controlling” (which recall, really means “partialling out”) for x1. The quantity r2y 2 1 is the additional

variance explained over and above that already contributed by x1. Hence, we see that the increment in
variance explained is described by the squared semipartial correlation. This is the basis on which
forward and stepwise regression procedures operate, which we now consider as we turn to model-
building strategies.

8.13 MODEL-BUILDING STRATEGIES: SIMULTANEOUS, HIERARCHICAL,
FORWARD, STEPWISE

Model selection in statistics is a difficult problem, and arriving at the “best”model is not a simple task,
largely because how one defines “best” varies depending on what criteria are used in the definition.
What is more, predictor selection is not simply a statistical problem, but also a scientific one as well.
And though statisticians busy themselves with developing criteria such as AIC, R2, adjusted-R2, and
others to aid in model selection, the fundamental problem of choosing a “best” model actually begins
long before the software routine is run. It begins with the scientist choosing an initial pool of what can
be called candidate predictors that will even stand the chance at being chosen into the model in the
first place.

To unpack this idea a bit further, consider the following figure, adapted from Denis (2020)
(Figure 8.1).
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The figure emphasizes the fact that model selection begins with the scientist or researcher making
initial selections of variables into the pool of candidate predictors, as indicated in the smaller circle in
part (a). These are the predictors the scientist deems worthwhile as a subset from which to then attempt
to construct a statistical model. It needs to be recognized, however, that if one or more candidate pre-
dictors are omitted from this initial selection, as depicted in part (b), then whatever model is built using
the candidate predictors will necessarily result in a faulty model, due to the already-discussed fact that
all models are context-dependent. Recall what this means. In any statistical model, magnitudes and
signs of coefficient estimates are dependent on which other variables also appear in the model. As
we will see later, this forms the very bedrock of estimating mediation models, for instance, as the
inclusion of one predictor in the model may offset the coefficient(s) of another or several other pre-
dictors.Whenever you test a model, you are always testing that model in a given context of other
variables, even if other variables are potentially omitted, in which case, the “context” is a miss-
ingness of influential predictors that should have been included in the model.

The problem of omitted variables is a huge one (Marais and Wecker, 1994), and the philosophical
problems that accompany model selection are significant and much deeper than we have space for here
(see Kieseppä, 2001, for an insightful discussion). Even without considering the problem of omitted
variables and assuming we have successfully chosen the ideal set of candidate predictors, the number
of total models possible for a problem of only 20 predictors is equal to 2p = 220 = 1,048,576, and for
30 predictors, 1,073,741,824. That is, this is when we fit a separate model for each combination of the
predictors (James et al., 2013). Hence, the number of potential models to select from is exceedingly
large even for problems of still relatively few predictors. This is all to say, then, that model selection in
statistics and science is not an easy problem that features an easy solution. What is more, even if a
model is selected which maximizes criteria on statistical grounds, as will be discussed and expanded
on later, this may not equate to maximizing scientific usability or practicality. For now, however, we
concern ourselves only with statistical criteria for selecting a “best” model and postpone a more prag-
matic discussion of model selection after surveying a few options.

Several approaches to predictor selection have been proposed for building regression models. Of
these, the most popular are simultaneous entry, hierarchical, and forward or backward regression.
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FIGURE 8.1 Model selection unofficially begins with the selection of p candidate predictors (smaller circle)
from a wider set of P predictors (a). The problem of omitted variables, where p∗ represents an important but
omitted variable, potentially unknown to the scientist, or unknowable based on the current status of the
scientific discipline (b). The effect of p∗ on the candidate predictors in building a statistical model could be
substantial. Source: Denis (2020). Reproduced with permission from John Wiley & Sons.
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Toward the conclusion of the chapter, we will also survey lasso regression, which can also be
employed as a model-selection procedure. It needs to be recognized and appreciated from the outset,
however, that each of these model-building approaches come with their own set of benefits and draw-
backs, and it behooves the researcher to be familiar with them as to simply be knowledgeable about the
tool they are using. There is, unfortunately, no panacea when it comes to model selection, and if a
scientist is unfamiliar with the approach they are using, it can easily lead to erroneous scientific con-
clusions about the substantive matter subjected to the given algorithm.

8.13.1 Simultaneous, Hierarchical, Forward

The most straightforward way to build a regression model is to estimate all parameters in the model at
the same time without proposing any kind of hierarchical structure or order of entry. Given a set of
linear equations,

y1 = α + β1x11 + β2x12 + … + βkx1k + ε1

y2 = α + β1x21 + β2x22 + … + βkx2k + ε2

yn = α + β1xn1 + β2xn2 + … + βkxnk + εn

so-called simultaneous regression seeks to solve for parameters α, β1, β2,… βk for k predictors on n
observations. For instance, for a model having three predictors, x1, x2, x3, the system of linear equations
would be given by:

y1 = α + β1x11 + β2x12 + β3x13 + ε1

y2 = α + β1x21 + β2x22 + β3x23 + ε2

yn = α + β1xn1 + β2xn2 + β3xn3 + εn

Simultaneous regression is the “default” way to estimate parameters in a regression model, and in
most cases, at least for reasonably theory-driven models, it is the preferable strategy.

A hierarchical (or sequential) regression features entering predictors in a preconceived order of
entry, presumably based on theory, as opposed to entering all predictors simultaneously. “Hierarchi-
cal” implies the building of an order or the execution of a systematic plan for model-building. “Hier-
archical” in this sense is not equivalent to hierarchical linear modeling discussed earlier in the book.

It is very important to recognize that hierarchical regression is also neither equivalent to step-
wise regression nor other selection methods such as forward regression or backward elimination.
These latter methods use selection order based on the sequential statistical significance of predictors
rather than theory to determine entry of predictors into the regression model. They are entirely different
methods than the theory-driven hierarchical regression approach.

As an example, suppose a researcher would like to predict depression based on one’s anxiety but
knows from prior research that socioeconomic status, or SES, is a predictor relevant to the model.
Given this, the researcher might enter SES on the first “step” of the model, then add anxiety at the
second step. The result would reveal how much anxiety predicts depression over and above SES.

It needs to be noted that in procedures such as forward, backward, and stepwise, different criteria
may be used and the exact details of the given algorithm may differ depending on the particular
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package or program. So while what we describe below provides a general idea of how most of these
function, do not assume that if you look up a package or software program and it reads “forward” or
“stepwise,” etc., that it guarantees that it works exactly as described in the following. You may assume
it functions in a similar manner, but it behooves you to study its manual to learn of precisely how it
proceeds, how it defines entry and removal of variables, and so on. Different algorithms may maximize
different criteria, so it is important that you familiarize yourself with the procedure before running it
(and most importantly, interpreting it).

We first consider the selection procedure known as forward regression. In this procedure, once a
predictor is selected into the model, it cannot be removed. Other predictors may be added at future
steps, but predictors already in the model remain in the model. As we will see, this is different from
stepwise regression in which we can specify entrance criteria for both adding and removing predictors
at each step.

The following is the “logic” of how forward selection generally proceeds. It is imperative that we
detail these steps rather thoroughly so that you have a solid grasp of how selection procedures work
before you use (and interpret) them:

• Step 1—The predictor with the largest squared correlation with the response is entered into the
model. Since this is the first step of the selection procedure, entering the predictor with the largest
squared correlation is equivalent to entering the predictor with the largest squared semipartial
correlation as well. It may seem trivial at this point to bring up the idea of semipartial correlation
at step 1 of the procedure, but we do so because at subsequent steps, the criterion for entrance into
the regression equation will be the squared semipartial correlation (or equivalently, the amount of
variance contributed by the new predictor over and above variables already entered into the equa-
tion). This process equates to adding the predictor variable with the largest F-statistic that is also
statistically significant (Izenman, 2008).

• Step 2—The predictor with the largest squared semipartial correlation with the response is
selected. That is, the predictor with the largest correlation with yi after being adjusted for
the first predictor is entered if it meets entrance criteria in terms of preset statistical significance
for entry, what SPSS refers to as “PIN” (probability of entry, or “in”) criteria. Be sure to note that
even when this new predictor is entered at step 2, the predictor entered at step 1 remains in the
equation, even if its new semipartial correlation with yi is now less than what it was at step 1. This
is the nature of the forward selection procedure; forward selection does not reevaluate already-
entered predictors into the model after adding new variables. It only adds predictors to the
model (assuming these predictors meet entrance criteria). In the stepwise procedure, to be dis-
cussed shortly, in addition to entrance criteria being specified for new variables, removal criteria
are also specified at each stage of the variable-selection procedure.

• Step 3—The predictor with the largest squared semipartial correlation with the response is
selected. That is, the predictor with the largest correlation with the response after being adjusted
for both of the first predictors is entered. Be sure to note that the entrance of this variable is
conditional upon its relationship with the previously entered variables at steps 1 and 2. Hence,
for a variable to be entered at step 3, the algorithm asks the question: “Which among available
variables currently not entered into the regression equation contribute most to variance
explained in yi given that variables entered at steps 1 and 2 remain in the model?” Translated
into statistical language, what this question boils down to is selecting the variable among those
still available in the pool that has the largest statistically significant squared semipartial correlation
with yi.
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• Steps 4, 5, 6, … proceed in analogous fashion to previous steps, the number of steps ultimately
determined by how many variables in the pool we have available for entrance into the model and
that meet entrance (PIN) criteria.

We can summarize the general rule for how forward regression operates:

Forward regression, at each step of the selection procedure from step 1 through subsequent steps,
chooses the predictor variable with the greatest squared semipartial correlation with the response
variable for entry into the regression equation. The given predictor will be entered if it also satisfies
entrance criteria (significance level, PIN) specified in advance by the researcher. Once a variable is
included in the model, it cannot be removed regardless of whether its “contribution” to the model
decreases given the inclusion of new predictors.

In a similar spirit as forward selection, backward elimination begins with all predictors entered
into the model and then at each subsequent step removes the predictor with the smallest squared semi-
partial correlation that meets removal criteria (Hays, 1994). This equates to removing that predictor that
carries with it a nonstatistically significant contribution to the model in the presence of predictors
already included in the model. The algorithm ceases when there are no further variables that meet sta-
tistical criteria for removal.

8.13.2 Stepwise Regression

Stepwise regression operates in a similar fashion as forward selection in that it selects predictors into
the model that have the highest semipartial correlation with the response, or equivalently, yields the
largest F value that is statistically significant. However, at each step of the procedure, predictors
already entered into the model are re-evaluated for their contribution in the presence of the
newly entered predictor(s). Hence, in addition to having to specify a PIN value, the user also needs
to specify a POUT (“probability out”) value, which is the p-value criteria that designates removal of the
given predictor. Hence, stepwise regression can be conceptualized as a mixture of sorts between the
approaches of forward and backward elimination.

For example, we might set PIN at 0.05 and POUT at 0.10 for each step of the procedure. What this
would mean is that a variable that meets PIN criteria is entered into the model and variables already in the
model are simultaneously evaluated for POUT criteria, the least significant of which is removed from
the model. It should be noted that POUTmust be set at a value greater than PIN, otherwise, the stepwise
routine might engage in a cyclical simultaneous acceptance and rejection of the same predictor.

You might think of forward selection as very “loyal” to predictors. Once you are in, you stay in.
Stepwise regression is not very loyal. Once you are in, you are in until another predictor entered at
a future step diminishes your stock value, then you are out. A further caution about stepwise regression
is that significance levels typically do not represent true error rates by the very manner in which pre-
dictors are entered into the model. As noted by Draper and Smith (1998, pp. 342–343), though worthy
of concern, this issue alone should not prevent you from using the procedure. That being said, stepwise
methods, and to some extent variable-selection methods in general, though they are useful in many
contexts have been found to bias parameter estimates and impose a degree of doubt on the inferential
process. The degree of bias introduced can vary frommodel to model but can be as much as in the order
of 1–2 standard errors (Izenman, 2008). Some are very critical of stepwise methods. For instance, Has-
tie et al. (2009) conclude:

Other more traditional [software] packages base the selection on F-statistics, adding “significant” terms, and
dropping “non-significant” terms. These are out of fashion, since they do not take proper account of the mul-
tiple testing issues… the standard errors are not valid, since they do not account for the search process. (p. 60)
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But what does this mean pragmatically? It means it is probably best to employ stepwise programs as
a guide to model selection, and not place undo weight or importance on observed p-values. Now, that
does not imply that if a p-value for a predictor is equal to 0.90, for instance, that the predictor is likely
not all that valuable, but it does suggest that p-values coming out just above or below PIN or POUT
criteria may still be worthwhile, and may be coming out smaller or larger simply because of instability
in the standard error associated with the coefficient. But we have discussed this matter before, and that
is, when it comes to scientific selection over and above statistical selection, a certain degree of common
sense, flexibility, and judgment is necessary.Do not get “lost” in p-values. Use them as a guide, and
interpret them within a wider scientific context.

8.13.3 Selection Procedures in R

There are a variety of packages in R that perform similar tasks as the stepwise procedure just reviewed.
For instance, the bestglm package (McLeod and Xu, 2020) uses selection criteria such as AIC and
BIC to inform the user on the best model. The leaps package in R (Lumley, 2020) can also be used for
search procedures.

8.13.4 Which Regression Procedure Should Be Used? Concluding Comments and
Recommendations Regarding Model-Building

It is important to realize that there is no golden rule regarding which model-building procedure one
should use in any given context. When idealized statistical methods meet the harsh realities of the real
world of applied empirical research, it becomes clear that the statistical criteria by which a regression
model is chosen is only a small part of the input required to make intelligent decisions regarding selec-
tion criteria. The final decision regarding any model, regardless of model selection procedure
chosen, will be whether it is useful or theoretically meaningful to the researcher in the accom-
plishment of a wider endeavor.

As an example to emphasize this concept of utility, imagine you were to enter five predictors into a
model and run a stepwise regression on these candidate predictors. Suppose predictors x1, x3, and x5
were selected into the final model. Is this then the “best” model? Yes, in the stepwise sense of how
predictors were chosen to maximize model R2, it is. However, the model may only be “best” in the
statistical but not substantive sense. In the real empirical world of research, predictors are not abstract
variables. They are real and correspond to actual things we are modeling. In this sense, the decision-
making process regarding which model is best can hardly be fully relegated to a statistical algorithm of
selection and removal criteria. Instead, you, the researcher, must have the final input into the model,
presumably because you are the one most familiar with the variables you are modeling. You know
them, or at least should know them, very well. You must guide your own work. Do not rely on soft-
ware or mathematical optimization to completely guide your decision-making process. Researchers
run the machines. The machines should not be running researchers.

To illustrate the point, suppose the model choosing predictors x1, x3, and x5 accounted for 35% of the
variance in the response. Suppose that a competing model with predictors x1, x3, and x4 also accounted
for 30%. Which model is better? This is a very difficult question to answer unless we first know some-
thing more about what these variables actually are, what they are supposed to represent, how they were
measured, etc., and more importantly, what the model we are building is actually for. On a practical
level, if x5 were a very difficult and expensive piece of information to collect from subjects, but x4 were
a much easier (and cheaper) item to collect, then in this sense, x4 may very well be the “better” predictor
pragmatically when compared to x5, especially if the reduction in variance explained is worth the cost
of not having to collect x5. Maximizing utility is not the same as maximizing expected value.

306 MULTIPLE LINEAR REGRESSION



Following an example found in Denis (2020), if a graduate school committee basing student entrance
selection criteria finds undergraduate GPA, number of research publications, and quality of letters of rec-
ommendation to be all strong predictors statistically, thismay be only the beginning, not end, of finalizing
the model, as measurement and psychometric issues may still remain inherent in these predictors. That is,
if letters of recommendation are seen by committee members to be only vaguely associated with the stu-
dent, and more a function of the letter writer (i.e., maybe the letter writer drafts “glowing” letters for
everyone), then though it may turn out to be a strong predictor, it may not be prioritized in final model
selection. Likewise, if committee members see second authorship on research publications as simply aca-
demic supervisors attaching their students’ names to their research publications to impress deans, with the
student providing only minimal if any contribution, then the statistical criteria may not matter much.
Pragmatically speaking, letters of recommendation may be seen as a less important predictor when com-
pared to undergraduate GPA.Alwaysmind psychometric issues (e.g., such as validity and reliability) that
may be lurking behind the scenes. Statistical “fit” criteria are not enough.

The major point is this:

Good models have to be evaluated in a wider context than statistical criteria alone, and results of
statistical modeling should always be interpreted in the wider framework of decision-making for
which there may be numerous inputs to the decision that lay outside of the results of statistical mod-
eling. Statistics are meant to inform our decisions, not make them for us. Judgment must always
trump protocol when it is most needed.

8.14 POWER ANALYSIS FOR MULTIPLE REGRESSION

We can use R to estimate power for multiple regression models just as easily as for simple regression
models. Once again, we use pwr.f2.test in the pwr package (Champely, 2020). As an example,
for a model with two predictors with a combined R2 of 0.50 (f2 = 1, that is, R2/(1 − R2)), assuming a
significance level of 0.05, on 20 subjects (i.e., v = n − k − 1 = 20 − 2 − 1 = 17), we estimate power to be:

> library(pwr)
> pwr.f2.test(u = 2, v = 17, f2 = 1, sig.level = .05, power = NULL)

Multiple regression power calculation

u = 2
v = 17

f2 = 1
sig.level = 0.05

power = 0.9630578

Hence, given these parameters, the probability of rejecting the null hypothesis given that it is false is
equal to 0.96. Power for multiple regression can also quite easily be estimated using G∗Power, although
we do not demonstrate such estimation here.

8.15 INTRODUCTION TO STATISTICAL MEDIATION: CONCEPTS
AND CONTROVERSY

We consider now a brief demonstration of statistical mediation along with a somewhat critical com-
mentary regarding potential issues that may arise whenever mediation models are fit to data. Since path
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analysis and structural equation models (discussed in Chapter 15) often feature mediational models, the
warnings and caveats discussed here are equally applicable in the context of those models as well.

We discuss only the single “classic”mediation model in this chapter, usually attributed to Baron and
Kenny (1986). Mediation is an extensive topic for which models can feature more than a single medi-
ator. Our survey is only meant to provide a glimpse into what mediation models are about and comment
on the nature of mediational hypotheses. For a thorough introduction to mediation, see MacKin-
non (2008).

In the classic mediation model, an independent variable is hypothesized to predict a dependent
variable through a mediator. A diagram for the single mediator model is given in Figure 8.2.

We define the following:

• IV—the independent variable (or predictor) hypothesized to predict the dependent variable DV
(or response).

• MEDIATOR—the hypothesized mediator in which it is typically believed that the independent
variable acts on the dependent variable through (in some sense) the hypothesized mediator; at
minimum, it is hypothesized that the mediator “explains” the relationship between IV and DV.

• a is the estimated regression coefficient for the IV on the mediator.

• b is the estimated regression coefficient for the mediator on the DV.

• c is the estimated regression coefficient for the IV on the DV.

• c is the estimated regression coefficient for IV predicting DVwhen the mediator is included in the
model. According to the mediational hypothesis, when the mediator is introduced over and
above the IV, the change from c to c is evidence of complete mediation if c = 0. If c 0,
but still decreases substantially from c (i.e., c < c), then partial mediation is said to exist.

In the single mediation model, we can distinguish different types of effects (MacKinnon, 2008):

• The path from IV to DV, that is, c, unadjusted by the mediator, is known as the total effect model.
• The indirect effect is estimated by the product of the coefficients a and b. The indirect effect can
also be computed as c − c . According to mediation theory, the product ab (or the difference c − c )
is also known as the mediated effect.

Suppose for some data we computed paths a, b, and c to be 0.80, 0.70, and 0.40, respectively. The
estimate of the indirect effect is thus computed as ab = 0.56. Since it can be shown that path c can be
decomposed into c = c + ab, we can immediately know the extent to which c has changed as a result
of including the mediator:

IV

Mediator

DV
(c)

c'

a b

FIGURE 8.2 Classic single-variable mediation model.
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c = c + ab

c = c − ab

= 0 40− 0 56

= − 0 16

That is, our original path c has dropped to c = − 0.16 as a result of including the mediator.
To construct confidence intervals and significance tests, we must, of course, first obtain an esti-

mate of the standard error for the statistic we are computing. Since we are interested in a confidence
interval for c − c (or equivalently, ab), we need to construct the requisite standard errors. The estimated
standard errors based on ab are known as product of coefficient standard errors, while the standard
errors based on c − c are known as difference in coefficients standard errors (see MacKinnon, 2008,
p. 51). Sobel (1982) proposed standard errors for the mediational effect, but according to mediation
specialists, other methods are often preferable. See MacKinnon (2008) and Hayes and Scharkow
(2013) for further details comparing a variety of methods for testing mediation. MacKinnon et al.
(2002) is also a useful resource and should be consulted.

8.15.1 Statistical Versus True Mediation: Some Philosophical Pitfalls in the Interpretation
of Mediation Analysis

Having demonstrated a simple example of mediation, some strong cautionary caveats are warranted.
Applied researchers are sometimes wary of getting too “philosophical” about their research and claim
to simply want to “look at the data.” However, as a user of mediational analyses, or virtually any other
statistical technique in research, you must be able to defend some rather obvious philosophical issues
that present themselves when conducting and interpreting such analyses. Otherwise, your research will
have no legs to stand on regardless of its quantitative sophistication. In general, if you cannot con-
vince the critical philosopher of your evidentiary claims, it usually suggests a methodological
problem. This is as true for the physical scientist as it is for the medical or social scientist. If you cannot
make a strong methodological claim to demonstrate effectiveness of your design or intervention, then
you have little in the way of science, but much in the way of hypothetical conjecture.

For instance, with the outbreak of COVID-19 in 2020, one “convinces” the critical consumer of the
effectiveness of a treatment if it improves health or saves lives. One cannot simply believe the treatment
works independent of philosophically demonstrating its effectiveness, which is usually done in these
situations via experiment, which is about as philosophically rigorous a tool for demonstrating evi-
dence that is known to humankind (though not without its own weaknesses and shortcomings—no
method of investigation is perfect). Indeed, this is one of the great critiques of psychoanalytic theory,
in that it is very difficult to subject to test. Does that mean it is “wrong?”Not at all. But being unable to
subject its matter to test makes it less scientific, even if using it helps provide useful narratives for
people’s lives (which of course, is a good thing). A theory may be absolutely true in the end, but if
it is not amenable to scientific test, then it is generally not part of what is regarded as “good science.”
In psychology, for instance, this is one reason why Skinner’s behaviorism took flight in the early
1900s. Though it was fraught with its own difficulties, it was more scientifically “testable” than
was psychoanalytic theory, for instance. In the case of COVID-19, the philosophical issues are a
bit easier, in that a person’s death is a strong indicator that the hypothesized treatment isn’t having
the desired effect. In this sense, theories in medicine and the like are much easier to “falsify,” and
though someone can entertain beliefs about a treatment, the data, in the end, will justify whether that
belief is warranted.Real, true science is very unforgiving, and it is never the subject matter that deems
it credible (there is good and bad science everywhere, from physics to psychology to medicine), it is the
method of inquiry (e.g., the scientific method is quite credible) that is most important in the estab-
lishment of evidence. When you are doing good science, you are much more often “wrong” than
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you are “right,” and if nature isn’t constantly “slapping you in the face” with its data, guiding you on
revising your theory and proving you incorrect, then you are probably doing something wrong. Titanic
was believed “unsinkable.” Nature had other ideas.

First and foremost, there is nothing “wrong” with performing statistical mediation. It is a rather ele-
gant applied statistical procedure, and one that is quite popular in the social and behavioral sciences.
There is something seriously wrong however with drawing conclusions from amediation analysis
that are not warranted from the context in which you are applying the technique. What does it
mean to say one variable “mediates” the relationship between two others? Such language seems to
imply some sort of physical process, or at minimum, an “action” of sorts. However, based on a test
of statistical mediation alone, no such processes can necessarily be inferred. Whether there is a phys-
ical or even directional process of any kind must be concluded separate from the statistical test.2

As noted by MacKinnon (2008), the origins (or at minimum, an early documented example) of
mediation analysis in psychology were with Woodworth in 1928 in which a stimulus–organism–

response (S–O–R) model was hypothesized:

Woodworth (1928) outlined a stimulus-organism-response (S-O-R) model for explaining how the organism
mediates the relationship between the stimulus and response by postulating different mediating mechanisms
operating in the organism.Mediating mechanisms are what determines how an organism responds to a stim-
ulus. For example, a stimulus may trigger a memory mechanism that identifies the stimulus as a threat that
leads to an avoidance response, or a stimulus may trigger an attraction process that leads to a physiological
response such as pupil dilation and an approach response. (p. 2)

MacKinnon’s characterization of an early mediation model is useful here, because it provides the
scientific context in which mediation analysis arose. Note the key word “trigger” in the above quote.
This denotes a physical, or at minimum, directional event of one variable onto another. In the S–O–R
model, such an assumption of physical or directional causation was reasonable due to the nature of the
scientific material under investigation. That is, mediation occurred in the S–O–R model because there
was real evidence that true mediation actually happens. The process was not simply one of statis-
tical mediation.

However, when a researcher takes variables xi, yi, and zi, throws them into a regression program, and
draws the conclusion that zimediates the relationship between xi and yi, what does this mean, exactly? In
truth, we have no idea what it means until we knowmore about what xi, yi, and zi actually are andwhether
or not a mediational hypothesis is actually plausible for these variables. Does a student’s self-esteem
mediate the relationship between grade-point average and probability of being accepted into graduate
school? You can obtain all the statistical mediation evidence you like, but until you can actually convince
someone that a real mediational process is occurring, you simply have no evidence for true mediation.
What you have is evidence for statistical mediation, which usually is not that meaningful if you cannot
use the statistical model to describe a real process. Too often in the research literature, mediational
hypotheses are advanced simply because of evidence for even slight statistical mediation. Caution needs
to be exercised in properly evaluating the research context in which the model is fit, so that one can then
make an intelligent appraisal as to whether it is realistic or not to conclude a true mediational process. A
statistical test alone usually tells you little, in a direct sense, about any kind of physical or substan-
tive process that may be present. Physical, concrete, or directional inferences have little to do with
statistics and everything to do with principles of sound research design.

Our brief discussion only begins to survey this relatively deep issue. The interpretative issue is much
more salient in structural equation models where causality hypotheses are too often advanced without
contextual evidence for any causal processes whatsoever. As will be discussed in Chapter 15, this dif-
ficulty, in part, can be traced back to the historical origins of path analysis.

2A similar discussion can be had about so-called suppressor variables. For details, see Howell (2002, pp. 557–558) and MacK-
innon, Krull, and Lockwood (2000).
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8.16 BRIEF SURVEY OF RIDGE AND LASSO REGRESSION: PENALIZED
REGRESSION MODELS AND THE CONCEPT OF SHRINKAGE

We close this chapter with a brief survey of ridge and lasso regression, and refer the reader to additional
follow-up resources should they wish to venture into these areas and consequently fit these models
using software. These are relatively advanced procedures, even if at first glance they can appear decep-
tively straightforward. A deeper study of them however is required before one can appreciate or even
fully understand details of their output.

So, what is so special about these methods? These techniques extend on the ordinary multiple
regression model in that they implement what are known as penalty functions on regression para-
meters as a way of dealing with potential instability of OLS estimates due to factors such as colline-
arity among variables. Ridge regression (Hoerl and Kennard, 1970) sought to essentially get a handle
on potential instability in OLS estimators through a slight modification when solving for least-squares
coefficients, which recall were given by

b = X X − 1X y

Recall from our discussion of regression in Chapter 7 that due to the Gauss–Markov theorem, least-
squares estimators are unbiased and thus generally preferable over other linear estimators (Hastie et al.,
2009). Statistically speaking, unbiased estimators have much to recommend them. However, in some
situations, it may be worth purposely introducing (or “allowing”) bias into the estimator if, in some
circumstances, it may lead to a lower mean squared error than if the OLS estimator were used. This
brings us to the motivation for ridge regression. Ridge regression sacrifices a degree of bias for a
potential improved reduction in error, known generally as the “bias-variance trade-off” (Hastie
et al., 2009), which features the trading off of bias for a reduction in variance. In other words, we jet-
tison the idea of an unbiased estimator, use a biased one, but with the hope that it helps us reduce var-
iance more than would the unbiased estimator.

The technical theory behind ridge regression is that it adds a small constant quantity to the diagonal
entries ofX X above in (X X)−1, which serves as a way to “track” the instability in estimation caused
by such things as collinearity among variables (Izenman, 2008). Hence, in this respect, ridge regression
may be useful as one possible way of dealing with collinearity or other causes of instability. When the
value added to the diagonal ofX X is equal to 0, then ridge regression simply reduces to ordinary OLS
estimation. Otherwise, ridge regression generates different estimators than OLS. This addition of a con-
stant to ease instability of estimation translates to minimizing a slightly different quantity than in tra-

ditional least-squares regression. Recall that in OLS regression the sum of squared errors
n

i = 1
ε2i was

minimized, which when “unpacked” yielded

n

i = 1

ε2i =
n

i = 1

Yi − β0 −
k

j = 1

βkXk

2

In ridge regression, the following quantity is instead minimized,

n

i = 1

ε2i =
n

i = 1

Yi − β0 −
k

j = 1

βkXk

2

+ λ
k

j = 1

β2k
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where λ is known as a tuning parameter that serves to regulate the degree of penalty imposed on the

regression estimates. For any value of λ ≥ 0 then, the trailing term λ
k

j = 1
β2kwill also be greater than zero

and is known as the shrinkage penalty term. It stands as well that for increasing values of λ, the degree
of penalty likewise will increase.

But why would we want to impose a penalty term on a regression? As mentioned, the primary
motive for doing so is to deal with potential instability in OLS estimates, and it turns out that this trans-
lates to “shrinking” one or more coefficients toward values of zero. What this translates into substan-
tively then is that ridge regression can be said to identify those predictor variables that are, in a sense,
the most “important” in the regression, and it is hoped that less important variables will have their coef-
ficients “shrink” toward zero. A key point to note, however, is that ridge regression retains all pre-
dictors in the model, and thus even though it shrinks coefficients toward zero, it is not considered a
variable or model selection procedure. That is, all predictors remain in the model, since even the
shrunken coefficients will still typically have coefficients greater than zero in magnitude.

A derivative, and thus related procedure to ridge regression is that of lasso regression, which, like
ridge regression, employs the tuning parameter λ, however does so by minimizing a slightly different

quantity than in ridge regression. Recall that whereas the trailing term in ridge was λ
k

j = 1
β2k, that is, it

involved the sum of squared regression coefficients, in lasso regression, the trailing term is instead,

λ
k

j = 1
βk . That is, lasso regression features the absolute value of coefficients in the sum instead of

squared values as in ridge. Hence, what lasso regression is minimizing then, is

n

i = 1

ε2i =
n

i = 1

Yi − β0 −
k

j = 1

βkXk

2

+ λ
k

j = 1

βk

As was the case for ridge regression, when λ, the tuning parameter, is equal to 0, the term minimized by

lasso regression reduces to that minimized by OLS, since 0
k

j = 1
βk will always equal 0 regardless of

the sum of absolute values for βk. And, as was true for ridge, for values of λ ≥ 0, the influence of the
penalty term likewise increases. In mathematical parlance, ridge regression and lasso regression differ
by their norms, where βk is known as the L1-norm, and β2k, the L2-norm. But as mentioned, each is
modulated by the size of the tuning parameter, λ.

Why might one prefer lasso regression over ridge? Recall whereas ridge will not perform variable
selection, lasso regression, on the other hand, does drive coefficients all the way to zero, and hence
can be considered in its own right to be a variable-selection procedure. That is, when performing lasso
regression, one may decide to retain predictors with coefficients greater than zero, and drop those equal
to zero. Ridge regression, on the other hand, will retain all predictors, and hence is considered less
useful for variable selection. However, this does not imply that a user of ridge cannot drop predictors
manually that are headed toward zero, only that because it does not drive them exactly to zero, solutions
to ridge may be somewhat more substantively difficult to interpret relative to the lasso.

This is as far as we take our brief survey of ridge and lasso regression in closing out this chapter.
Despite the simplicity of our short overview, as mentioned, these techniques are actually quite complex
and have quite intricate relationships with principal components analysis. To understand them in suf-
ficient detail requires more study than we have space for, and their software implementation is likewise
much more detailed than running classical OLS regression models, for instance. Performing ridge and
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lasso regression often involve simultaneously running what are known as grid searches to help select
optimal values of the relevant tuning parameter that minimizes mean squared error, as well as splitting
up data into a train and test set in helping determine the value of this important parameter through a
variety of techniques of cross-validation. For full, detailed, and excellent treatments of ridge and lasso
regression, including implementation in R software, see James et al. (2013), and for an even deeper and
more technical treatment that cuts no corners, the reader is strongly encouraged to consult Hastie et al.
(2009) or Izenman (2008). In the spirit of history, for a good introduction to ridge regression as orig-
inally conceived, Hoerl and Kennard (1970) should be consulted.

8.17 CHAPTER SUMMARY AND HIGHLIGHTS

• Whereas linear regression dealt with regressing a single response variable on a single predictor
variable, multiple linear regression models are useful for regressing a single response variable
on two or more predictors variables.

• The multiple linear regression model is given by yi = α + β1x1 + β2x2 +… + βkxk + εi where k is
the number of predictors, and β1 through βk are the population partial regression parameters, usu-
ally estimated by ordinary least-squares.

• In developing the multiple regression model, it is useful, pedagogically, to first consider coeffi-
cients of partial and semipartial correlation.

• The partial correlation between variables x1 and x2 controlling for zi is found by first regressing
x1 on zi to obtain a column of residuals, then regressing x2 on zi to obtain a second column of
residuals, then obtaining the Pearson correlation coefficient between these two columns of
residuals.

• The semipartial correlation between x1 and x2, where only x2 is adjusted for zi, is computed by
regressing x2 on zi to obtain a column of residuals, then computing the Pearson correlation coef-
ficient between these residuals and unadjusted values of x1.

• Themultiple regressionmodel can also be given in matrices, allowing one to see the components
of the model more clearly and also aiding in generalizing the model to more complex cases (e.g.,
multivariate multiple regression).

• Unstandardized or standardized partial regression coefficients cannot be interpreted as coef-
ficients are in a simple linear regression. That is, partial regression coefficients are not the same as
the slope in a simple linear regression model (i.e., based on bivariate data).

• The idea of statistical control has nothing to do with experimental control. When variables are
“controlled” in a multiple regression, it simply implies a partialling of variability.

• The variance inflation factor (VIF) and tolerance are commonmeasures used to evaluatemulti-
collinearity among predictors in a multiple regression model. Tolerance is the reciprocal of VIF.
Elevated levels of VIF (or, equally, low values of tolerance) may indicate a problem with
collinearity.

• R2 can be written as a function of partial correlations. It can also be written as a function of
semipartial correlations. This fact forms the analytical basis for model-building strategies such
as forward and stepwise regression.

• Hierarchical regression, in which predictors are entered in a preconceived order by the
researcher, is not the same as stepwise regression.

• Sample size for multiple regression can be estimated relatively easily in R and is equally as easy to
compute using G∗Power.
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• The distinction between statistical mediation versus true mediation is an important one.
Regardless of whether one finds statistical support for mediation, true mediation can ordinarily
only be justified through resort to the research context or paradigm.

• Ridge and lasso regression are relatively advanced extensions of the original multiple regression
model. These models invoke a penalty term in minimizing the sum of squared errors, and seek to
shrink one or more coefficients toward (ridge), or to zero (lasso), as a way of reducing potential
instability of OLS estimates, as well as aiding in predictor selection.

REVIEW EXERCISES

8.1. Explain whymulticollinearity in regression can be considered both a statistical and a substan-
tive concern.

8.2. Discuss how the variance inflation factor (VIF) can be instrumental in influencing the size of
the standard error for a partial regression coefficient, βi.

8.3. What is tolerance, and how is it defined? All else equal, would you prefer to see a high tol-
erance value or a low tolerance value for a given predictor? Why?

8.4. Justify why tolerance for any given predictor must range between 0.0 and 1.0.

8.5. Discuss what it means, in a very general sense, to solve a system of linear equations such as the
following:

y1 = α + β1x11 + β2x12 + … + βkx1k + ε1

y2 = α + β1x21 + β2x22 + … + βkx2k + ε2

yn = α + β1xn1 + β2xn2 + … + βkxnk + εn

8.6. Discuss the procedure of hierarchical regression, and come up with one example in which a
researcher may be especially interested in performing this type of regression.

8.7. Verify that R2
y 12 can be expressed as a function of partial correlations.

8.8. Verify that R2
y 12 can be expressed as a function of semipartial correlations.

8.9. Discuss the difference between r2y2 1 and r
2
y 2 1 and why this distinction is important. What role

does each play in defining R2
y 12?

8.10. Explain, in detail, the following equation, and comment on why it is important:

R2
y 1234 = 1− 1 − r2y1 1− r2y2 1 1 − r2y3 12 1 − r2y4 123

8.11. Describe, in detail, the “logic” of forward regression. Imagine you were explaining the pro-
cedure to a colleague.

8.12. For a forward regression, what significance level would you suggest setting PIN at? What
kinds of things should this decision depend on?
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8.13. Why does the semipartial correlation figure so prominently in the discussion of forward, step-
wise, and backward elimination regressions?

8.14. How would you recommend a researcher set PIN and POUT in the typical stepwise regres-
sion? Why would you recommend this?

8.15. Conceive of a research example in which stepwise regression would be the preferred method
of regression over simultaneous, forward, or backward elimination.

8.16. Consider the following data on variables where x and y are continuous and z binary.

> x <- c(0, 5, 8, 3, 9, 10, 15, 4, 8, 2)
> y <- c(9, 7, 4, 8, 2, 6, 5, 4, 8, 9)
> z <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

Perform a multiple linear regression in which y is the response variable and x, z are predic-
tors. Evaluate both effects for x and z. What would you conclude for the effect for x? Why?
Next, run a simple linear regression with only x in the model. Did your conclusion for x
change from what it was when z was included in the model? Why or why not? Briefly explain.

Further Discussion and Activities

8.17. Applied statistical methods are often taught with little regard to any of the historical or political
and social influences that may have been instrumental in promoting the techniques. One prime
example is the history of regression. Gaining an appreciation of how and why a statistical
method came into prominence is very useful since it helps one contextualize statistical methods
in a wider social framework, instead of seeing the method as a mere computational algorithm.
Read Denis and Docherty (2007). Briefly summarize how the advent and rise of multiple
regression, though traditionally associated with the likes of Karl Pearson and George Udny
Yule, can also be said to be a product of the sociopolitical debate between Charles Booth
and Charles Stewart Loch.
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9
INTERACTIONS IN MULTIPLE LINEAR
REGRESSION

In this chapter, we briefly survey the analysis of interactions in the context of multiple regression. Anal-
ogous, but not identical to the ANOVA context, situations arise in regression where a researcher
hypothesizes that a given predictor is useful in predicting a response, but that its predictive power
is not constant across the range of a second predictor. The concept of an interaction in multiple regres-
sion parallels that of an interaction in ANOVA, and although different in computation, both analyses
essentially accomplish something similar. In ANOVA, to break apart an interaction, we study its sim-
ple effects. In regression, we break apart interactions by simple slopes. Recall that a simple main effect
in ANOVA is the mean difference on one factor at a particular level of a second factor. A simple slope
in regression is defined as the slope of yi on xi at a particular value of a second predictor zi. So-called
“moderation regression” has become quite popular in the social and natural sciences. For thorough
accounts that extend on the topics discussed in this chapter, including estimation of simple slopes,
see Aiken and West (1991) and Cohen et al. (2003).

As an example of where an interaction in a regression model may be relevant and of interest, sup-
pose a research psychologist would like to predict treatment success (yi) (measured on some contin-
uously scaled questionnaire purported to evaluate overall outcome of treatment) based on length of
therapy (xi) and also hypothesizes that this regression will be contingent on a client’s age. Perhaps
the researcher believes that treatment success will be better predicted by length of treatment for clients
who are young compared to older clients. Consider the hypothetical plots in Figure 9.1.

We note in Figure 9.1 that the slope for age = young is somewhat steeper than the slope for age = old.
It should be noted as well that for our demonstration, only two age “groups” have been selected. We of
course could have conceived age as having an infinite number of potential values and therefore plotted
the regression lines at each value. Perhaps the actual relationship would be as in Figure 9.2, where the
slope of treatment success on length of treatment decreases as age increases.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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9.1 THE ADDITIVE REGRESSION MODEL WITH TWO PREDICTORS

A regression model with two predictors xi and zi is given by:

yi = α + β1xi + β2zi + εi (9.1)

Recall from our discussion of ANOVA that the model in (9.1) is considered an additive model
because no terms (i.e., xi, zi) are crossed (multiplied). When we specify an interaction model, we cross
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FIGURE 9.1 Hypothesized slope of treatment success on length of treatment for young (a). Hypothesized slope
of treatment success on length of treatment for old (b).
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terms xi and zi to produce a product term xizi. We can specify an interaction term for xizi (i.e., zimulti-
plied by xi) by adding this term to the model:

yi = α + β1xi + β2zi + β3xizi + εi (9.2)

The term xizi is the product term in (9.2) that represents the crossing of xi with zi. This is the
interaction term.

9.2 WHY THE INTERACTION IS THE PRODUCT TERM xizi:
DRAWING AN ANALOGY TO FACTORIAL ANOVA

You may ask why we are multiplying two variables to get the interaction term. That is, why is the
interaction term in (9.2) defined as a product? To understand why this is so, I ask you to draw on your
knowledge of factorial analysis of variance for a useful, even if inexact, analogy. Recall that in
ANOVA, we defined a cell effect as the mean for the given cell minus the grand mean of all the data
(or, of the mean of all the means for a balanced design). Recall the typical factorial ANOVA table of
Chapter 4, reproduced in Table 9.1.

Recall that the cell means were generated by “crossing” factor 1 with factor 2. That is, yjk for each
cell can be defined as the intersection of the given factor level for each variable (e.g., level 1 of factor 1
with level 1 of factor 2). In Table 9.1 is featured only a 2 × 3 design. Imagine now if we increased factor
levels on each variable to a much larger number, say 30 on factor 1 and 20 on factor 2.When generating
cell effects, we would thus have 30 × 20 = 600 “cells” in our design. Imagine now we increase the
number of levels on factor 1 to 300 and on factor 2 to 100. We would now have 30,000 “cells” in
our design. But, each cell would still contain unique information (e.g., a mean and variance) in
the given crossing. If you continue expanding the number of levels for each factor, you will eventually
arrive at a state of approximate continuity for each factor. That is, each factor will have an infinite
number of “levels.” And even with this infinite number, we are still theoretically interested in what is
contained within each combination. We keep putting “levels” in quotes, because when we are working
with continuous variables, we seldom think of values of the variable as “levels” at all. But in terms of
drawing the analogy between factorial ANOVA and a product term in regression, it is helpful to tem-
porarily equate the two concepts.

The point of this discussion is to emphasize that crossing (or “multiplying”) predictors in multiple
regression accomplishes a conceptually similar result as crossing factors in ANOVA.We are interested
in the joint relationship or intersection of where the values of the variable (i.e., factor or predictor)
meet up. This “cell,” which is obvious in ANOVA, is much less so in regression because the “cell”
contains (or is “able” to contain, the exact nature of the “cells” will depend on the data) but only
one score if both predictors are continuous. Hence, this is a useful conceptual analogy as to why it
makes good sense to obtain a product term to represent the interaction xizi in regression. Figuratively
at least, we have been doing it all along in our ANOVA models.

TABLE 9.1 Cell Means Layout for 2 × 3 Factorial Analysis of Variance

Factor 2

Factor 1 Level 1 Level 2 Level 3

Level 1 yjk yjk yjk
Level 2 yjk yjk yjk
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9.3 A MOTIVATING EXAMPLE OF INTERACTION IN REGRESSION: CROSSING
A CONTINUOUS PREDICTOR WITH A DICHOTOMOUS PREDICTOR

Consider some hypothetical data where the response variable is final grade in a statistics course for a
given student. The predictor variables of interest are study time devoted to that course, measured in
hours, and whether or not a student was seated at the front (class = 1) or rear (class = 0) of the class. We
are interested in learning whether study time and class seating over the duration of the short course is
predictive of final grade.

Our data are as follows:

> grades
final study class

1 85 1.0 0
2 74 1.2 0
3 62 1.8 0
4 78 1.3 0
5 61 1.5 0
6 96 2.1 1
7 74 1.5 1
8 64 1.8 1
9 42 1.1 1
10 69 1.3 1

Before conducting any inferential tests, we can attempt to estimate via graphical methods whether
study and class interact in predicting final. We plot the data and reveal group membership by
class, where circles and squares represent the different class seating (squares represent class = 0, circles
represent class = 1):

> plot(study, final, pch = as.integer(class))
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We fit the regression line to the entire data:

> model <- lm(final ~ study + class)
> abline(model)
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We can see that the common regression line suggests a positive slope. However, what if we draw
regression lines separately for each group? Would they each conform to the slope of the common
regression line? That is, would the slopes of each group be the same? Should they not conform in this
way, this may suggest an interaction between study and class in the sample. When we run the regres-
sion including this product term study × class, we get:

> model.int <- lm(final ~ study*class)
> summary(model.int)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 113.31 22.09 5.131 0.00216 **
study -30.38 15.92 -1.908 0.10503
class -107.25 29.49 -3.637 0.01088 *
study:class 70.72 20.07 3.524 0.01246 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.711 on 6 degrees of freedom
Multiple R-squared: 0.7114, Adjusted R-squared: 0.567
F-statistic: 4.929 on 3 and 6 DF, p-value: 0.04653

Notice that the interaction term study:class is statistically significant (p = 0.01246). It is sug-
gesting that study is predictive of final, but this prediction may depend on whether you are seated
at the front or rear of the class.

We generate an interaction plot using R’s scatterplot function to better visualize the interaction:

> library(car)
> scatterplot(final ~ study | class, data = grades)
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Clearly, the plot reveals evidence of a study × class interaction, where class = 0 is indicated by cir-
cles and class = 1 is indicated by triangles. The simple slopes suggest that an increase in study time is
related to an increase in final grade for those seated at the front of the class. If you are seated at the back
of the class, however, the plot reveals a negative relationship between study time and grade (i.e., the
circles in the plot). Perhaps those students seated at the back of the class are misunderstanding or not
recording information correctly off the board, and hence as they increase their study of “wrong” infor-
mation, they do progressively worse on their evaluations.

We can easily duplicate this analysis in SPSS. Our corresponding data file is the following:

final study class study_class

1 85.00 1.00 0.00 0.00
2 74.00 1.20 0.00 0.00
3 62.00 1.80 0.00 0.00
4 78.00 1.30 0.00 0.00
5 61.00 1.50 0.00 0.00
6 96.00 2.10 1.00 2.10
7 74.00 1.50 1.00 1.50
8 64.00 1.80 1.00 1.80
9 42.00 1.10 1.00 1.10
10 69.00 1.30 1.00 1.30

The study_class column corresponds to the product term, which we created by multiplying
class by study coding the following:

COMPUTE study_class=study*class.
EXECUTE.
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We now run the regression by entering all terms:

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT final
/METHOD=ENTER study class study_class.

Coefficientsa

Model

Unstandardized Coefficients Standardized Coefficients

t Sig.B Std. Error Beta

1 (Constant) 113.312 22.086 5.131 0.002
study −30.376 15.923 −0.721 −1.908 0.105
class −107.255 29.492 −3.830 −3.637 0.011
study_class 70.724 20.069 4.139 3.524 0.012

aDependent variable: final.

We see above the SPSS output mirrors that generated in R earlier. Recall as well that SPSS will
report the model fit statistics separate from the coefficients, whereas R reported them all in one output.
The corresponding model fit and ANOVA table are the following:

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 0.843a 0.711 0.567 9.71143
aPredictors: (Constant), study_class, study, class.

ANOVAa

Model Sum of Squares df Mean Square F Sig.

1 Regression 1394.629 3 464.876 4.929 0.047b

Residual 565.871 6 94.312
Total 1960.500 9

aDependent variable: final.
bPredictors: (Constant), study_class, study, class.
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9.4 ANALYSIS OF COVARIANCE

The models we have just surveyed in which a dichotomous or polytomous predictor is crossed with a
continuous predictor may be likened to analysis of covariance models. Though the ANCOVA model
is parameterized differently than the dummy-regression models we have just surveyed, the model will
nonetheless provide us with the same fit (Fox, 2016). However, in the ANCOVA model, aside from
evaluating what is generally known as the homogeneity of regression assumption that assumes an
absence of an interaction effect between the continuous predictor and the dichotomous or polytomous
predictor, the interaction effect is typically not modeled. Just as ANOVA can be conceptualized as a
subcategory of the wider regression model, so too can ANCOVA be considered a special case of
regression analysis in which one or more continuous predictors are partialled out of mean differences
of a dichotomous or polytomous independent variable on some continuous response variable. One can
also compute adjusted means that take into consideration the removal of the covariate from the rela-
tionship of interest (see Hays, 1994, p. 823).

We can demonstrate a simple ANCOVA on the IQ data using SPSS, where verbal is the dependent
variable, group is the independent variable of interest, and quant is the designated covariate. We show
only the first 10 cases below (group actually has three levels to it, though only the first level “0” appears
below due to showing only the first 10 cases):

verbal quant analytic group

1 56.00 56.00 59.00 0.00
2 59.00 42.00 54.00 0.00
3 62.00 43.00 52.00 0.00
4 74.00 35.00 46.00 0.00
5 63.00 39.00 49.00 0.00
6 68.00 50.00 36.00 0.00
7 54.00 54.00 29.00 0.00
8 56.00 52.00 57.00 0.00
9 51.00 46.00 65.00 0.00
10 49.00 39.00 61.00 0.00

UNIANOVA verbal BY group WITH quant
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN=quant group.
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In the above, UNIANOVA verbal BY group WITH quant designates verbal as the dependent
variable, group as the independent variable, and quant as the covariate. The output of the ANCOVA
now follows:

Tests of Between-Subjects Effects

Dependent Variable: verbal

Source Type III Sum of Squares df Mean Square F Sig.

Corrected model 3683.268a 3 1227.756 26.641 0.000
Intercept 1710.893 1 1710.893 37.125 0.000
quant 10.402 1 10.402 0.226 0.639
group 495.963 2 247.981 5.381 0.011
Error 1198.198 26 46.085
Total 164,168.000 30
Corrected total 4881.467 29
aR squared = 0.755 (adjusted R squared = 0.726).

We can see from the output that the independent variable of group is statistically significant (p =
0.011). Recall that it is hoped by including the covariate, we experience a reduction inMS error, thus
making the test more sensitive (Montgomery, 2005).

For our data, however, including the covariate actually had the effect of increasing the p-value (if
you try the ANOVA without the covariate, you will see that the p-value for group drops). The reader
should be aware that sometimes this can occur in ANCOVA, especially in cases of low statistical
power. Other issues when conducting ANOVA include the type of sums of squares that are used
to estimate effects. Though we do not detail the issue here, type I SS are sometimes preferred over
SPSS’s traditional type III. For details, see Warner (2013) who provides a very useful discussion
of using type I versus type III sums of squares (we have used type III as default above). While some
authors recommend type I SS, others (such as Tabachnick and Fidell (2007)) use the more popular type
III SS. A discussion of the differences between sums of squares for ANOVA is beyond the scope of this
book, and in most cases, type III sums of squares suffice.

While ANCOVA makes the typical assumptions of classic ANOVA, such as normality and homo-
geneity of variances, as mentioned, contrary to seeking out interactions in regression as we have done
in this chapter, we actually wish for the absence of an interaction between the independent variable
and covariate in ANCOVA. What this translates to is that at each level of the independent variable, the
regression of the dependent variable on to the covariate should be linear and approximately the same
in each level. This assumption is generally referred to as homogeneity of regression slopes and can be
easily tested in SPSS by specifying a custom model where the interaction term is a designated effect in
the model:

UNIANOVA verbal BY group WITH quant
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN=group quant group*quant.

324 INTERACTIONS IN MULTIPLE LINEAR REGRESSION



Notice above that the /DESIGN statement now includes the product term group∗quant. When
we run this model, we obtain:

Tests of Between-Subjects Effects

Dependent Variable: verbal

Source Type III Sum of Squares df Mean Square F Sig.

Corrected model 3886.994a 5 777.399 18.761 0.000
Intercept 1057.475 1 1057.475 25.520 0.000
group 73.396 2 36.698 0.886 0.426
quant 14.975 1 14.975 0.361 0.553
group ∗ quant 203.726 2 101.863 2.458 0.107
Error 994.473 24 41.436
Total 164,168.000 30
Corrected total 4881.467 29
aR squared = 0.796 (adjusted R squared = 0.754).

As we can see, the group∗quant interaction effect is not statistically significant (p = 0.107), and,
potential power issues aside (i.e., if you plotted the data you would likely discover an interaction in the
sample), we will assume for demonstration purposes the absence of an interaction effect. In R, an
ANCOVA can be conducted a few different ways, one common way is to simply use the aov function
as in aov(dv ~ iv + cov), where “cov” is the continuous covariate.

9.4.1 Is ANCOVA “Controlling” for Anything?

The language often used in describing ANCOVA models is that of “controlling for” the continuous
covariate so that it does not unduly influence the relationship between the predictor and response
we are interested in. However, as noted in our discussion of multiple regression models in
Chapter 8, the phrase “controlling for” means nothing more than a partialling out of variance unless
one is actually implementing controls through experimental design. One may go as far as to say
ANCOVA tells us what the group means (or cells, in the case of factorial designs) might have been
(i.e., through the computation of adjusted means) had we been able to control for the covariate, but
unless we did control for the covariate for real (such as in an experimental design), such statements
should still be interpreted in the realm of statistical variation rather than having anything to do with
true experimental control. ANCOVA, or any other statistical method, will never tell you what
would have been had you conducted a real experiment with your correlational data. At most,
they will suggest to you what might have been. Some authors also maintain that ANCOVA should
not be associated with even pseudo-control at all (Miller and Chapman, 2001), and should only be
employed for increasing power for detecting the effects in the model of interest. For more information
on ANCOVA and its relation to regression, see Fox (1997, pp. 192–195). Hays (1994) also gives a
good account of ANCOVA as an extension of ANOVA rather than as a side note to regression models.
Howell (2002, pp. 603–654) provides a good overview of how analysis of covariance can be concep-
tualized under the wider general linear model.
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9.5 CONTINUOUS MODERATORS

When the moderator can at least theoretically take on an infinite number of values, or at least prac-
tically can take on enough values that we may deem it to have enough categories to be able to consider
it continuous, then it is called a continuous moderator. The concept of a continuous moderator par-
allels that of both dichotomous and polytomous moderators.

An interaction between a continuous xi and a continuous zi would mean that the slope of yi on xi
differs depending on the “level” chosen for variable zi. Analogously, we could also say that the slope
of yi on zi differs depending on the “level” chosen for variable xi. Of course, for a truly continuous
variable, it has no real “levels” analogous to a dichotomous or polytomous moderator. Recall that true
continuity (see Appendix) implies that any values are possible on the infinitely dense real line. When
we step down from the ideal of theory and into the world of research, however, we quickly come to
realize the limitation that for us to actually work with a variable, we must somehow reduce it down to
being a categorical one of sorts, even if we consider it to have infinitely many of these categories.
Recall that continuity does not truly exist on real variables that we model, even if we do proceed
as though it does in many of our analytical approaches. For examples and demonstrations of interac-
tions with continuous moderators and the computation of simple slopes, see Aiken and West (1991).

9.6 SUMMING UP THE IDEA OF INTERACTIONS IN REGRESSION

Interactions in regression may at first glance appear rather daunting. However, if you use your knowl-
edge of factorial analysis of variance as a springboard to understanding them, you will quickly see the
similarities between the two interaction models. Let us again review the situation of yi on xi. In an
ANOVA-type model, xi is categorical. In a regression-type model, xi is (typically) continuous. In
the ANOVAmodel, we are interested in mean differences on yi across categories of xi. In the regression
model, we are interested not in mean differences on yi, but rather in the slope of yi on xi. Now, suppose
we introduce the variable zi as a moderator in each case. Here is a summary of how the interpretation
differs based on the model:

Analysis of Variance—If zi is a moderator of yi on xi, then this implies that mean differences of yi
for categories of xi differ depending on the level chosen for zi.

Regression—If zi is a moderator of yi on xi, then this implies that the slope of yi on xi differs depend-
ing on the “level” chosen for zi.

Depending on whether zi is dichotomous, polytomous, or continuous, interpretation of the variable
is slightly different, but the essential role of zi as a moderator in each case is the same.

9.7 DO MODERATORS REALLY “MODERATE” ANYTHING?

9.7.1 Some Philosophical Considerations

Having reviewed some of the theory of interactions in regression, we have called these “third variables”
by the name of “moderators” only because that is how they are commonly referred to in the literature.
However, I personally have never liked the name moderator for the reason that I believe it unduly
implies a physical action of some sort that has nothing to do whatsoever with variance partitioning,
which, after all, is all we are accomplishing in any statistical model. Just as a caveat had to be issued
when discussing mediation, one likewise needs to be advanced in a discussion of moderation.

To say that zi moderates the relationship between yi and xi seems to imply a physical model such
that zi is somehow “regulating” the yi on xi relation, analogous to how a moderator might oversee a
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negotiation in a business deal. And if you have substantive variables such that this is actually the case,
then yes, zi can and should be called a moderator. However, simply because one is calling interac-
tions in regression by the name of moderated regression does not give one philosophical license to
ascribe any powers to zi that it did not have before you conducted the regression. To do so would
imply more of a functional role, as opposed to a statistical role, where “function” in the sense used
here implies a physical act or contribution (such as the function of a gas engine in a car to move a
vehicle forward). For instance, consider the following conclusion, the methodological kind (not nec-
essarily substantive, I am pulling the example out of a hat) of which is often proclaimed as evidence in
the social science literature:

Our research and statistical analyses suggest that self-esteem moderates the relationship between
stress and propensity to engage in violence.

What does such a conclusion mean, really? Statistically, we know what it suggests, and so long as
we associate the idea of moderation with the discovery of statistical interactions, then all is well and
good. However, if we get a bit too “in love with our theory,”we may begin to actually believe that self-
esteem impacts the relationship between stress and violence. Does it?What evidence do we have to say
that self-esteem impacts anything? We usually have scant evidence of this on an experimental level.
But in speaking of it as a moderator, it seems to imply a directional causal force of some kind. Sta-
tistically, however, all we have discovered is an interaction, a statistical relationship.

The key point to remember is to never ascribe powers to empirical variables unless you have gen-
erated their outcomes in such a way that such powers can then be substantiated by the statistical anal-
ysis. Statistical analysis can hardly ever be considered justification alone for the existence of a
phenomenon, regardless of the field to which it is applied.

9.8 INTERPRETING MODEL COEFFICIENTS IN THE CONTEXT
OF MODERATORS

There is a big difference between interpreting regression coefficients in a model that contains an inter-
action term versus a model that contains only “main effect” terms, the so-called additive model. Coef-
ficients in a main-effects-only model estimate something different than coefficients in a model that
includes a product term.

When we test the main-effects-only model, we interpret β1 as reflecting the expected change in yi
given a one unit change in xi across zi, or, equally, over all values of zi. That is, the interpretation of β1
assumes we are generalizing or averaging over values of zi. Likewise, we interpret β2 as the expected
change in yi given a one unit change in zi across xi, or, again, generalizing or averaging over all values of
xi. This interpretation of “averaging over” only holds true when we do not have an interaction term in
the model.

When we include the product term, xizi, β1 now reflects the expected change in yi given a one-unit
change in xi when zi = 0, and β2 reflects the expected change in yi given a one unit change in zi when
xi = 0. In essence, when we interpret the “main effects” in a nonadditive multiple regression model (i.e.,
one with a product term), we are actually interpreting simple slopes for values of 0 on the moderating
variable. As an example, if β1 was equal to 2.0 in the nonadditive model, we would say that the
expected (or average) change in yi for a one unit change in xi is 2.0, when zi = 0.

To summarize:

• When estimating a model that contains only main effect terms, regression coefficients estimate
“general” relationships averaging across the levels of the other predictor.
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• When estimating a model that contains a product term, regression coefficients for “main effects”
estimate conditional relationships focused on a specific value of the other predictor. That value
of the other predictor (moderator) is equal to 0.

• It is very important to not interpret main effects in an interactive model as you would in a purely
additive one.

9.9 MEAN-CENTERING PREDICTORS: IMPROVING THE INTERPRETABILITY
OF SIMPLE SLOPES

We have said that when we have a product term in a multiple regression, the partial regression coeffi-
cients are interpreted differently than they would be if we did not have the product term included in the
model. Referring once again to the product term model,

yi = α + β1xi + β2zi + β3xizi + εi

the partial regression coefficient β1 is interpreted as the expected change in yi for a one unit change in xi,
when zi = 0. For β2, we interpret as the expected change in yi for a one unit change in zi when xi = 0.

Theoretically, the above is sound enough and is algebraically correct. However, one practical dif-
ficulty arises when one considers the plausibility of letting zi = 0 in real empirical data. For instance,
does it make sense to calculate a simple slope for when one weighs 0 pounds? This remains a difficulty
whether we have an additive model or a nonadditive one. Technically, the numbers are correct, since
when zi = 0, we surely can interpret the modelmathematically. We may not however be able to do so
substantively. For instance, in the product-term regression model, if both xi = 0 and zi = 0, then we have

yi = a + b1 0 + b2 0 + b3 0 0

= a

That is, the predicted value for yi is the intercept term. What would we like this intercept to represent? If
zero on both scales is not interpretable, then perhaps we can linearly transform xi and zi so that when we
interpret the predicted value for yi at xi = 0 and zi = 0, these zero values actually represent a quantity that
is both more realistic, and more importantly, of more interest than an actual true zero value (i.e., with
regard to the scale, not necessarily the thing that is being measured; see Chapter 2 for a discussion of
measurement scales).

The way to mean center a predictor is to subtract the mean of that predictor from each value. We
can use the QuantPsyc package (Fletcher, 2012) in R to easily performmean-centering. For instance,
consider the grades data featured earlier in Section 9.3. Suppose we wish to mean center study:

> library(QuantPsyc)
> mc.study <- meanCenter(study)
> mc.study
[1] -0.46 -0.26 0.34 -0.16 0.04 0.64 0.04 0.34 -0.36 -0.16

We can now incorporate the mean-centered predictor into our regression:

> model.cent <- lm(final ~ mc.study*class)
> summary(model.cent)

328 INTERACTIONS IN MULTIPLE LINEAR REGRESSION



Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 68.962 4.626 14.908 5.73e-06 ***
mc.study -30.376 15.923 -1.908 0.1050
class -3.997 6.462 -0.619 0.5589
mc.study:class 70.724 20.069 3.524 0.0125 *

The estimated intercept value of 68.96 still represents the predicted mean grade when study time is
equal to 0, but now, unlike in the regression where study was not centered, “0” does not really mean
“0.” Because we have centered study, “0” is equivalent to the mean study time, and so the number
68.962 is equal to the expected mean grade on the final at a mean amount of study time for those
in class 0. Hence, the correct interpretation of the intercept of 68.96 is now:

The predicted mean final grade when one studies an average amount of time in class = 0 is equal
to 68.96.

We can again visualize the interaction by generating scatterplots for each class, this time noting that
mc.study is a centered variable along the abscissa:

> library(car)
> scatterplot(final ~ mc.study | class, data = grades)
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We can see from the above (right plot) that 0.0 on the mc.study variable now represents the mean
study time, which turns out to be equal to 1.46 when not centered. For reference, we reproduced the
original plot with uncentered data (left) plot. Notice both plots communicate the same information,
only that the rightmost plot now features a “zero” that is meaningful, since it represents the mean study
time. The zero point on the left plot represents the predicted final grade for someone having literally
studied zero hours, which greatly extrapolates on the data and is far off to the left of the plot (e.g., try
drawing a line beyond the plot to the point study = 0 for class = 0, and you will get the intercept value
we obtained in the original regression, of 113.31. Hence, it makes much more sense in this case to
center study, thus assigning it a meaningful zero point.
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Product terms in a multiple regression can also in some cases cause problems of multicollinearity.
Recall that we also know from our discussion of multiple regression that multicollinearity among pre-
dictors in a regression model can pose a serious problem, both substantively and technically. On a tech-
nical level, if one predictor is a linear combination of another predictor, the data matrix is of less than
full rank, which implies that the determinant of the matrix will equal 0 (i.e., it will be singular), which
further implies that the matrix will not be invertible. This will cause serious problems for whatever
regression program you are using, and you will not be able to obtain a solution, or at minimum, for
less severe cases, estimated regression coefficients will not be very stable. And recall that on the sub-
stantive side, we know that multicollinearity is a problem because it suggests that two or more predic-
tors are accounting for the same variance in the response variable, and if for no other reason than
parsimony (e.g., Ockham’s razor), having two highly correlated predictors in a multiple regression
is not in any way ideal. The usual course of action is to simply delete one of them, being sure to retain
the one that is most substantively meaningful.

Centering predictors before producing product terms can also sometimes aid in reducing collin-
earity. For details on this issue, see Aiken and West (1991). Jaccard and Turrisi (2003) should also be
consulted. It should be noted however that not all researchers and statisticians recommend centering in
all cases. For a more in-depth and critical discussion of centering that distinguishes between nones-
sential versus essential collinearity, consult Dalal and Zickar (2011). Iacobucci et al. (2016) also pro-
vide a critical appraisal and should be consulted.

9.10 MULTILEVEL REGRESSION: ANOTHER SPECIAL CASE
OF THE MIXED MODEL

Recall our discussion from Chapter 5 in which we introduced the multilevel model as a special case of
the mixed model. There we discussed these models in the context of ANOVA-type models. In a regres-
sion style model, we could likewise test a model in which α is random but β is fixed. What this implies
is that α terms now vary and have a probability distribution associated with them. We could also test a
model in which slope β is random, while intercepts α are fixed. Or, we could test a model in which both
intercepts and slopes are random. Allowing these parameters to be random is especially relevant in a
multilevel context where a clustering effect is apparent. For example, consider Figure 9.3 reproduced
from Demidenko (2004) where the relationship between sales and price is considered.
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FIGURE 9.3 Relationship between sales and price using OLS (a) versus mixed modeling via cluster commodity
(b). Source: Demidenko (2004). Reproduced with permission from John Wiley & Sons, Inc.
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In the classical least-squares regression fit to these data (Figure 9.3a), the relationship between sales
and price is negative. However, when type of commodity is taken into account, where each commodity
represents a “cluster,” we get a very different conclusion (Figure 9.3b). Of course, the clustering effect
alone does not absolutely necessitate using a mixed modeling approach. A lesser analysis would have
one fitting a different least-squares line to each commodity and keeping effects fixed. However, for
clustered data, especially in situations where designating terms as randommakes good sense, the mixed
modeling approach is usually the preferred choice, and has numerous advantages such as facilities for
dealing with missing data and more sophisticated estimation algorithms. Linear mixed models are
well suited for taking into account dependencies in data, whether those dependencies arise from a clus-
tering or other nesting effect.

9.11 CHAPTER SUMMARY AND HIGHLIGHTS

• Interaction effects can be tested in multiple regression by generating product terms between
predictors.

• Simple slopes in multiple regression are analogous to simple effects in the analysis of variance.
Both are effects conditional upon the value of another predictor (independent variable).

• The additive model is one in which there is no interaction term specified. The nonadditive
model is one in which a product term is specified.

• Analogous to cell effects in ANOVA, a cell effect for a product term, conceptually, can be con-
sidered to be the joint occurrence of a score on each variable making up the product term. For
continuous data, there are theoretically an infinite number of “cells” that are contained in the prod-
uct term. This is a powerful way to conceptualize product terms in regression.

• Moderators may be dichotomous, polytomous, or continuous.

• The interpretation of “main effect” coefficients in a model containing a product term is not anal-
ogous to the interpretation of coefficients in a model not containing product terms. When a prod-
uct term is present, the effect of one variable is implicitly evaluated at a value of 0 on the other
variable. That is, main effects are interpreted as simple slopeswhere the value of the moderator is
equal to 0.

• Mean-centering predictors can aid in interpretability and can also help in some cases to reduce
collinearity between the predictor and the product term.

REVIEW EXERCISES

9.1. Discuss the similarities and differences between hypothesizing an interaction in ANOVA
versus hypothesizing one in a regression context.

9.2. Conceive a substantive example where a moderation analysis in regression would be useful.

9.3. Referring to the following model, discuss how you would parameterize zi differently for a
continuous moderator than for a dichotomous or polytomous one:

yi = α + β1xi + β2zi + β3xizi + εi

9.4. Consider an example where the slope of yi on xi is not linear across levels of the moderator zi.
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9.5. Discuss and explore the issue of whether or not moderators actually “moderate” anything. What
are some of the philosophical pitfalls to using such words as “moderation” in the context of
what are otherwise interactions?

9.6. Explain how coefficients in a nonadditive model should be interpreted differently than
coefficients in an additive one.

9.7. Discuss the purpose of mean-centering predictors in a regression model.

9.8. Consider the following data where we wish to hypothesize that raise is a function of learning and
privileges. Test the model lm(raises ~ learning∗privileges) and provide a full
summary of its findings, especially that of interpreting the product term generated by crossing
two continuous variables.

> attach(attitude)
> attitude

rating complaints privileges learning raises critical advance
1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 47
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6 43 55 49 44 54 49 34
7 58 67 42 56 66 68 35
8 71 75 50 55 70 66 41
9 72 82 72 67 71 83 31
10 67 61 45 47 62 80 41
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10
LOGISTIC REGRESSION AND THE
GENERALIZED LINEAR MODEL

Linear models customarily embody both systematic and random (error) components, with the errors usually
assumed to have normal distributions. The associated analytic technique is least-squares theory … Tech-
niques developed for non-normal data include probit analysis, where a binomial variate has a parameter
related to an assumed underlying tolerance distribution, and contingency tables, where the distribution
is multinomial and the systematic part of the model usually multiplicative. In both these examples there
is a linear aspect to the model.

(Nelder and Wedderburn,1972, p. 370)

The class of models surveyed up to this point in the book have generally been of two types, analysis of
variance models (e.g., fixed effects, random effects, and mixed models), and linear regression models
(e.g., simple linear regression and multiple linear regression). In all cases, we have made many model
assumptions (such as normality and independence of errors), but none more relevant to least-squares
than assuming the relationship between the response variable and the explanatory variables is linear in
form. That is, up to now, we have assumed linearity in the parameters. For instance, recall the mul-
tiple regression model of Chapter 8:

yi = α + β1x1 + β2x2 + + βkxk + εi

in which there were k predictors. Recall that the constants α and β1 through βk represented the intercept
and partial regression parameters, to be estimated from sample data, and εi was the random error
associated with each prediction of yi. When we say we are making the assumption of linearity in
the parameters, what we mean is that the exponent on each estimated parameter α, β1, etc., is under-
stood or implied to be equal to 1. This is what defines the model as linear. The model

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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yi = α + β1x1 + β2x
2
2 + εi

is also linear in the parameters since parameters in the model are still raised to the exponent 1. Simply
because β2x

2
2 contains the term x22 does not in itself make the model nonlinear. What would make the

model nonlinear is if β2 were squared, for instance, as in

yi = α + β1x1 + β22x2 + εi (10.1)

The model in (10.1) is properly considered nonlinear because it is nonlinear in the parameter β2.
Up to now in the book, we have yet to consider models of the type in (10.1) where parameters are

raised to any other exponent than 1. Indeed, there is a good reason for our emphasis on linear models.
The general linear model is easily the most popular and relevant of models in statistical analysis,
and many scientific phenomena can be modeled relatively precisely under the assumption of
linearity.

There are times, however, when linear models are definitely not appropriate. Such situations
include, but are not exclusive to, circumstances where a nonlinear relationship between the response
variable and predictor variable is hypothesized or expected. Nonlinear relationships might be hypothe-
sized for at least a couple reasons:

• The actual empirical relationship between the response and predictor variable is thought to be
nonlinear in form. For example, the classic Yerkes and Dodson (1908)1 inverted U curve (i.e.,
inverted parabola) is one famous example of a nonlinear relationship, specifically the relationship
between performance and arousal.

• The empirical relationship between the response and predictor variable is nonlinear as a result of
how the response variable is operationalized or defined. Recall that one assumption for linear
models is that the response variable is conditionally normally distributed with independent errors.
To have any chance of satisfying this assumption, an essential requirement is that the response
variable be, at least in a practical sense, continuous. If the response variable is not measured
on a continuous scale, then assuming normality can become quite difficult or even impossible.
For instance, if the response variable is a Bernoulli variable (i.e., a binary-coded variable), then
it is impossible to assume it to be normally distributed. In situations such as this, where the
response is binary or even multinomial, the relationship between the response and predictor var-
iable is generally poorly described by linearity by simply a consequence of how the response var-
iable is defined and measured. “Pass versus fail” is, by nature, a binary response, as is “survive
versus perish.” In data where nonlinearity is clearly present because of how the response variable
is operationalized, we may require a model other than the linear model to fit to such data.

A useful distinction tomakewhen referring to nonlinearmodels, in general, is that betweenmodels that
are intrinsically linearversus those that arenot (seeNeteretal., 1996,pp.534–535).Nonlinearmodels that
canbe linearized througha transformation are usually considered tobe intrinsically linear. For instance, the
exponential response function is considered tobe an intrinsically linearmodel since ifwe take the logof the
functionweget a linear function.However, asNeter et al. (1996) note, that a nonlinear response function is
intrinsically lineardoesnotnecessarilymean that linear regression is still suitable, sinceevenafter the trans-
formation, the linearization may generate an error term that is not normally distributed with constant
variance, which recall, is an assumption required of least-squares estimation.

1An on-line version can be accessed on Classics in the History of Psychology website: http://psychclassics.yorku.ca/
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In this chapter, we treat models such as the logistic and Poissonmodels as special cases of general-
ized linear models, where generalized linear models may in turn be considered special cases of the
wider nonlinear framework. However, we do not treat nonlinear estimation in any detail such as that
provided by functions as nls (nonlinear least squares) in R. Such a topic is beyond the scope of this
book. For details on how to estimate nonlinear models in R, see Crawley (2013, Chapter 20).

We begin the chapter with a brief general discussion of nonlinear and generalized linear models,
then spend the rest of the chapter discussing one very specific and popular case of a nonlinear model,
that of logistic regression. To understand logistic regression, one first requires a familiarity with expo-
nential and logarithmic functions. These concepts are also reviewed.

The classic resource for generalized linear models is that of McCullagh and Nelder (1989). Fox
(2008b, Chapter 15) is also an excellent and readable overview.

10.1 NONLINEAR MODELS

A general form for nonlinear regression models can be given by:

y = Xγ + εi (10.2)

where y denotes a vector of observations, X is the model matrix, γ is the parameter vector, and εi is the
error associated with each observation in y, typically assumed to be independent and normally distrib-
uted (Neter et al., 1996). Note that the model in (10.2) is identical to the classic regression model of
(7.7) of Chapter 7, y = Xβ + ε, only that now we are replacing β with γ to denote the nonlinearity. In
(10.2), we are simply using a different symbol to represent a different model (i.e., one that is nonlinear).
Otherwise, the two model statements are quite similar.

One common nonlinear model is the exponential regression model given by:

y = γ0 exp γ1xi + εi

where γ0 and γ1 are parameters, xi are fixed values for the explanatory variable, and εi are independent
normally distributed errors. Analogous to linear regression in which the least-squares criterion assured
us of the minimization of the sum of squared errors,

n

i = 1

ε2i =
n

i = 1

yi − α + βxi
2

likewise, in nonlinear regression, we seek to minimize the sum of squared errors (Neter et al., 1996)

n

i = 1

ε2i =
n

i = 1

yi − γ0 exp γ1xi
2

As another example of a nonlinear model, consider a hypothetical relationship between hours of ther-
apy and number of suicide attempts in Figure 10.1. We can see that the relationship between suicide
attempts and hours of therapy is nonlinear. As hours of therapy increase, the number of suicide attempts
decreases.
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10.2 GENERALIZED LINEAR MODELS

An important class of models was proposed by Nelder and Wedderburn (1972) to incorporate not only
the classic linear model but also situations where nonlinearity is present. As we have already noted and
will see further, the general linear model can be considered a special case of the wider class of general-
ized linear models, which includes models that allow for noncontinuous, binary and multinomial
responses, as well as responses which are in the form of counts. Generalized linear models utilize
what is known as a link function to essentially transform what is a nonlinear model into one that
is linear.

For example, the logistic regression model, the topic of most of this chapter, is a nonlinear model.
However, through the appropriate link function that transforms the nonlinear response into one that is
linear, we are able to interpret the model almost analogous to how we would interpret a “naturally
occurring” linear model. Of course, there will be exceptions and specific details about the transforma-
tion that we will need to tend to, but the essence of the generalized linear model is basically tomake a
nonlinear model linear through the relevant link function. This is done for the purpose of aiding
the statistical analysis and facilitating the interpretation of estimated coefficients. For instance, in the
case of a binary response coded 0 and 1, not only will the relevant link function linearly transform the
response variable, but it will also free up the range on the response variable so that it can assume values
beyond simply 0 and 1. In fact, as we will see, the appropriate link function for the binary response will
transform the variable into one that is continuous with a range −∞ to +∞, that is, the entire range of the
real line. As noted by Fox (2016):

Beyond the desire to select a link function that renders the regression of Y on the X’s linear, a promising link
will remove restrictions on the range of the expected response … This is not to say that the choice of link
function is entirely determined by the range of the response variable, just that the link should behave rea-
sonably in relation to the range of the response. (p. 420)

Depending on how the response variable is defined (e.g., binary, multinomial, and count), there is a
specific link function appropriate to the given form. This specific link function is generally known as
the natural link function for the given family of distributions (e.g., Gaussian, Binomial, Poisson) and
is often referred to as the canonical link function for the given family.
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FIGURE 10.1 Hypothetical nonlinear relationship between suicide attempts and hours of therapy.
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We now survey the logic and conceptualization of the generalized linear model more closely and
develop the concepts of linear predictors and link functions more in depth. This will pave our way to a
consideration of a popular generalized linear model featured in this chapter, the logistic model.

10.2.1 The Logic of the Generalized Linear Model: How the Link Function Transforms
Nonlinear Response Variables

The regression model yi = α + βxi + εi surveyed up to now can be said to have two “parts” or “compo-
nents” to it. These components are as follows:

• A systematic component, equal to α + βxi. It is called a systematic component because this is the
predictive part of the model. It is the part for which so long as we estimate α and β intelligently
(i.e., via a good estimation procedure such as ordinary least-squares), we can make a good
prediction of yi, while on average, keeping the sum of squared error of prediction to a minimum.
In developing the generalized linear model, it is helpful if we identify α + βxi as a linear predic-
tor, denoted simply by ηi. That is, ηi = α + βxi.

• A random or stochastic component, equal to εi. This is the part of the model that is unpredict-
able. It represents random variation around our predicted values. When this variation is operating,
it will contribute to our prediction of yi in a random fashion, unlike the linear predictor ηi, which
contributes to the prediction of yi in a very systematic way.

Now, here is how generalized linear models are similar to yet different from the simple linear regres-
sion model. In a generalized linear model, the response variable yi is not a natural linear function. That
is, its expected value E(yi) is usually equal to something that has nothing to do with linearity at all.
A classic case again is that of the binary response variable. So the question becomes: How can we
adjust the left-hand side of the regression equation, yi, so that it corresponds, in some sense,
to the right-hand side?

We accomplish this through what is known as a link function, which is nothing more than a trans-
formation of the nonlinear response variable into a variable that is linear. Thus, in the generalized
linear model, in addition to the above two components (systematic and random parts), we add a third
component:

• A link function between the random component yi and systematic component α + βxi. The linear
predictor, α + βxi, is a function of the expectation of the parameter μwe are modeling (e.g., expec-
tation of a binary variable) via a link function. This new link function we will denote as g(x). What
is g a function of? It is a function of μi, so the link function proper is given by g(μi) (Fox,
2016, p. 421).

We return to the binomial setting in clarifying the above. What is the expectation of a binomially
distributed variable? Recall that a Bernoulli variable has values 0 and 1 and has an expectation equal to
p, the probability of success for any given trial. For example, on the flip of a fair coin, p is equal to 0.5,
and μ in this case is equal to p. But, of course, it is best to not model p using a linear model. Any
variable that can assume only two values is almost at best “artificially linear.” What we need to do
is alter p so that it resembles something more realistically linear. We can do this by transforming
p through a well-chosen link function. The link function of choice for a binomial setting is the log
of the odds. The log of the odds is defined as:

log e
p

1− p
(10.3)
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What (10.3) means is that if we take what is a nonlinear expectation of p, compute the odds on p,
then transform the odds into the natural log of the odds (i.e., to base e), we will have effectively lin-
earized an otherwise binary variable. Now, as a result of this transformation, we can treat the model as a
linear model. When we compute the log of the odds, we get a value that can range not from 0 to 1 as
was the case for the Bernoulli variable, but rather from −∞ to +∞. This is what generalized linear
models do, they transform the expectation of a nonlinear-occurring variable into one that is
linear.

A quick review of what we have discussed thus far, as it pertains to the binary response:

• Our response variable is a binary variable with values 0 and 1. It is usually unreasonable to con-
sider this variable linearly, since the only two options one could obtain on the variable are 0 or 1.

• The expectation of the random variable is p, which is the probability of a success (we are denoting
a success by “1”). What we would like to do is transform this expectation into something that is
linear in form.

• By using the link function log e
p

1− p , this will effectively transform the original expectation of

our binary variable into a variable that is a linear predictor. Notice that to do this we had to first
take the odds, p

1− p, but the essential point is that through this link function, we have basically lin-

earized an otherwise essentially nonlinear variable.

Having only thus far spoken about the generalized linear model with respect to a binary response,
you might think at this point that the generalized linear model is specific to binary-occurring variables.
This is not the case. The true contribution of Nelder and Wedderburn (1972) was in summarizing a
framework that could handle not only binary variables, but a whole host of other response variables
as well, all through their respective link functions. The binary case, which we will use in our devel-
opment of the logistic model, is but one possibility. Had our response variable not represented a binary
situation, but rather a distribution of counts, then a Poisson distributionwith link function equal to the
log of the counts, rather than the odds, may have been more appropriate.

10.3 CANONICAL LINKS

The canonical link is the link function that is natural to the family of distributions. For instance, draw-
ing again on our discussion of the binary response variable, we said that the link function for a binomial
variable is the log of the odds, which we will come to name the logit. We also said that for a Poisson
variable, the appropriate link function is the log. In addition to the binomial and Poisson families, there
are many other families of distributions, all with respective link functions.

It should be no surprise then that the general form relating the link function g( ) to the linear pre-
dictor, ηi, can be written as:

g μi = ηi = α + β1x1 + β2x2 + + βkxk (10.4)

where,

• g( μi) is the new function g( ) of the original expectation μi of the response variable. To emphasize
that μi is an expectation, we can write it instead as E(yi); that is, g[E(yi)].

• ηi is the symbol for the linear predictor.
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• α + β1x1 + β2x2 + + βkxk is simply the systematic portion of (10.4), analogous to what we would
have in an ordinary regression with k predictors.

Notice in (10.4) how g( ) serves as the “bridge” or “link” between the right-hand side and the left-
hand side of the equation. This is how you can think of it as being the link function, in that it provides a
kind of way for both sides of the equation to “communicate” with each other through a “translator,”
which is the link function appropriate to the modeling context.

10.3.1 Canonical Link for Gaussian Variable

If the generalized linear model framework is as “generalized” as it sounds, then we should be able to fit
our previously studied regression models into this framework. What is the canonical link for the family
of distributions having a normal (Gaussian) distribution? That is, what link did we impose on an ordi-
nary regression model? The answer is, of course, that we did not directly impose any link at all. The
expectation for the response variable, E(yi), was already linear. It did not require any transforma-
tion to make it linear (Agresti, 2002, p. 117). However, to say that it did not require any transformation
would not be as general as we would like. For the sake of the generalized linear model framework, we
still want to specify what being “untransformed” looks like. For the Gaussian family, the correct
canonical link is the identity function. This is simply the function f(x) = x. What the function means
is what you put in, you get out. No transformation takes place. That is, g(μi) = μ, which is known as
the identity link.

10.4 DISTRIBUTIONS AND GENERALIZED LINEAR MODELS

Wewill spend the vast majority of this chapter discussing the logistic regression model at some length,
but before we do so, it is useful to briefly survey a few of the more common distributions featured in
generalized linear models. We also briefly survey the concept of a dispersion parameter along with
that of deviance.

10.4.1 Logistic Models

The logistic regression model, useful for modeling binomial data, is given by

p =
1

1 + e − α + βxi
=

e α + βxi

1 + e α + βxi
(10.5)

where we can also write the numerator, e α + βxi in (10.5) as:

e α + βxi =
p

1− p

To “deexponentiate” α + βxi, we take the log, which gives us

α + βxi = log e
p

1 − p
(10.6)

where the right-hand side of (10.6) is the log of the odds. When we plot such a function, we obtain the
curve in Figure 10.2 (curve(pnorm(x), -5, 5).
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The shape of the resulting curve is the well-known sigmoid function. Since its shape is nonlinear, it
makes fitting a least-squares regression line to such data typically inappropriate.

10.4.2 Poisson Models

The Poisson distribution (Poisson, 1837) is given by

p yi, μ =
e − μμyi

y

where μ is the mean, often referred to in the Poisson distribution as the rate parameter and y ! = y(y −
1)(y − 2)…2 1. The Poisson distribution is useful for modeling count data that occur over a given
period of time or space. Whereas the appropriate link for the logistic model is that of the logged odds,
the appropriate link for the Poisson model is the log (Fox, 2016, p. 421).

One feature that is worth noting regarding the Poisson distribution is that the expectations of both its

mean and variance are both equal to the mean, μ. That is, E(yi) = μ and E σ2y = μ. As μ gets larger, the

Poisson distribution approximates that of a normal distribution (Fox, 2016). Just as the normal density
was the limiting form of the binomial, so it is also the case that the normal is the limiting form of a
Poisson variable. Further, when n is relatively large and p relatively small, the Poisson distribution
is approximated by the binomial. Densities for Poisson distributions can be easily obtained using
dpois in R. See Teetor (2011, p. 187) for details.

10.5 DISPERSION PARAMETERS AND DEVIANCE

A dispersion parameter is simply an index indicating a measure of spread in a distribution. For
instance, in the normal distribution, N(μ, σ2), the dispersion parameter is that of the variance, σ2

(Fox, 2002, p. 232). Denoting the dispersion parameter more generally as ϕ, we can express the dis-
persion parameter of the normal distribution as ϕ = σ2. For the Poisson distribution, recall E(yi) = μ and
E σ2y = μ. The dispersion parameter for Poisson distributions is fixed at a value of 1 (i.e., ϕ = 1).
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FIGURE 10.2 Logistic “sigmoid” function.
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Overdispersion is exactly as the name suggests—the variance of a distribution is larger than some
value we would expect or prefer under some idealized circumstance. To explain how dispersion para-
meters come about, we refer once more to the binomial distribution. Recall that the mean of a binomial
distribution is given by E(yi) = npwith variance equal to npq, which we can also write as np(1 − p) since
q = (1 − p). Overdispersion, in this case, is said to exist if the computed variance on a sample of data
exceeds np(1 − p). To measure overdispersion, we can write the variance of yi as:

σ2y = ϕnp 1− p

where ϕ is an unknown dispersion, or scale parameter. Dispersion parameters may be known, but
most often are estimated. Dean and Lundy (2016) provide an excellent summary of overdispersion in
generalized linear models.

If the dispersion assumption is satisfactory, residual deviance should be approximately equal to
residual degrees of freedom for the model (Fox, 2016, p. 431), though as noted by Venables and
Ripley (2002), this indicator is based on asymptotic theory, hence only being truly accurate for rela-
tively large n. As they note:

A common way to ‘discover’ over- or under-dispersion is to notice that the residual deviance is appreciably
different from the residual degrees of freedom, since in the usual theory the expected value of the residual
deviance should equal the degrees of freedom. This can be seriously misleading. The theory is asymptotic,
and only applies for large nipi for a binomial and for large μi for a Poisson. (Venables and Ripley,
2002, p. 208)

Still, one general (and convenient) guideline for detecting overdispersion is a deviance that is at least
twice as large as the number of degrees of freedom (Lindsey, 1999). We demonstrate later in an exam-
ple using software how to compare the deviance statistic to degrees of freedom as a means for at least
tentatively assessing overdispersion in a model.

The deviance of a model, first briefly mentioned in Chapter 5, is a measure used to estimate how
different a given model is from the saturated model for some data (Everitt, 2002). It is defined as:

D = − 2 lnLModel − ln LSaturated (10.7)

where LModel is the likelihood of the hypothesized model and LSaturated is the likelihood under the sat-
urated model. A saturatedmodel is one in which degrees of freedom are equal to 0. Hence, the extent
to which LModel − LSaturated in (10.7) is large is indicative of a poor-fittingmodel. Conversely, the extent
to which LModel − LSaturated is small is suggestive of a well-fitting model. Thus, smaller values of D are
preferable to larger ones. This is somewhat intuitive, in that if I told you a model had a high deviance, it
would suggest it differs to a great extent from the “ideal” in this case, which is the saturated model, the
model with the best fit.

10.6 LOGISTIC REGRESSION

10.6.1 A Generalized Linear Model for Binary Responses

Thus far, we have introduced the idea of nonlinear models and then the general class of models known
as generalized linear models. We have said that these models can accommodate a variety of responses
arising from a variety of families, including Gaussian, binomial, Poisson, etc. We now focus on and
develop some of the theory behind a very popular model arising from the binomial family, that of the
logistic regression model. We focus on this model for good reason. The model is quite popular in the
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social, biomedical, and natural sciences, because many times we wish to predict responses that intrin-
sically have a binary structure. Examples where a response is naturally binary include the following:

• Predicting survival versus death in a long-term medical trial for treating a disease.

• Predicting passing versus failure in an educational environment.

• Predicting marriage versus divorce in romantic relationships.

In logistic regression, just as we did for linear least-squares regression, we seek to find predictors,
continuous, categorical, or both, that will successfully account for variance in a response variable. That
is, we would like to model important predictors that help explain variance in survival versus death,
passing versus failure, and marriage versus divorce. Does method of medical treatment explain vari-
ance in the binary variable of survival versus death? Does amount of study time predict whether a stu-
dent will pass or fail a course? Does quality of communication predict whether couples remain married
or divorced? The fundamental questions posed in a logistic regression parallel those asked of “ordi-
nary” linear models. The only real distinction is in how these models are parameterized.

Logistic regression is a relatively popular technique for predicting group membership and is prob-
ably used more than its competitor, discriminant analysis (see Chapter 12). One reason for this is that
discriminant analysis requires the assumption of normality. Logistic regression does not require this
assumption, though it does make the assumption of linearity in the logit, which can be tested using
the Box–Tidwell test (Hosmer and Lemeshow, 2000). One can also simply plot the sample logits
against the predictor (e.g., in the one-predictor case) to obtain informal evidence that the assumption
is satisfied (Agresti, 2002). Under some circumstances, discriminant analysis has been found to be
more effective than logistic regression (Efron, 1975). For a general comparison of logistic regression
to discriminant analysis, see Press and Wilson (1978) or Hastie et al. (2009). For a comparison of the
classification errors made in each procedure, Lei and Koehly (2003) is a helpful read.

10.6.2 Model for Single Predictor

The logistic regression model for the one-predictor case is that given earlier in (10.5):

p =
1

1 + e − α + βxi
=

e α + βxi

1 + e α + βxi

where p is a probability with a possible range of 0 to 1, α + βxi is, in the language of the generalized
linear model, the linear predictor, e is a constant equal to approximately 2.718 and e α + βxi is the
exponentiated logit, known also as the odds. We spendmuch of this chapter discussing the components
of (10.5), so by the time this chapter is complete, they will be quite familiar.

When we take the natural log of the odds, that is, the log to base e, or ln (pronounced “lawn”), we
obtain the logit:

ln
p

1 − p
= α + βxi

To better understand the relationship between odds, logarithms, and logits, a review of exponential and
logarithmic functions is in order.
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10.7 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

You undoubtedly noticed that in the equations for the logistic distribution, and others for that matter,
“e” appears repeatedly. But what is e? It is the exponential function. For a reasonable understanding of
how logistic regression works, one must be at least somewhat familiar with two common functions in
mathematics, the exponential function e and its inverse, the logarithmic function. An understanding of
these functions is necessary for an understanding of what odds, odds ratios, and logits are all about,
and how probabilities are generated in the logistic distribution.

To begin, recall from elementary mathematics (see Appendix) what constitutes a simple linear
function:

f x = a + bx

where a is the intercept and b is the slope parameter. We define an exponential function to base b as:

f x = bx

where b appears in the base and x appears in the exponent of the function. Consider a graph of the
exponential function f(x) = 2x in Figure 10.3.

Notice that the curve increases at a faster rate for increasing values of x. This is what the expression
exponential growth means in the context of an investment that promises to grow your money expo-
nentially, or likewise some bacteria that are known to grow exponentially in biology. The more bacteria
present, the more new bacteria are generated, analogous to how rolling over earnings from an invest-
ment can likewise help grow one’s money at a faster rate. The opposite of exponential growth is that of
exponential decay. As a recent example, recall the COVID-19 outbreak. When it was said the rate of
diagnoses was growing “exponentially,” it implied it was growing at an increasingly greater rate.

A few of the more common properties of exponents include the following:
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FIGURE 10.3 Example of a simple exponential function.
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• b− x = 1
bx (the base raised to a negative exponent is equal to 1 divided by the base raised to that

exponent).

• xn xm = xn +m (the product of two bases raised to different exponents is equal to the base raised to
the sum of those exponents).

• When the base b is greater than 1, b > 1, the function will rise, called exponential growth. When
the base is smaller than 1, but still greater than 0, 0 < b < 1, the function will decrease, the so-called
exponential decay (Figure 10.4) alluded to earlier. Notice that for b > 1, the function gets steeper
as the base gets larger. For 0 < b < 1, the function gets flatter as the base gets larger.

Aside from the linear function, the exponential and its inverse (the log) are two of the most popular
functions for modeling change. For example, world population growth since 1800 (perhaps even ear-
lier) follows an approximate exponential growth curve (Barnett, Ziegler, and Byleen, 2011). Invest-
ment growth at compound interest, radioactive decay, and animal learning trials in psychology are
other examples. Exponential functions are also quite popular in physical applications as well (see
Labarre, 1961, p. 425 for an example).

Some further characteristics regarding the exponential are worth noting. When the exponent x in
f(x) = bx is negative, that is, f(x) = b−x, then, as already mentioned, f x = 1

bx, and the curve reverses
direction. For instance, compare the graphs of f(x) = 2x and f(x) = 2−x (Figure 10.5).
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FIGURE 10.4 Exponential functions with increasing base b > 1 (a) and 0 < b < 1 (b).
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10.7.1 Logarithms

The logarithm of a number to a given base is the exponent to which the base must be raised in order to
produce the number. For instance, consider a logarithm to base 10:

log 10100 = 2

The above reads that the base 10 raised to 2 equals 100, that is, 102 = 100. We can choose a variety of
bases for logarithms. As another example, consider the following log:

log 28 = 3, that is, 23 = 8

The above reads that 2 to the exponent 3 equals 8. Graphically, logarithmic curves take on a quickly
rising then plateau shape (Figure 10.6) of diminishing returns.

We see then that the log of a number is actually an exponent. We can generalize this to say that
y = logbx if and only if x = by (Barnett et al., 2011, p. 108). We can say more generally that logbx
is the index to which b must be raised in order to get x. Logarithms to base 10 are called common
logarithms and logarithms to base e are called natural logarithms, designated by the symbol “ln.”

As shown in Figure 10.5, the curve for bx increases rather dramatically. The opposite of the expo-
nential function (the log) is one in which growth is substantial at the beginning, but then levels off at
higher levels, as evidenced in Figure 10.6. For example, it is quite common for sedentary and over-
weight individuals to achieve great muscle gain and simultaneous weight loss during the first few
months of an exercise program, only for progress to level off after many months. When this happens,
the individual is nearing the height of the log function, since they are achieving much less weight loss
for the same amount of unit-increase on x, where xmay be quantified in terms of effort, amount of daily
exercise, measured calorie deficit, and so on. That is, the rate of return is not what it was earlier in the
diet or fitness program, and a new program must be implemented to achieve the same degree of prog-
ress. In psychology, the logarithm function is useful in describing such processes as habituation to
stimuli. The new car you purchased today with all those fancy features is guaranteed to give you a
happy feeling the first little while that you own the car, until, even in a relatively short period after

5

4

3

3

2

2–3 –2 –1

1

1

0

0

FIGURE 10.5 Graph of f(x) = 2x (solid line) and f(x) = 2−x (dotted line).
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the purchase, the car no longer arouses the same emotion (and a new competing emotion is aroused
when regardless of your decreased excitement over the car, you are still having to make car payments).
Stimuli often excite initially, but wear off over time, which is one of the most fundamental processes of
learning in psychology. Marketing psychology exploits this principle in “hooking” us into purchases.
Habituation is a fundamental psychological law. A logarithm function captures such processes very
well. Indeed, with the COVID-19 outbreak in 2020, a logarithmic curve which would denote a “flat-
tening” of new cases and transmissions was of course highly desired in the management of the virus.

10.7.2 The Natural Logarithm

Recall that the natural logarithm, denoted ln(x) and pronounced “lawn of x,” is the logarithm for which
the base b is equal to e, and equal to approximately 2.718281828459045. This is only an approximate
number, since e is an irrational number (it is also transcendental), meaning that it cannot be written as
the quotient of two integers a and b, a/b, where b 0. Recall that if a number can be written as the
quotient of two integers, then it is a rational number, and has a finite or recurring (i.e., periodic) dec-
imal expansion.

The number e can be approximated in several ways. For example, it can be defined as the limit of the
sequence 1 + 1

n
n
. That is,

e = lim
n ∞

1 +
1
n

n

which means that as n gets larger and larger and grows without bound, we get a better and better
approximation for e. For example, consider the following approximations that get us closer and closer
to the actual limiting value of e:

e = lim
n 1

1 +
1
1

1

e = lim
n 2

1 +
1
2

2

e = lim
n 100

1 +
1
100

100

e = lim
n 1000

1 +
1

1000

1000

= 2 = 2 25 = 2 70 = 2 7169
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FIGURE 10.6 Graph of y = log2(x). Note the steep rise then plateau.
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Notice that as n increases in cases from left to right, the limiting value of e gets closer and closer to
2.718 ….

10.8 ODDS AND THE LOGIT

Recall that in our discussion of the logistic function we had defined the ratio p to 1 − p as e α + βxi . The
ratio p to 1 − p is the odds in favor of an event with probability p. For example, suppose the probability
of event A was equal to 0.70 and the probability of event B was equal to 0.30. The odds in favor of
event A to event B are computed as

p

1 − p
=

0 70
1− 0 70

=
0 70
0 30

= 2 33

That is, the odds in favor of A to B are 2.33 to 1. If the “1” is not mentioned explicitly in the statement
about odds, then it is implied. So, if we say the odds of horse Charlie winning the race compared to
horse Homestretch are 2.33 to 1, this implies that the probability that horse Charlie wins is 0.70 com-
pared to a probability of only 0.30 that horse Homestretch will win. Suppose the odds of Charlie losing
to Homestretch are 10 to 1. Then this implies there to be a 10/11 = 0.91 probability that horse Charlie
loses, and a 1 − 0.91 = 0.09 probability that horse Charlie wins.

The odds are zero or undefined when either p = 0 or p = 1, since
p

1 − p
=

0
1 − 0

= 0 and

p

1− p
=

1
1 − 1

=
1
0
, respectively. Recall that 1

0 is not equal to 0. Rather, it is undefined (some might

say the odds approach infinity in this case). The reason why
1
0
is undefined is because there is no number

x such that 0 x = 1. Contrast this situation to, say, the fraction 2
4. Since there exists a number 2 such that

2 2 = 4, 24 is not undefined.

As mentioned previously, the natural logarithm of the odds, that of log e
p

1 − p
, or ln

p

1− p
, is

called the logit. If we are given only the probability p of an event, it is a simple matter to obtain the logit.

We can simply transform p into the odds
p

1− p
, then take the natural log. For example, suppose we find

the probability of an event to be equal to p = 0.98. This means that the odds are equal to
0 98

1− 0 98
=

0 98
0 02

= 49. The logit is thus, ln(49) = 3.89. Conversely, given the logit, we can easily

get the odds by simply exponentiating the logit:

p

1 − p
= e ln

p
1 − p

For our example in which ln(49) = 3.89, the odds are therefore equal to eln(49). Of course, given the
odds, we can easily also transform back to probabilities through generating a ratio of the odds (i.e., the
exponentiated logit):

p =
e ln

p
1 − p

1 + e ln
p

1 − p
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10.9 PUTTING IT ALL TOGETHER: LOGISTIC REGRESSION

10.9.1 The Logistic Regression Model

Having reviewed concepts of exponential functions, logarithms, natural logs, odds, and probabilities,
we are now ready to put all of these ingredients together to better understand the logistic regression
model introduced earlier in (10.5):

p =
1

1 + e − α + βxi
=

e α + βxi

1 + e α + βxi

The formulation of the logistic model should nowmake good sense to you. Having reviewed how prob-
abilities can be converted to odds, we see that e α + βxi in (10.5), the exponentiated logit, is nothing
more than the odds, where α + βxi is, in the language of the generalized linear model, the linear pre-
dictor. Let us now put all of these concepts together.

Where in a least-squares regression we obtained raw regression coefficients that we could interpret
as the expected change in the response variable for a one-unit change in the explanatory variable,
we will analogously be able to interpret the logit, only now, the linear predictor is not in any kind of
“natural” units like it was in least-squares regression where no transformation was required. In the
logistic model, the unit for the linear predictor is that of the log of the odds (i.e., logit). Hence, the
interpretation for a given predictor variable will be the expected change in the logit of the response
variable for a one-unit change in the explanatory variable. Notice that all that has changed, in this
sense, going from OLS to the logistic model, is the scale of the units on which the response variable is
interpreted. In least-squares, we did not have to transform the response variable, since the canonical
link was that of the identity function, which amounted to no transformation at all. In logistic regression,
we must perform a transformation in order to linearize the odds. However, once the transformation is
complete, the interpretation of the coefficient associated with each predictor in the model will be essen-
tially analogous in logistic regression as it was in a least-squares problem. The units on the response
variable have simply changed.

10.9.2 Interpreting the Logit: A Survey of Logistic Regression Output

We survey some hypothetical small-scale data to demonstrate the interpretation of a logit in typical
logistic regression output. Recall the Q–V data from Chapter 7 in which quantitative and verbal scores
were obtained on nine subjects (Table 10.1). We adapt the data to include a training group variable

TABLE 10.1 Hypothetical Data on Quantitative and Verbal Ability for Those
Receiving Training (Group = 1) Versus Those Not Receiving Training (Group = 0)

Subject Quantitative Verbal Training Group

1 5 2 0
2 2 1 0
3 6 3 0
4 9 7 0
5 8 9 0
6 7 8 1
7 9 8 1
8 10 10 1
9 10 9 1
10 9 8 1
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(coded 0, 1) corresponding to whether subjects received or did not receive a prior training program
designed to improve their quantitative and verbal abilities (we also add an observation to make the
data balanced, meaning equal numbers of subjects in each training group). For this analysis, we
use only the quantitative scores in predicting group membership.

Our research question of interest is: Can quantitative ability be used to predict group member-
ship? We run the analysis in R:

> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10, 9)
> group <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
> logistic <- glm(group ~ Q, family = binomial())

R will generate much more output than given below, and we will survey the full logistic output in
our analysis of the Challenger data shortly. For now, we wish to only focus on the estimated coeffi-
cient for q to demonstrate its interpretation, and compare it to that of OLS regression:

> summary(logistic)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.6466 5.2058 -1.469 0.142
q 0.9666 0.6220 1.554 0.120

Note that the coefficient for q is equal to 0.97 (we rounded up). It is not statistically significant,
though that need not concern us here. We are interested now only in understanding the interpretation
of the coefficient. If the output were from a linear least-squares regression, how would we interpret the
coefficient for q? Our interpretation would be:

For a one unit increase in quantitative ability, we can expect, on average, Group to increase by
0.97 units.

Of course, the above interpretation is wrong and does not make sense in the current situation, since
group is binary. The coefficient 0.97 is not in the “natural” units of the response variable. Rather, it is a
transformed variable, the transformation being that of the natural log of the odds, or logit. Hence, the
correct interpretation for the coefficient is the following:

For a one unit increase in quantitative ability, we can expect, on average, the logit of Group to
increase by 0.97 units.

But what are the “units?” The coefficient 0.97 is in units of the logit and not the natural units of the
variable as would be the case in OLS regression. Notice that both interpretations, that fromOLS regres-
sion and from logistic regression, are quite similar. The difference is simply in the units of the actual
estimated coefficient. To convince yourself of the necessity of the logistic model, in this case, consider
what the least-squares interpretation would imply about our response variable. Expecting group to
increase from an amount of 0.97 from group 0 to 1 makes no sense in this case since the response
variable is not linear. We have to transform it to linearity for things to make sense. Of course, inter-
preting something called the “logit” is quite awkward. However, since we know that logits can be trans-
formed back into probabilities and odds, we therefore have a solution to making the problem more
interpretable. We first convert 0.97 to odds:

e ln
p

1 − p = 2 710 97 = 2 63
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Our interpretation is that for a one-unit increase in quantitative ability, the odds of being in group 1
versus 0 are, expectantly, 2.63 to 1. In this context, the number 2.63 is called the odds ratio. We could
have also obtained this in R via

> exp(coef(logistic))
(Intercept) q

0.0004776506 2.6289294420

Note that the value for q matches up to our computed value (we rounded up). Since often more
intuitive than odds (unless you spend a lot of time at the horse track), we know from previous work
that we can convert the odds into a probability. First, let us get the predicted logit for the one-unit
increase in q. From the output we see that the intercept term is equal to −7.6466. Therefore, the regres-
sion equation is:

y'i = − 7 6466 + 0 9666 qi

Recall that we can use the regression equation just as we would in OLS regression, only that now, yi
will be in units of the logit. For example, for a subject who scores 5 on quantitative ability, that subject’s
predicted score (i.e., logit) is

yi = − 7 6466 + 0 9666 qi
= − 7 6466 + 0 9666 5

= − 2 8136

The predicted logit for such a subject is equal to −2.81. But these are logits, which are unintuitive and
strange to interpret. We would much prefer interpret probabilities. What is the probability then of that
subject being in group 1? To get the probability, we can demonstrate the full logistic function:

p =
e α + βxi

1 + e α + βxi

=
e − 7 6466 + 0 9666 qi

1 + e − 7 6466 + 0 9666 qi

=
e − 7 6466 + 0 9666 5

1 + e − 7 6466 + 0 9666 5

= 0 057

Hence, we can see that for qi = 5, the predicted probability of being in group 1 is equal to 0.057. That is,
a subject scoring 5 on quantitative ability is probably not one coming from a population that received a
training program. Predicted probabilities can be easily obtained in R:

> predict(logistic, type = "response")

1 2 3 4 5 6 7

0.05658579 0.00329031 0.13620541 0.74126605 0.52148241 0.29305467 0.74126605

8 9 10

0.88279164 0.88279164 0.74126605
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Note that the first probability given, of 0.057, matches up with our computed probability. This is not
coincidental, since the quantitative score for subject 1 was equal to 5.

10.10 LOGISTIC REGRESSION IN R

10.10.1 Challenger O-ring Data

On January 28, 1986, space shuttle Challenger lifted off from Cape Canaveral, Florida, and exploded
in mid-air 73 seconds into its flight. The cause of the accident (aside from possibly a poor management
decision to launch the shuttle in the first place, recall that determining real and underlying causation
is exceedingly difficult) was the failure of a seal on one of the shuttle’s O-rings that serves to keep fuel
inside the booster instead of leaking out. The post-incident investigation revealed that the O-ring likely
failed because the temperature at which Challenger was launched, 31 F, was a temperature much
colder than in any previous launch. It is believed that the cold temperature caused the O-ring to expand
and become dysfunctional, thereby leading to fuel leaking out of the booster and onto the main fuel
tank of the shuttle, consequently causing the explosion.

The following are data on the occurrence of failures in O-rings on space shuttle data collected from
launches prior to that of Challenger, where “1” is a failure, and “0” is a success. For each O-ring event is
an associated temperature. It has been argued by many since the catastrophe that had NASA paid more
attention to the relationship between temperature and O-ring failure, the disaster might have been
averted. As Friendly (2000) remarked:

The story behind the Challenger disaster is, perhaps, the most poignant missed opportunity in the
history of statistical graphics. It may be heartbreaking to find out that some important information
was there, but the graph maker missed it. (p. 208)

Hence, we ask the following question about this data—Is temperature predictive of O-ring
failure? The challenger data follow, where “1” represents O-ring failure:

> oring <- c(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0)
> temp <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70, 70, 70,
72, 73, 75, 75, 76, 76, 78, 79, 81)
> challenger <- data.frame(oring, temp)
> some(challenger)

oring temp
[1,] 1 53
[2,] 1 63
[3,] 0 66
[4,] 0 67
[5,] 0 67
[6,] 0 67
[7,] 0 70
[8,] 0 75
[9,] 0 76

[10,] 0 79
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The logistic regression of temp predicting oring is specified as follows:

>challenger.fit<-glm(oring~temp,data=challenger,family=binomial())
> summary(challenger.fit)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.0429 7.3786 2.039 0.0415 *
temp -0.2322 0.1082 -2.145 0.0320 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28.267 on 22 degrees of freedom
Residual deviance: 20.315 on 21 degrees of freedom
AIC: 24.315

Number of Fisher Scoring iterations: 5

About the output:

• The effect for temp is statistically significant (p = 0.03), suggesting that temp is predictive of
O-ring failure in the population from which these data were drawn.

• The effect for temp of −0.23 is interpreted as for a one-unit increase in temperature, on aver-
age, the expected change in logit is a decrease of 0.23. When we exponentiate the logit, we find
e−0.23 = 0.795 to be the odds ratio. That is, for a one-unit increase in temperature, on average, the
expected odds of failure is 0.795. Since odds are “centered” at 1.0, the value of 0.795 indicates a
drop in the odds of failure.

• The null deviance of 28.267 is computed with only the intercept in the model. The residual
deviance of 20.315 includes the temp effect over and above the intercept. We could have also
obtained the deviance through deviance (challenger.fit). The drop in deviance from
28.267 to 20.315 is suggestive that temp may be useful, analogous to how residual sums of
squares would drop if we included such a predictor in an OLS regression. The intercept itself
of 15.04 is usually of little interest. As the model is currently parameterized, 15.04 is the expected
logit for a temperature of zero (which of course, extrapolates significantly from the current
database).

• The residual deviance of 20.315 is quite close to the residual degrees of freedom of 21, suggesting
that we have an adequate model, and that overdispersion is likely not a problem. If overdispersion
was a problem, the residual deviance would likely be quite larger than degrees of freedom. Recall
that this is a convenient guide for assessing dispersion but is not fool proof (see Venables and
Ripley, 2002).

• The AIC statistic is also provided and recall is useful for situations in which we wish to compare
nested or nonnested models. As always, lower AIC values are preferable to larger ones.

In Figure 10.7 is what is referred to as an effect plot generated from the package effects in
R (Fox, 2003). For our data, the effect plot relates the probability of a failure on the ordinate to
temperature on the abscissa:
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> library(effects)
> allEffects(challenger.fit)

model: oring ~ temp

temp effect
temp

53 60 67 74 81
0.939248 0.752713 0.374724 0.105539 0.022703

> plot(allEffects(challenger.fit))

Hence, we can see that as temperature increases, the probability of an O-ring failure gradually
decreases. Notice the values generated by allEffects(challenger.fit) match up with those
in the plot. See Fox and Weisberg (2011) for more details on constructing effect displays (including
adjusting the default ordinate axis should one choose to do so).

We can also obtain confidence intervals for the model:

> confint(challenger.fit)
2.5 % 97.5 %

(Intercept) 3.3305848 34.34215133
temp -0.5154718 -0.06082076

We interpret the above to mean that we are 95% confident that the true temp parameter likely lies
between the lower limit of −0.52 and the upper limit of −0.06. Since the interval does not include 0, as
also evidenced by the p-value for the predictor (recall, p = 0.03), we can reject the null hypothesis that
the true population parameter is equal to 0.

We can obtain influence statistics for the fitted logistic model (we print the first five values only):

> influence.measures(challenger.fit)

0.8
0.6
0.4
0.2

55 60 65

Temp

Temp effect plot

70 75 80

O
-r
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g

FIGURE 10.7 Effect plot for predicting O-ring failure as a function of temperature.
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Influence measures of
glm(formula=oring~temp,family=binomial(),data=challenger):

dfb.1_ dfb.temp dffit cov.r cook.d hat inf
1 0.1678 -0.1640 0.1733 1.305 0.007815 0.1675 *
2 0.2969 -0.2877 0.3174 1.340 0.027099 0.2078 *
3 0.3277 -0.3164 0.3555 1.329 0.034485 0.2090 *
4 0.3401 -0.3166 0.4539 1.141 0.064145 0.1429
5 -0.1502 0.1261 -0.3495 1.065 0.039120 0.0864

As recommended by Fox (1997), hat values that are more than two or three times the mean of the
hat values may be worth looking at further in terms of their “leverage.” Observations 2 and 3 above
have hat values of 0.2078 and 0.2090, respectively, which are relatively large. We would not delete
these observations, though it may be worth re-running the regression to see whether our findings would
change without them included. Q–Q plots and plotting logit residuals against values of predictors can
also be used as diagnostic aids following a logistic regression, though with some interpretative caveats
as a result of the binary nature of the response variable. For details, see Fox (1997, p. 457).

10.11 CHALLENGER ANALYSIS IN SPSS

We now perform the analysis of the Challenger data in SPSS. We generate only output that is most
essential in illustrating the analysis. We also obtain classification results and a plot to depict findings:

LOGISTIC REGRESSION VARIABLES oring * specifies oring as the response
variable

/METHOD=ENTER temp * requests all variables be entered
simultaneously (the only variable is temp)

/SAVE=PRED PGROUP RESID * requests to save predicted probabilities,
predicted group membership, and residuals

/CLASSPLOT * requests a classification plot of results
/PRINT=ITER(1) * requests an iteration history
/ITERATE(20) CUT(0.5). * requests a maximum of 20 iterations, with

a classification cut-off point of 0.5

SPSS provides us with the classification rates in an intercept-only model, that is, a model excluding
the predictor. A total of 69.6% of cases are correctly classified.

Classification Tablea,b

Predicted

O-ring

Observed 0.00 1.00 Percentage correct

Step0 O-ring 0.00 16 0 100.0
1.00 7 0 0.0

Overall percentage 69.6
aConstant is included in the model.
bThe cut value is 0.500.
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A summary of the model is given next, where in addition to the log-likelihood, so-called pseudo-R2

measures of model fit are also provided, which include theCox & Snell R2 along with theNagelkerke
R2. These are known as pseudo-R2 measures for the reason that though they attempt to “mimic” R2

reported in OLS regression, they do not have “variance accounted for” interpretations. The Cox &
Snell, for instance, does not have a maximum value of 1.0 such as is of course typically the case
for R2 in OLS regression (James et al., 2013). The Nagelkerke R2 attempts to improve on the
Cox & Snell through scaling it relative to the maximum value it can attain for a given problem,
and hence, may be preferable to Cox & Snell. A drawback of both of these indices, however, is that
they may not coincide with odds and odds ratios for a given problem in communicating the strength of
evidence for a model (Cohen et al., 2003). Hence, we recommend, if these measures are to be inter-
preted at all, that they be used only as a “ballpark” indicator of overall effect rather than as a precise
measure analogous to R2 in OLS regression.

Model Summary

Step –2 log likelihood Cox & Snell R square Nagelkerke R square
1 20.315a 0.292 0.413
aEstimation terminated at iteration number 5 because parameter estimates changed by less than 0.001.

The updated classification table is given next. As we can see, with the aid of temp, the model now
correctly classifies 87% of cases.

Classification Tablea

Predicted

O-ring

Observed 0.00 1.00 Percentage correct

Step 1 O-ring 0.00 16 0 100.0
1.00 3 4 57.1

Overall percentage 87.0
aThe cut value is 0.500.

The significance tests for the predictor reveals the same as that which we noted in R. Temp is sta-
tistically significant at p = 0.032. The odds ratio is equal to 0.793 (i.e., Exp(B)), which, within rounding
error, agrees with that reported in R.

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Step 1a temp −0.232 0.108 4.601 1 0.032 0.793
Constant 15.043 7.379 4.156 1 0.041 3412315.418

aVariable(s) entered on step 1: temp.

SPSS next provides us with a classification plot, which corresponds to the numbers in the final
classification table just discussed. On the abscissa is indicated the cut value of 0.5, where below
and above this value corresponds to group classification. Within the plot, one does not count the actual
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number of 0’s and 1’s to obtain the classification results. Rather, one counts the height of the bars to
get a single frequency. For instance, at the far left of the plot, we can see one observation having a very
low predicted probability. This one observation is represented by a bar height of four zeros. As another
example, consider the number of 1’s on the half greater than the cut value of 0.5. This number of 1’s is
equal to 4 (and not 16, by the actual number of 1’s in the plot).

Step number: 1

Observed groups and predicted probabilities

4 +                      1                      +
I                      1                                                                             I
I                      1                                                       I

I
+

I                      1              0                                                              I
I

0                                                              I
+
I
I

F  I 1
r 3 + 1 0
e
q  I 1 0
u  I 1
e 2 + 0 1 0 0
n  I 0 1 0 0
c  I 0 1 0 0
y  I 0 1 0 0 I

1 +  000 0 0   0  0      0    0    0    0     0                1                     1  1       1      +
I  000 0 0   0  0      0    0    0    0     0                1                     1  1       1      I
I  000 0 0   0 0      0    0    0    0     0                1                     1  1       1      I
I  000 0 0   0  0      0    0    0    0     0                1                     1  1       1      I

Predicted ---------+---------+---------+---------+---------+---------+---------+---------+---------+----------
prob:   0       .1        .2        .3        .4        .5        .6        .7        .8        .9         1
Group:  0000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111

Predicted probability is of membership for 1.00
The cut value is 0.50
Symbols: 0 - 0.00

1 - 1.00
Each symbol represents 0.25 cases.

10.11.1 Predictions of New Cases

Recall that there are two general purposes for building amodel from sample data. The first is to estimate
whether one can obtain a well-fitting model that accounts for the empirical observations. If the model
fits relatively well, a second purpose then might be to use the model to predict outcomes on new cases.

As an example of how this can be done in SPSS, suppose engineers at NASA obtained new tem-
perature data and wanted to obtain predicted values on O-ring failures. We simulate such an example.
We set up our data file as below, where the first five observations are the first from the original data, and
the second five observations are the first from our new data, where we do not yet know predicted group
membership (we are going to use temp to predict these values):

o-ring temp dataset

1.00 53.00 0.00
1.00 57.00 0.00
1.00 58.00 0.00
1.00 63.00 0.00
0.00 66.00 0.00

55.00 1.00
58.00 1.00
51.00 1.00
64.00 1.00
65.00 1.00
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Note once more that we only have O-ring data for the first data set, data set = 0. Our goal is to use the
oring ~ temp model to predict new cases on the last five rows. Notice that our new data on temp
consists of 55, 58, 51, 64, 65. The column data set is the designation of whether the data are the original
modeled data (data set = 0) or the new data (data set = 1). The columns prob and class (in the SPSS
output below) represent the probabilities and respective group classification associated with each case.
The probabilities we obtain for the second half of the above file constitute probabilities that were com-
puted on the first half.

Here is how we set up the syntax:

LOGISTIC REGRESSION VARIABLES oring
/SELECT DATASET EQ 0

∗ tells SPSS to generate the model on the original data; it will nonetheless also

generate predictions on the second data set (i.e., dataset = 1).

/METHOD = ENTER temp
/SAVE PRED(prob) PGROUP (class)
/CRITERIA = PIN(0.05) POUT(.10) ITERATE(20) CUT(0.5).

The model output will be the same as that given earlier, so we do not reproduce it here. What we are
interested in is the estimation of the new probabilities for the new data (based on the full data not only
these 5 cases):

oring temp dataset prob class

1.00 53.00 0.00 0.94 1.00
1.00 57.00 0.00 0.86 1.00
1.00 58.00 0.00 0.83 1.00
1.00 63.00 0.00 0.60 1.00
0.00 66.00 0.00 0.43 0.00

55.00 1.00 0.91 1.00
58.00 1.00 0.83 1.00
51.00 1.00 0.96 1.00
64.00 1.00 0.55 1.00
65.00 1.00 0.49 0.00

We see that SPSS has produced the two new columns, prob and class. We can now interpret the
predicted values. For instance, on this new data, for a temperature of 55, the probability of failure (i.e.,
“1”) is 0.91. This is the value under prob for temp of 55 (i.e., located in the sixth row). Because the
probability is greater than 0.5, it is classified into class = 1. This prediction was generated by using the
original coefficient weight of −0.232 from the regression:

logit = 15 043− 0 232 temp

= 15 043− 0 232 55

= 15 043− 12 76

= 2 283

Recall that the logit is transformed into the corresponding probability by:

p =
elogit

1 + elogit
=

e2 283

1 + e2 283
= 0 91
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We note that the probability of 0.91 matches up with that generated by SPSS for the first unknown “test
case” (i.e., row 6). We compute the remaining predicted cases in analogous fashion. Not surprisingly,
failure is predicted for the lower temperatures, whereas for temp = 65, no failure for the O-ring is
expected (indicated by prob = 0.49 and class = 0).

10.12 SAMPLE SIZE, EFFECT SIZE, AND POWER

One can estimate statistical power for logistic regression using powerLogisticCon within the
powerMediation package (Qiu, 2013). To use it, we require the following inputs:

> install.packages(“powerMediation”)
> library(powerMediation)
> powerLogisticCon(n, p1, OR, alpha = )

where, n is estimated or desired sample size, p1 is the proportion of “successes” at the mean of the
predictor (called the “event rate”) on the binary dependent variable, OR is the expected or minimally
desired odds ratio, and alpha is the desired type I error rate.

For example, suppose we wished to estimate power for a simple logistic regression with a contin-
uous predictor with sample size equal to 100, event rate equal to 0.5, expected odds ratio (i.e., serving
as a reasonable estimate of effect size (Chen, Cohen, and Chen, 2010a)) equal to 1.5, and we were
willing to tolerate a 0.05 type I error rate. In R, we would compute:

> powerLogisticCon(100, 0.50, 1.5, alpha = 0.05)
[1] 0.5268531

Notice that estimated power is not very high. Suppose instead, we decided to sample 200 subjects:

> powerLogisticCon(200, 0.50, 1.5, alpha = 0.05)
[1] 0.817825

Note that estimated power has increased dramatically. To demonstrate the influence of the odds ratio
on power, suppose that instead of hypothesizing one of 1.5, we hypothesized an odds ratio of 1.2:

> powerLogisticCon(200, 0.50, 1.2, alpha = 0.05)
[1] 0.251188

Notice how dramatically power has decreased. This simple demonstration once more illustrates the
influence that effect size, which in this case is served by the odds ratio, has on statistical power. Our
example featured a continuous predictor. If the predictor were binary instead, one could use
powerLogisticBin, also in the powerMediation package. See Qiu (2013) for details.

10.13 FURTHER DIRECTIONS

As noted by Crawley (2013), if the distribution of the error term is uncertain enough that we are not
comfortable with specifying a particular structure (e.g., Binomial, Poisson, etc.), we may use a robust
alternative to estimation called quasi-likelihood. This can be requested in R by specifying the family
as quasi (if the error term was distributed Poisson, one would specify family = poisson).
Another alternative is to use a generalized additive model (or, “GAM”), which essentially makes
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fewer assumptions about the error term. For details, see Crawley (2013, pp. 565–566). Venables and
Ripley (2002) also provide a discussion.

In this chapter, we surveyed the case of a single predictor in logistic regression. However, there is
nothing preventing a researcher from entering multiple predictors, analogous to modeling multiple pre-
dictors in OLS regression so long as one notes the interpretive distinctions and transformations on the
estimated coefficients. Interactions are therefore also quite easily modeled. Stepwise approaches can
likewise be conducted.

A researcher could also use logistic regression to predict responses over time on the same individuals in
a repeated-measures or longitudinal context. These models are often analyzed as generalized linearmixed
models. See Venables and Ripley (2002, p. 292) for details. Nonlinear mixed models can also be fit rel-
atively easily using R (see Venables and Ripley, 2002, p. 286). Indeed, most of the models suitable in
ordinary analysis of variance and regression can be generalized to logistic regression with the assumption
that the response variable is binary (or in the case of multinomial regression, polytomous). Modeling
product terms in logistic regression is quite straightforward given some experience with modeling inter-
action terms inmultiple regression. For relatively largemodels that contain numerous predictors and inter-
action terms, one could use R’s addterm and dropterm functions in the MASS package, along with
that of stepAIC, to test which terms in the model can be added or dropped to better the parsimony and
fit. For details of how to use these functions, again see Venables and Ripley (2002, pp. 201–202).

Finally, recall that the chi-square test of independence for a 2 × 2 table, as discussed in Chapter 2,
was easy to interpret because we were only modeling the association between two factors. When we
classify counts by a third (and perhaps a fourth and fifth) variable, log-linear models are called upon
to handle the multiway classification of counts. For details, see Agresti (2002). As well, instead of
modeling such count data using Poisson regression requiring a link function, one can also model
the data using a multinomial model approach. For details, see Venables and Ripley (2002, p. 203).
Support vector machines are an alternative to logistic regression that are widely used in machine
learning circles and computer science. The topic is relatively advanced and cannot be adequately
understood without vectors and matrices. See Izenman (2008) for a thorough treatment.

10.14 CHAPTER SUMMARY AND HIGHLIGHTS

• A vast majority of statistical models make the assumption of linearity in the parameters. These
include the well-known linear models. There are many cases, however, where a nonlinear rela-
tionship may be hypothesized, which necessitates a nonlinear model.

• Linearity in the parameters means that parameters, not necessarily variables, are raised to the
exponent 1 in the model.

• Reasons for hypothesizing nonlinear models instead of linear ones include the fact that the actual
empirical relationship between the response and predictor is thought to be nonlinear in form
(e.g., Yerkes–Dodson inverted U curve) or the operationalization of the response variable nec-
essarily makes the relationship nonlinear, such as in the case of a binary response.

• The class of models known as generalized linear models, first proposed by Nelder and Wedder-
burn (1972), can incorporate the classic linear model as a special case, but also features nonlinear
cases either due to implicit or explicit nonlinearity.

• The classical linear model, yi = α + βxi + εi, can be said to be generally composed of two compo-
nents, one that is systematic, α + βxi, and one that is unsystematic or random (or stochastic), εi.

• The generalized linear model utilizes a link function to transform a nonlinear response variable
(e.g., binary response) into one that is linear.

• Canonical links are those link functions that are natural to the family of distributions in a given
context. For instance, the link function for a binomial variable is the log of the odds, known as the
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logit. For a Poisson variable, the canonical link function is the log. For a Gaussian variable, the
canonical link is the identity function.

• A dispersion parameter is an index measuring the degree of spread in a distribution. Overdis-
persion is said to exist if the dispersion parameter, either estimated or known, exceeds the dis-
persion expected for the given distribution.

• The logistic regression model is useful for modeling binary or polytomous response variables.
Mathematically, it is somewhat different from the discriminant analysis model, but pragmatically,
it can be interpreted as a competing alternative to discriminant analysis.

• In logistic regression, the logit can be exponentiated to provide a measure of the odds. Both the
logit and the odds can be converted to probabilities. These transformations can be helpful if for
no other reason than in helping one digest logistic regression results.

• Power and sample size can be easily estimated for logistic regression using powerLogistic-
Con in R.

REVIEW EXERCISES

10.1. Briefly discuss why the model yi = α + β1x1 + β2x
2
2 + εi can be regarded as a linear model,

even with the presence of x22 in the equation.

10.2. Briefly discuss why the model yi = α + β1x1 + β22x2 + εi can be regarded as nonlinear. Com-
pare and contrast this model with the model in Exercise 10.1.

10.3. Distinguish between intrinsic versus nonintrinsic linearity.

10.4. How does discontinuity in a response variable introduce nonlinearity into a model?
Explain.

10.5. Give a research example in your field where you might expect the phenomena under inves-
tigation to follow an exponential function. How about a logarithmic one?

10.6. Discuss what is meant by a generalized linear model, and how and why linear models are
considered to be contained within, or be a special case of the wider and more inclusive
generalized linear model framework.

10.7. Describe the role of a link function in the generalized linear model.

10.8. Discuss the nature of a canonical link in a generalized linear model. What is the canonical
link for a Gaussian variable? Why is this so?

10.9. What are the components to a generalized linear model? Explain each.

10.10. What is the appropriate link function for a binomial setting?

10.11. Discuss what is meant by the statement—The limiting form of the Poisson distribution is
that of the normal distribution. More generally, what does it mean to say one distribution
is the limiting form of another?

10.12. Run a logistic regression using Fisher’s iris data (see Chapter 8) predicting group member-
ship on species setosa and versicolor based on petal length and petal width. Are either petal
length or petal width statistically significant predictors of species? If so, which predictor is
more relevant? Why?

10.13. Use powerLogisticCon in R to estimate required sample size for a logistic regression
with a continuous predictor in which desired power is set at 0.95, with an event rate equal to
0.3 and odds ratio equal to 1.1. Use a significance level of 0.05.
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11
MULTIVARIATE ANALYSIS OF VARIANCE

A generalization of quite a different order is needed to test the simultaneous deviations of several quantities
Joint comparisons of correlated variates, and variates of unknown correlations and standard deviations, are
required not only for biologic purposes, but in a great variety of subjects.

(Hotelling, 1931, pp. 361–362, The Generalization of Student’s Ratio)

Multivariate analysis of variance (MANOVA) can be conceptualized as either an extension of univar-
iate analysis of variance (ANOVA) or as a more general linear model with ANOVA constituting a
“special case” of that more general model. The primary conceptual difference is that ANOVA features
a single continuous dependent variable, while MANOVA features multiple dependent continuous
variables, all considered simultaneously in the analysis. The dependent variable in a MANOVA is
a linear combination (or linear composite) of response variables. As in univariate ANOVA where
the user tests a null hypothesis of equality of population means, in MANOVA the researcher usually
also tests null hypotheses about equality, although such a test is now on a vector of continuous depend-
ent variables that make up the composite variable.

MANOVA is not suitable for every research context. Indeed, prior to constructing a linear compos-
ite of response variables, one should justify whether it is even substantively meaningful to hypothesize
such a thing with regard to the variables under consideration. This decision must ultimately be made on
grounds external to the statistical method. Statistical and software technology will allow us to analyze
virtually anything and in any way. Whether what we analyze accords in any way with our scientific
pursuits or theoretical interests, which is presumably the reason why we are running statistical
analyses in the first place, is another matter entirely. Though this is true for virtually every statistical
model, as we will see, the decision regarding whether or not to use a MANOVA provides a good
context for having this discussion.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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Johnson and Wichern (2007) is a good source for multivariate methods in general and includes a
thorough chapter on MANOVA (Chapter 6). Rencher and Christensen (2012) as well as Rencher
(1998) cover MANOVA in addition to multivariate multiple regression. For a treatment featuring more
hands-on applications using software, Tabachnick and Fidell (2007) has become a classic resource.
Tatsuoka (1971), Harris (2001), and Timm (2002) are also good sources, the last of these on the tech-
nical side. Hair et al. (2006) provide applications in business and marketing contexts. Anderson (2003)
provides a deeper theoretical treatment and historically has been a classic resource among mathemat-
ical statisticians. Bilodeau and Brenner (1999) is a wholly theoretical, abstract, and very rigorous math-
ematical treatment.

11.1 A MOTIVATING EXAMPLE: QUANTITATIVE AND VERBAL ABILITY
AS A VARIATE

To illustrate the context in which one may wish to conduct a MANOVA, recall the hypothetical Q–V
data used to illustrate both regression analysis (Chapter 7) and logistic regression (Chapter 10). Recall
that for these data, measures were taken of individuals’ quantitative and verbal abilities using standar-
dized tests, where scores on such tests could range from 0 (little ability) to 10 (maximum ability). In this
chapter, we will treat both variables as dependent variables. Recall also that in our previous chapter on
logistic regression, we extended the data to include a training group variable (coded 0, 1) corresponding
to whether subjects received or did not receive a prior training program designed to improve their quan-
titative and verbal abilities. Five subjects received the training program (group = 1), while five did not
(group = 0). The data are reproduced in Table 11.1.

Consider now how we might analyze these data. We could run one analysis with quantitative as our
dependent variable and group as our independent variable, then another analysis with verbal as our
dependent variable and once again group as our independent variable. The function statements and
null hypotheses for each analysis against two-sided alternatives would therefore be:

Quantitative as a function of Group −H0 μ1 = μ2 againstH1 μ1 μ2

Verbal as a function of Group −H0 μ1 = μ2 againstH1 μ1 μ2

The appropriate analysis for each null hypothesis would be an independent-samples t-test or a
between-subjects ANOVA on two groups. A rejection of the null hypothesis in the first analysis would
suggest there to be mean population differences on quantitative. A rejection of the null hypothesis in
the second analysis would suggest there to be mean population differences on verbal.

TABLE 11.1 Hypothetical Data on Quantitative and Verbal Ability for Those
Receiving Training (Group = 1) versus Those Not Receiving Training (Group = 0)

Subject Quantitative Verbal Training Group

1 5 2 0
2 2 1 0
3 6 3 0
4 9 7 0
5 8 9 0
6 7 8 1
7 9 8 1
8 10 10 1
9 10 9 1
10 9 8 1
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Suppose now that instead of learning whether there are mean population differences on quantitative
and verbal considered separately, we instead wanted to learn of any mean population differences on
quantitative and verbal considered jointly. That is, suppose we were interested in generating a com-
posite score on quantitative and verbal such that our new function statement becomes:

quantitative + verbal as a function of group

Why might we want to consider these two variables simultaneously in such a manner? Why would
we want to analyze them together instead of independently using separate ANOVAs? Perhaps it is
because we believe quantitative and verbal ability “go together” in some sense, that they represent
some underlying theme or construct. Indeed, if a student excels well in quantitative and verbal learn-
ing, wemight be tempted to designate that student as intelligent. This is exactly the kind of rationale for
why we might want to consider these variables jointly, because taken together, we believe, or hypoth-
esize, that they represent some overall theme or construct. Had our variables been quantitative ability
and height, for instance, we would probably not be interested in considering them as a linear sum as we
would quantitative and verbal.The consideration of variables jointly in such amanner usually only
makes sense if their combination makes sense to us on a scientific, substantive level. Exploratory
searches are always good ideas, but combining quantitative ability and height would probably not be a
meaningful linear composite, mostly because such a composite would likely be impossible to describe
substantively.1

11.2 CONSTRUCTING THE COMPOSITE

Consider now how we might go about generating this linear sum. Naively, we could give each depend-
ent variable equal weight, assigning scalars of “1” to each. Under this condition, our function statement
would become:

1 quantitative + 1 verbal as a function of group

Or, perhaps in our theory of what we consider intelligence to actually be, we believe that verbal
should get more weight in the linear composite, perhaps double the weight of quantitative. If this were
the case, then we might weight our composite as:

1 quantitative + 2 verbal as a function of group

We could continue this process of pondering “ideal” scalars. But instead of simply guessing, let us
instead set some criteria by which these weights should be chosen.What should be our goal in the choos-
ing of such weights? It seems reasonable to select weights such that the ensuing linear combination pro-
vides maximum separation between groups on the independent variable. That is, we would like to
weight our composite such that the linear sum a1(quantitative) + a2(verbal) provides more separation

1 This is not to discourage exploratory research. It is only to point out that blindly including two variables such as quantitative
ability and height into the same analysis would likely not be substantively or scientifically meaningful, unless of course it turns
out that there is a correlation between these two variables and that we could attribute meaning to it. Otherwise, an appropriate
guideline for generating a linear composite in MANOVA is to include variables that the investigator a priori theorizes “go
together” in some theoretical sense. If, on the other hand, the investigator concedes his or her work to be 100% in the exploratory
phase and does not wish to confirm any hypothesis whatsoever, then testing a variety of linear combinations may be more per-
missible, so long as the researcher indicates the nature of this exploratory search in any report or presentation of findings and
encourages cross-validation of whatever findings may be “discovered.”
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between groups on the independent variable than any other weights a1 and a2 we could have chosen. The
solution to this problem is essentially the technical basis on which MANOVA and discriminant analysis
rest, that of choosing a suitable linear combination of variables to satisfy a set of mathematical con-
straints, usually already implied by the model parameterization. Discriminant analysis is featured in the
following chapter, and as we will see, is essentially the “reverse” of MANOVA.

11.3 THEORY OF MANOVA

To properly develop the theory behind fixed effects multivariate analysis of variance, we first briefly
review the concept of a linear combination. A linear combination yi of variables x1, x2,…, xn can be
defined as

yi = a1x1 + a2x2 + … + anxn

where yi is the outcome of the linear combination (it is the set of values generated by the combination of
a1x1 + a2x2 +… + anxn), a1,…,an are scalars, typically all real numbers, and x1,…,xn are variables of
which when weighted by respective scalars a1,…,an make up the linear sum yi.

Regardless of the context for which the given linear combination is being generated or estimated, the
magnitude and sign of the scalars a1,…,an plays a significant role in the determination of yi. These
scalars are of utmost importance, since, in combination with x1,…,xn, determine the value for yi. Note
carefully that when we say MANOVA analyzes a dependent variable that is a linear combination,
we mean that theoretically it analyzes a single variable yi, only that yi is now a weighted composite of
other variables. The idea of a linear combination is definitely not new. This whole book, in one way or
another, is about linear combinations. This commonality may at first glance not be apparent to the
reader. Consider where linear combinations have already figured prominently:

• In simple linear regression, the response variable yi is a linear combination of observed responses
on a single predictor variable. That is, yi = α + βxi + εi is a linear combination with weights (i.e.,
parameters) α and β chosen (in OLS regression) such that they minimize ε2i .

• In analysis of variance, the dependent variable yi is a linear combination of the sort yij = μ + αj + εij
where weights (again, these are parameters) μ and αj are chosen such that they again minimize

ε2i (in ANOVA just as in least-squares regression, effects in both are usually estimated by ordi-
nary least-squares).

• In considering contrasts and post-hocs in the ANOVA setting, we generated such linear combina-
tions Ci = c1μ1 + c2μ2 +… + cJμJ, which were nothing more than linear sums of weighted popu-
lation means. The job here too was to choose suitable scalars c1,…, cJ that would weight the linear
combination appropriately, generating a linear contrast that was substantively meaningful.

• Independent and paired samples t-tests were other examples of linear combinations (and con-
trasts) in which the computation of observed twas in part a weighted sum of sample means, where
we implicitly weighted the numerator appropriately (1 and −1) to generate the contrast of interest:

t =
1 y1 + − 1 y2

s21
n1

+
s22
n2

That is, though we typically cast the numerator of the independent-samples t-test as y1 − y2, it was
always implied that such a difference was actually a contrast of the form 1 y1 + − 1 y2, where it
was also clear that the sum of coefficients for this contrast was equal to 0 (i.e., 1 + (−1) = 0). That is,
recall from our previous discussion of contrasts, that the sum of weights equaled zero defined the
linear combination as a legitimate contrast.
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All of this is to say that when it comes toworkingwith linear combinations, we have already dealt with
them aplenty in one way or another in this book. In MANOVA, we again seek to generate a linear com-
bination, but this time our linear combination will consist of a string of dependent variables and test null
hypotheses about equality ofmeanvectorson this linear composite or “variate,” as it is sometimes called.

11.4 IS THE LINEAR COMBINATION MEANINGFUL?

Wementioned earlier that if the linear combination of dependent variables is not hypothesized to be rep-
resentative of some construct, or otherwise responses “go together” in some sense, then performing a
MANOVAmay not be your best analytical choice, unless of course you are simply on an unguided purely
exploratory mission. Again, our goal is not to diminish the purpose or utility of unguided exploratory
searches. But this is different than simply performing MANOVA because as a “recipe,” you believe it
appropriate since you havemore than a single dependent variable in your data file.The fact that youhave
multipledependentvariables at yourdisposal isnotalone justification for runningaMANOVA. Too
often, students (and sometimes researchers) “justify” their use of MANOVA based on the availability of
several dependent variables. Such is not an ideal justification. Asmentioned, amuchmore suitable ration-
ale is a belief or theory held such that the variables you do have at your disposal are suitable to being com-
bined into a composite variable. A compelling historical case for constructing such a linear composite is
that of Charles Spearman’s (1904a) theory of intelligence, the so-called “g-factor,” variations of which
have been studied ad nauseum since. But what is the g-factor? It is a linear combination of observed
abilities such when summed, is thought to reflect some construct of interest, that of IQ.

Given this starting point and substantive rationale for MANOVA, there also turn out to be a few
statistical benefits to the method when compared to running several independent univariate ANOVAs.
These include control over type I error rate, covariance among dependent variables, and the fact
that a multivariate effect can be observed even in the absence of univariate effects, known as Rao’s
paradox. We discuss each of these now.

11.4.1 Control Over Type I Error Rate

One reason to like MANOVA statistically is that it helps keep overall α (i.e., family-wise type I error
rate) at a nominal level based on an omnibus test. Recall that with each running of a statistical test (for
instance, an F-ratio in ANOVA), there is associated with it a type I error rate, equal to the significance
level at which you set your decision criteria for rejection of the null hypothesis. For instance, if you run
three separate ANOVAs, each at α = 0 05, the overall error rate will not be 0.05, but rather will com-
pound. This compounding is approximately additive across the three tests. It is not a simple sum of αPC
but is nearly so. As Hays (1994) notes, the probability of making no type I errors on three significance
tests, each set at α = 0 05, can be considered a binomial random variable with distribution:

p r =
n

r
pr 1− p n − r

where recall from Chapter 2 that r is the number of successes, n is the number of trials, and p is the
probability of a success on any given trial. For the case of n = 3 significance tests, if we set r = 0 (for
zero type I errors) and the probability p of a success (i.e., “success” being a type I error) equal to 0.05,
and we assume these three tests are independent of one another, then the probability of making zero
type I errors is equal to:

p 0, 3, 0 05 =
3

0
0 05 0 0 95 3 = 0 86
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Thus, the probability of making at least one type I error is equal to 1 − 0.86 = 0.14. We see then that
the overall probability of a type I error is roughly additive for chosen constant α across the three tests.
A general rule for estimating the probability of one or more type I errors in a series of independent
significance tests is given by:

p type I error ≥ 1 = 1 − 1− αPC
k

where αPC is the significance level of each test, and k is the number of successive tests being made. For
example, with five dependent variables, should we choose to analyze each individually with its own
ANOVA and not implement a correction on αPC (e.g., Bonferroni adjustment), the estimated proba-
bility of making one or more type I errors across the five tests is

p type I error ≥ 1 = 1 − 1− αPC
k = 1 − 1 − 0 05 5 = 0 23

Aprobability of 0.23 ofmaking at least one type I error across the five tests is quite high. Ifwe performed a
MANOVAon these five response variables simultaneously instead, we could constrain the error rate to
be that of our nominal level (0.05 in this example).Hence, control over familywise type I error is a primary
statistical reasonwhyMANOVAis sometimespreferredover independent univariateANOVAs.Again, to
reiterate, this is a statistical reason for preferringMANOVA. If it does notmake substantive sense to con-
sider your dependent variables jointly in aMANOVA context, then the fact thatMANOVA controls type
I error rates is not in itself justification for forging onwith the procedure.Otherwise, substantive considera-
tions are taking a back seat to statistical benefits, instead of statistical benefits aiding in substantive discov-
ery.Remember that in the realmof scientific application, statistics is usedas a tool tohelp address scientific
questionsof interest. Justasonedoesnotadapt theconstructionofahouse toappeaseahammer,oneshould
not adapt one’s scientific mission to appease a statistical test or model.

11.4.2 Covariance Among Dependent Variables

A second statistical reason for running a MANOVA over independent ANOVAs is that the MANOVA
incorporates covariances that may exist among dependent variables that would otherwise go unaccounted
for and unanalyzed in separate univariate analyses. For example, height and weight are examples of such
measures likely to be correlated. Modeling this covariance into our analysis can possibly generate a more
powerful test against themultivariatenull hypothesis compared to ifwewere toconduct separateunivariate
tests on each dependent variable. Though, as summarized byField (2009, p. 586), the powerofMANOVA
isboth a functionof thepatternof correlationamongdependent variables and the sizeofmultivariate effect,
and hence such patterns can become quite complex. For further details, see Cole et al. (1994).

Regardless of what factors generate amost powerful test of amultivariate hypothesis, it must be empha-
sized again that the consideration of the covariance among dependent variables only makes sense if it first
makesgood researchor scientific sense to lump thesevariables into the samedesign.Aswewill discusswith
reference toRao’s paradox, one should not performaMANOVAsimplybecause itmaybe amorepowerful
test over univariate analyses. Such would make little scientific sense. On a substantive level, one should
conduct a MANOVA because one wishes to analyze a linear combination of dependent variables,
regardless of whether it may be more or less powerful than univariate tests. The fact that MANOVA
accounts for correlations among dependent variables is, indeed, an analytical and statistical charm (who
wouldn’t want to boost power?), but this does not necessarily equate to scientific meaning.2 As William
James so adeptly noted, we should not confuse data with the abstractions used to analyze such data.

2 Because of spurious correlations that are due to third variables, even a relatively substantial correlation among variables does not
in the least imply they are suitable forMANOVA. For example, murder rate and ice cream cone sales are likely correlated, though
combining such variables in a MANOVA would make little substantive sense. Even if seasonal temperature accounts for the
correlation, it still does not help us know what murder rate + ice cream sales would mean as a “construct.”
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11.4.3 Rao’s Paradox

A third reason for sometimes preferring MANOVA over successive ANOVAs can be summed up in a
problem first brought to the forefront by C.R. Rao in 1966, known as Rao’s paradox. The essence of
the problem is that it is possible to reject a null hypothesis in a multivariate setting, but simultaneously
not reject subset univariate hypotheses. Conversely, it is possible to reject univariately but not multi-
variately. As noted by Healy (1969), Rao’s paradox is essentially equivalent to saying that for a given
multivariate hypothesis, there will be a univariate test of significance within the multivariate
hypothesis that may be more powerful than this latter hypothesis. The opposite scenario is also
possible in that the multivariate test is more powerful than component univariate tests.

But how can this occur? Though the problem can be understood by drawing ellipses with corre-
sponding rejection regions (see Healy, 1969, p. 412), relying on basics of probability theory can help
us, in an approximate way at least, understand the paradox such that we may come to believe it not to be
a “paradox” at all, but rather something quite logical. The essential principle is that a joint event (or
more precisely, a joint probability on two events) can be more or less probable than each event, con-
sidered exclusively, that make up the joint event.

For example, the probability of selecting a person at random and that person being married is a
probability equal to some number. The probability of selecting a person at random and that person
being aged 19 years or less is also a probability. Both of these respective probabilities, that of being
married and that of being aged 19 or less are each likely relatively high. After all, many people are
married, and many people are 19 years of age or less. Each considered univariately would result
in relatively substantial probabilities.

Now, consider the event married and age 19 or less. The probability of being married and aged
19 or less recall, is a joint probability, the probability of which undoubtedly would differ from each of
the probabilities that make up the event. The probability of marginal events does not necessarily coin-
cide with the probability of the corresponding joint event. Translated into the language of MANOVA,
though there may be mean population differences on each dependent variable considered univariately,
this does not guarantee mean differences on such dependent variables considered jointly. Likewise,
mean differences on dependent variables considered jointly do not necessarily translate into mean dif-
ferences on such dependent variables when considered univariately (Rencher and Christensen, 2012).

An understanding of Rao’s paradox has very important implications for researchers. We summarize
what the principle means in this regard:

When you perform a MANOVA, you are testing a different null hypothesis than when you perform
separate univariate ANOVAs, and as such, should not assume that the rejection of one hypothesis
(e.g., multivariate hypothesis) automatically informs you of the status of other hypotheses (e.g., uni-
variate hypotheses). Likewise, you should not assume that individual univariate findings on separate
response variables will necessarily generate a multivariate effect if “combined.”

Is this idea really unique to MANOVA? Not at all. We have emphasized it repeatedly in our dis-
cussions of multiple regression when considering partial and semipartial correlations, as well as
emphasizing that effects in a multiple regression model are virtually always contingent on what other
variables are included in the model. Recall this important principle, because it applies equally well to
MANOVA as it did to multiple regression:

Whenever you test a model, it is the MODEL that you are testing, not unique individual effects con-
tained within the model.

Any effects evaluated in a model, no matter how simple or complex the model may be, must always
be evaluated in the context of the model. This is as true for t-tests as for the most advanced and sophis-
ticated of statistical models. Effects in models are always context-dependent.
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11.5 MULTIVARIATE HYPOTHESES

Having surveyed some of the substantive issues germane to MANOVA, we now consider some of the
specifics concerning testing a multivariate hypothesis. Recall that in a univariate setting, the typical
null hypothesis under test in a one-way analysis of variance is

H0 μ1 = μ2 = μ3… = μ j

against the alternative H1 that a pairwise or other contrast among means μ1, μ2, μ3…μj is unequal
somewhere among the population means (e.g.,H1 : μ1 μ2 as one possibility). In a multivariate setting,
since we are now interested in testing a null hypothesis about equivalency on mean vectors, our null
hypothesis becomes:

H0

μ11
μ21
μ31

μ j1

=

μ12
μ22
μ32

μ j2

=

μ13
μ23
μ33

μ j3

… =

μ1p
μ2p
μ3p

μjp

(11.1)

where μ11, μ21, μ31…μj1 are means for dependent variables 1 through j for group 1 of an independent
variable. That is, the first column vector in (11.1) represents level 1 of the independent variable for
dependent variables 1 through j. The second column vector represents level 2 of the independent var-
iable for dependent variables 1 through j, etc.

The model for a one-way fixed-effects MANOVA can be given by:

Yij = μ + α + εij (11.2)

where Yij is a vector of response variables, μ is a vector of grand means, α is a vector of sample or
treatment effects, and εij is a vector of errors. In the absence of treatment effects, (11.2) reduces to
simply Yij = μ + εij. Notice that the one-way fixed-effects model of Chapter 3, yij = μ + αj + εij, can
be regarded as a “special case” of model (11.2) in which we have only a single dependent variable.
Both models generate εij. In the univariate case, this is a single column vector. In the multivariate case,
if we conceive the variables contained inYij to be distinct columns, then we will likewise have as many
distinct columns in εij. However, in the spirit of MANOVA, if we conceive Yij to be a construct or
“latent variable,” then we can likewise conceive εij to be a single column of errors analogous to the
univariate case. For instance, if Yij is a linear combination representing IQ, then εij is theoretically
the error associated with generating the IQ variate. We develop the even “wider” matrix formulation
of the general multivariate model later in this chapter, one that encompasses (11.2) along with that of
the linear regression model studied earlier in the book. We also briefly demonstrate how to formally
expand such models to include random effects in addition to fixed effects.

11.6 ASSUMPTIONS OF MANOVA

The assumptions of MANOVA are generally parallel to those made in the analysis of variance, such as
normality, independence of observations, and homogeneity of variance, except that they now apply
to linear combinations of the response vector rather than to single variables. Because we are now
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working in higher dimensions, the assumption of normality for each dependent variable is not suffi-
cient. We must also make the assumption ofmultivariate normality for all linear combinations on the
response vector. Such an assumption is important, for instance, in the T2 distribution used as the mul-
tivariate generalization of univariate t. The assumption of multivariate normality in this case assures the
independence of y and S. Verifying multivariate normality, as discussed briefly in Chapter 2, is inher-
ently difficult if not impossible due to the number of dimensions involved and what could be occurring
in any subset of those dimensions. Verifying such normality is usually accomplished through plotting
residuals and inspecting Q–Q plots. Fortunately, most multivariate tests are rather robust to modest
violations of multivariate normality, especially if cell sizes are not too disparate.

While in ANOVA, we were required to make the assumption of equality (homogeneity) of var-
iances, in MANOVA, we will need to assume equality of covariance matrices. We discuss this
assumption at some length later in the chapter (Section 11.12).

11.7 HOTELLING’S T2: THE CASE OF GENERALIZING FROM UNIVARIATE
TO MULTIVARIATE

When discussing the nature of analysis of variance in Chapter 3, recall we said it could be considered an
extension of the independent samples t-test. We follow a similar approach in developing the multivar-
iate counterpart to the independent samples t-test, known asHotelling’s T2, named after Harold Hotell-
ing who derived its distribution in 1931.

Recall that in an independent samples t-test, we evaluate the tenability of the null hypothesis H0 :
μ1 = μ2 against the statistical alternative H1 : μ1 μ2. The multivariate counterpart, Hotelling’s T2,
evaluates the tenability of whether two population mean vectors are equal:

H0
μ11
μ21

=
μ12
μ22

The statistical alternative is that there is an inequality between population mean vectors:

H1
μ11
μ21

μ12
μ22

How should we test a difference between mean vectors? In what follows, we develop Hotelling’s T2 by
drawing on our knowledge of univariate t. The following derivation is of high importance, since
through extending univariate t to its multivariate counterpart, we gain a general understanding as to
how multivariate tests, in general, are distinct from univariate ones. The inclusion of a covariance
matrix in what follows instead of simply variances as one would have in univariate ANOVA is a
“staple” of the multivariate landscape.

Recall the univariate independent samples t-test:

t =
E y1 −E y2 − δ0

n1 − 1 s21 + n2 − 1 s22
n1 − n2 − 2

1
n1

+
1
n2

=
μ1 − μ2 − δ0

n1 − 1 s21 + n2 − 1 s22
n1 − n2 − 2

1
n1

+
1
n2

(11.3)

where recall y1 and y2 are the sample means for each group, and their expectations E y1 and E y2 are
equal to μ1 and μ2, respectively; δ0 is a constant subtracted from the mean difference y1 − y2, n1 and n2
are the sample sizes of each group, s21 and s

2
2 are the sample variances of each group used as estimators
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of the corresponding population variances σ21 and σ
2
2. In most cases, the constant δ0 will be equal to 0, as

we implicitly assumed in our review of the t-test in Chapter 2, so that the null hypothesis tested is that of
H0 : μ1 = μ2, or, equivalently, H0 : μ1 − μ2 = 0. In some research contexts, however, null hypotheses
other than these may be useful. For example, in a medical setting, if we wished to demonstrate that
our drug decreased cholesterol by more than five units, we might hypothesize a null such that
H0 : μ1 − μ2 = 5, in which case, the numerator of the t-test would be:

y1 − y2 − δ0 = y1 − y2 − 5

Cases in which null hypotheses other than the typical H0 : μ1 − μ2 = 0, however, are nonetheless quite
rare in practice, and statistical software will typically simply assume differences of zero under the null.
However, it is good habit to never make assumptions about what the null hypotheses actually are that
appear in a research report. If in doubt, confirm with the authors which null exactly was evaluated,
since without knowledge of the null hypothesis, statements such as p < 0.05, along with effect sizes,
carry with them little meaning. Statistical significance represents a surprising result (i.e., an unlikely
event) under certain conditions as specified by the null. Without knowing these conditions or assump-
tions, it becomes impossible to evaluate the probability of the data.

As also reviewed in Chapter 2, the quantity

n1 − 1 s21 + n2 − 1 s22
n1 − n2 − 2

under the square root sign in the denominator denotes an estimate of the pooled variance, s2p (or σ
2
pooled

to emphasize it as an estimate of σ2pooled). Hence, we can simplify (11.3) to be:

t =
y1 − y2 − δ0

s2p
1
n1

+ 1
n2

(11.4)

Recall that when n1 = n2, the denominator in (11.4) can be reduced to
s21
n1

+
s22
n2

so that the standard error

of the t statistic is now
s21
n1

+
s22
n2
.

The multivariate counterpart T2 is remarkably similar to univariate t, only that now it must encom-
pass vectors rather than simply scalars. Following Stevens (2009, p. 147), we proceed first to square
both the numerator and the denominator of t in (11.4), while also simultaneously allowing δ0 to again
drop out of the equation since its value will customarily be equal to 0:

t2 =
y1 − y2

2

n1 − 1 s21 + n2 − 1 s22
n1 − n2 − 2

1
n1

+
1
n2

Next, we rewrite the equation by expressing the denominator as an inverse:

t2 = y1 − y2
n1 − 1 s21 + n2 − 1 s22

n1 − n2 − 2
1
n1

+
1
n2

− 1

y1 − y2 (11.5)
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We denote the pooled variance as an inverse to facilitate our generalization to the multivariate domain.
We do not yet have matrices in our formulation, but will very soon, and recall from matrix theory that
expressing a term as an inverse, for our purposes, is a way of denoting “division” using matrices.
Hence, by expressing the denominator as an inverse now, we are “prepping the ground” so to speak,
on our way to defining our new multivariate statistic.

The term
1
n1

+
1
n2

in (11.5), when simplified, is equal to
n1 + n2
n1n2

, yielding

t2 = y1 − y2
n1 − 1 s21 + n2 − 1 s22

n1 − n2 − 2
n1 + n2
n1n2

− 1

y1 − y2 (11.6)

Now, take a close look at (11.6) and ask yourself what is the multivariate matrix equivalent to the

pooled variance? It is S, the sample covariance matrix. And what is the equivalent of y1 − y2
2 in

terms of matrices? It is y1 − y2
2 where y1 and y2 are mean vectors for each level of the independent

variable, which recall for T2, there are two. Hence, when we translate the univariate formulation in
(11.6) to a multivariate one, we get the following, equation (11.7):

t2 = y1 − y2
n1 − 1 s21 + n2 − 1 s22

n1 − n2 − 2
n1 + n2
n1n2

− 1

y1 − y2

T2 =
n1n2

n1 + n2
y1 − y2 ' S− 1 y1 − y2

(11.7)

The one-sample multivariate generalization of t is analogously obtained, and equal to:

T2 = n y −μ0 ' S− 1 y −μ0

where μ0 now represents the mean population vector under the null hypothesis.
Analogous to univariate t for either the one-sample or two-sample case, T2 is useful in situations

where Σ is not known and must be estimated by S. The corresponding Z2 test statistics are thus
Z2 = n y −μ0 ' Σ− 1 y −μ0 for the one-sample case, and

Z2 =
n1n2

n1 + n2
y1 − y2 ' Σ− 1 y1 − y2

for the two-sample case. As usual, however, since Σ is rarely if ever known, we usually focus our devel-
opment on T2.

To compute Hotelling’s T2, we can compute a MANOVA and obtain Hotelling’s Trace, and from
there multiply this number by (N−L), where N is the sample size across groups, and L is the number of
groups on the independent variable, which since we are performing Hotelling’s, will be equal to 2. As a
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simple demonstration of computing T2 in SPSS, consider the following data on dependent variables
DV1 and DV2, and independent variable IV having two levels:

DV1 DV2 IV

1 5.00 6.00 0.00
2 9.00 4.00 0.00
3 4.00 3.00 0.00
4 3.00 8.00 0.00
5 6.00 5.00 0.00
6 1.00 2.00 1.00
7 2.00 6.00 1.00
8 7.00 7.00 1.00
9 5.00 5.00 1.00
10 9.00 2.00 1.00

We conduct the MANOVA using the following code:

GLM DV1 DV2 BY IV
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(.05)
/DESIGN= IV.

This generates the output below:

Multivariate tests

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s trace 0.925 43.124 2.000 7.000 0.000
Wilks’ lambda 0.075 43.124 2.000 7.000 0.000
Hotelling’s trace 12.321 43.124 2.000 7.000 0.000
Roy’s largest root 12.321 43.124 2.000 7.000 0.000

IV Pillai’s trace 0.064 0.238 2.000 7.000 0.794
Wilks’ lambda 0.936 0.238 2.000 7.000 0.794
Hotelling’s trace 0.068 0.238 2.000 7.000 0.794
Roy’s largest root 0.068 0.238 2.000 7.000 0.794

We note that Hotelling’s trace for the IV (not the intercept) is equal to 0.068. To get Hotelling’s T2,
we multiply this number by (N−L), equal to (10 − 2) = 8. Note that N is equal to 10 because there are
10 observations across groups, and L is equal to 2 because there are two levels on the independent
variable. Hence, Hotelling’s T2 is equal to 0.068(8) = 0.544. To get the statistical significance for
T2, we can simply refer to the above MANOVA output for Hotelling’s Trace (IBM SPSS, Inc.).
We see the result for our data is not statistically significant (p = 0.794). Though we computed T2

for demonstration, in practice, one can simply perform the MANOVA since the statistical significance
for the MANOVA will equal that for Hotelling’s T2.
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To run a Hotelling’s T2 in R, we can use the package ICSNP. We code our data on each dependent
variable, as well as the grouping variable on the IV:

> dv.1 <- c(5, 9, 4, 3, 6, 1, 2, 7, 5, 9)
> dv.2 <- c(6, 4, 3, 8, 5, 2, 6, 7, 5, 2)
> iv <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
> y < cbind(dv.1, dv.2)

The statement y < cbind(dv.1, dv.2) defines the response variable as both dependent vari-
ables considered simultaneously. Now, we are all set to conduct Hotelling’s T2 (do not forget to install
the package ICSNP first):

> library (ICSNP)
> y <- cbind(dv.1, dv.2)
> HotellingsT2(y ~ iv)

Hotelling's two sample T2-test

data: y by iv
T.2 = 0.23798, df1 = 2, df2 = 7, p-value = 0.7943
alternative hypothesis: true location difference is not equal to c
(0,0)

We can see that the p-value is the same as that produced in SPSS (p = 0.7943), though R by default is
reporting the associated F statistic of 0.23798 rather than the Hotelling’s T2 we computed manually in
SPSS. As was true for SPSS, as we will soon see, conducting the MANOVA instead of Hotelling’s T2

will yield the same decision on the null, and is usually the strategy employed by most researchers when
comparing mean vectors on two groups (analogous to computing an ANOVA even when a two-sample
t-test would suffice).

11.8 THE COVARIANCE MATRIX S

In seeking to understand any statistical equation, not unlike that of understanding the workings of an
automobile or aircraft, it behooves one to literally take it apart, study its components, then put it back
together again. We take a close look at what S−1 in Hotelling’s T2 represents. To better appreciate what
S actually is, it is helpful to once more recall univariate t, specifically how the estimate of the pooled
population variance was obtained. Recall once more, s2p in (11.3):

n1 − 1 s21 + n2 − 1 s22
n1 − n2 − 2

The terms in the numerator, n1 − 1 s21 and n2 − 1 s22, are actually sums of squares terms for the respec-
tive groups on the independent variable. How are these sums of squares for each group? To understand
how, recall how we formulated an unbiased estimate of the population variance (unbiased, since we are
dividing the sum of squared deviations by n − 1):
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s2 =

n

i = 1
yi − y

2

n − 1

To eliminate the denominator “n − 1,” we can multiply both sides by n − 1:

n − 1 s2 =

n

i = 1
yi − y

2

n− 1
n− 1

Canceling out (n − 1), this yields simply
n

i = 1
yi − y

2 on the right-hand side. Since we have two levels

of the independent variable, we will have two sums of squares values, one for n1 − 1 s21 and one for
n2 − 1 s22. Hence, we can write the pooled sample variance (s2p) as:

s2p =
ss1 + ss2
n1 + n2 − 2

where ss1 and ss2 are the sums of squares for each level of the independent variable in an independent
samples t-test.

In the multivariate setting, we now have more than a single dependent measure. Hence, instead of
having ss1 and ss2 alone to express within-group variability, we need to impose the matrix equivalent
counterpart. We will have one matrix E1 to express the cross-products in level 1 of the independent
variable, and another matrixE2 to express the cross-products in level 2 of the independent variable. The
dimension (i.e., the number of rows and columns) of each matrix will be determined by how many
dependent variables we include in the given model. For instance, in the case of three dependent mea-
sures, we define E1 for level 1 of the independent variable as

E1 =

ss11 ss12 ss13

ss21 ss22 ss23
ss31 ss32 ss33

where ss11, ss22 and ss33 represent the sums of squares for the first, second, and third dependent vari-
ables, respectively. Likewise, for the second level of the independent variable, we have the correspond-
ing matrix E2. Then, just as is done in the univariate case, we pool E1 with E2 to get the matrix of sums
of squares and cross-products:

E1 + E2 =

ss11 ss12 ss13

ss21 ss22 ss23
ss31 ss32 ss33

+

ss11 ss12 ss13

ss21 ss22 ss23
ss31 ss32 ss33

Note again that for Hotelling’s T2, there will always only be two sums of squares and cross-product
matrices to add, since Hotelling’s T2 is defined as having only two levels of the independent variable. In
the general multivariate case, however, the number of matrices will depend on how many levels exist
on the independent variable. For example, for the case of three levels on the independent variable, we
would have:
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E1 + E2 + E3 =

ss11 ss12 ss13
ss21 ss22 ss23
ss31 ss32 ss33

+

ss11 ss12 ss13
ss21 ss22 ss23
ss31 ss32 ss33

+

ss11 ss12 ss13
ss21 ss22 ss23
ss31 ss32 ss33

In the case of a factorial MANOVAmodel (not considered in this book in any detail), it stands that each
cell of the design will contain a matrix Ejk in row j, column k. For example, consider the case of the 2 ×
3 factorial univariate model featured in Chapter 4.Within each cell will be a matrixEjk (see Table 11.2).

11.9 FROM SUMS OF SQUARES AND CROSS-PRODUCTS TO VARIANCES
AND COVARIANCES

In our matrices E1 and E2, elements of each matrix consist of sums of squares along the main diagonal,
and cross-products on the off-diagonal. To get respective variances and covariances for E1, E2, Ep, we
divide each element of Ei by degrees of freedom, which are n − 1 for each Ei in a balanced design.
When we do so, we get the variance-covariance matrix Si for level i of the independent variable.
For example, for E1, we would have:

S1 =

ss11 ss12 ss13
ss21 ss22 ss23
ss31 ss32 ss33

1
n− 1

=

ss11
n − 1

ss12
n − 1

ss13
n − 1

ss21
n − 1

ss22
n − 1

ss23
n− 1

ss31
n − 1

ss32
n − 1

ss33
n− 1

Quantities along the main diagonal,
ss11
n− 1

,
ss22
n− 1

,
ss33
n− 1

are now sample variances, and quantities

on the off-diagonals,
ss12
n − 1

,
ss13
n − 1

,
ss23
n − 1

are now covariances. Recall that since S1 is symmetric,

the lower triangular will mirror that of the upper triangular. Likewise, for E2, E3,…, Ep, we will have
respective matrices S2, S3,…, Sp(where p here denotes the number of populations). Each of these
sample variance-covariance matrices are estimators of their corresponding population variance-
covariance matrices Σ1, Σ2,…, Σp (where the notation Σ1,Σ2,…,Σp is sometimes used to denote
estimation). The pooled variance–covariance estimator is thus, for p populations:

Spl =
n1 − 1 S1 + n2 − 1 S2 + + np − 1 Sp

n1 + n2… + np − p

TABLE 11.2 Cross-Product Matrices in 2 × 3 Multivariate Factorial Analysis of Variance

Factor 2

Factor 1 Level 1 Level 2 Level 3

Level 1 E11 E12 E13

Level 2 E21 E22 E23
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where Spl serves as an estimator of Σ. When the subscript pl in Spl is not given, such that only S is
shown, one might assume we are typically working with the pooled variance-covariance estimator.

11.10 HYPOTHESIS AND ERROR MATRICES OF MANOVA

Having considered the development of T2 earlier, we now consider the case where there are more than
two levels on the independent variable. Recall that Hotelling’s T2 only applies to the case of two
groups. We need the requisite matrices that will allow for two or more levels on the independent
variable.

Analogous to the univariate case where we have between and within sums of squares, in the gen-
eral multivariate case we will have matrix counterparts also corresponding to between and within
sources of variation. Only that now, in the language of the MANOVA model, these matrices will
be customarily referred to as H for “hypothesis” and E for “error.” These respective matrices are
given by:

H = n
p

i = 1

yi − y yi − y '

and

E =
p

i = 1

n

j = 1

yij − yi yij − yi '

A look at these matrices for H and E reveal that their computations are somewhat analogous to
the computation of sums of squares in ANOVA, only that now, more than a single dependent var-
iable is taken into account. The H matrix is one of potential treatment effects, that is, deviations of
means yi from a grand mean y , while the E matrix is a matrix corresponding to “within” variability
computed by taking observationswithin cells, yij, and subtracting correspondingmeans, yi . Analogous
to univariate ANOVA, the total variation T in MANOVA can be partitioned into two parts, that of H
and E. Hence, T = H +E. We use this identity next in developing test statistics for MANOVA. For a
good arithmetical example of these computations for a two-group problem, see Stevens (2009,
pp. 148–152).

11.11 MULTIVARIATE TEST STATISTICS

Recall that in one-way univariate ANOVA, we tested a null hypothesis of equality among population
means by constructing an F-ratio, the ratio of two variances MS between to MS within, where MS
between was a measure of between-group variance and MS within was a measure of within-group var-
iance. This was the only “omnibus” test statistic in ANOVA. In MANOVA, because of the potentially
complex configurations as a result of working in higher dimensions on mean vectors, no single sta-
tistical test is uniformly most powerful under all circumstances such as is true for the F-test in the
ANOVA model. Hence, in MANOVA and most other multivariate techniques, there exist several test
statistics that we may draw upon when evaluating statistical significance for a multivariate effect. We
now briefly survey these test statistics.
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Our first test, and undoubtedly most popular and of most historical significance, is that of Wilk’s
lambda, Λ, which bears a similar resemblance (but in reverse) to the univariate F-ratio. Wilk’s Λ is
given by:

Λ =
E

H + E
=

E
T

(11.8)

where |E| and |H + E| indicate determinants of E and H+E, respectively. It is easy to see what Wilk’s
test accomplishes. SinceT =H +E, the extent to which there are treatment effects is the extent to which
more of the variation is being accounted for byH relative to E. If total variation is not being accounted
for by treatment effects, then the size of E will dominate relative to H. Note that Λ is an inverse cri-
terion, meaning that smaller values ofΛ are preferable to larger ones. To see this, consider the situation
where the total variation T were completely accounted for by E:

Λ =
E

0 + E
=

E
E

= 1 0

On the other hand, if all variation is accounted for by treatment effects, or between-group differences,
then Λ would be

Λ =
E

H + 0
=

0
H

= 0

Hence, the range on Λ is 0 for a perfectly fitting model to 1.0 under H0 in which there is no mul-
tivariate effect. Unlike the F-ratio in univariate ANOVA, smaller values of Λ lead to a rejection of
H0 and an inference of the statistical alternative H1. Indeed, when the number of dependent variables
is reduced to one, Λ is equal to the ratio of SS within to SS total for univariate F, which also
corresponds to 1 − η2 in the one-way model. Wilk’s Λ can also be written as a function of eigenvalues
λ1, λ2, …, λp of E

−1H:

Λ =
s

i = 1

1
1 + λi

(11.9)

where λi denote respective extracted eigenvalues for the given MANOVA for i = 1 to s eigenvalues.
This definition for Λ is more applicable when interpreting discriminant function analysis, which, as
we will see in Chapter 12, is intimately related to MANOVA in that it defines the eigenvector(s) for
which group separation on the independent variable is maximized. For the case in which there are only
two levels on the independent variable, there will only be one eigenvalue extracted, and hence the prod-

uct operator,
s

i = 1
in (11.9) becomes unnecessary, and Λ reduces simply to 1

1 + λ.

The statistical significance of Λ can be evaluated by

χ2 = − N − 1 − 0 5 p + k lnΛ

which is distributed approximately as a chi-square variable on p(k − 1) degrees of freedom, where p in
this case is the number of dependent variables and k is the number of populations (i.e., levels on the
independent variable). This approximation is good for moderate to relatively large sample sizes
(Stevens, 2009). For details, see Bartlett (1947).
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11.11.1 Pillai’s Trace

Pillai’s trace (Pillai, 1955) is a second multivariate test statistic used for evaluating the statistical sig-
nificance of a multivariate effect and is defined by:

V s = tr E + H − 1H =
s

i = 1

λi
1 + λi

where tr is the trace, and λi is the ith eigenvalue. For the case of two levels on the independent variable,
since only a single eigenvalue is extracted, V(s) reduces to simply

V s =
λ

1 + λ
(11.10)

For the case of several λi, if we consider only the largest of these in Pillai’s, then we have what is
known as Roy’s largest root:

θ =
λ1

1 + λ1
(11.11)

where λ1 is the maximum eigenvalue extracted. Roy’s test uses only the largest eigenvalue of E−1H,
and so it is more powerful than other multivariate test statistics under the condition that the mean vec-
tors are collinear. What does it mean to say vectors are collinear? Recall that vectors “happen” in
Euclidean spaces, whether in two, three, or higher dimensions. For example, consider two possibilities
for three mean vectors (Figure 11.1).

Each of μ1, μ2, μ3 represents mean vectors. In the first case (Figure 11.1a), mean vectors lay more or
less in a straight line, and hence are collinear. Roy’s largest root considers only the largest of extracted
eigenvalues. The reason why the situation of even near collinearity of vectors is ideal for interpreting
Roy’s is that typically in such a case, the size of one eigenvalue will dominate the size of the others,
because, as will be elaborated on in Chapter 12, it is suggestive that a single discriminant function
suffices in accounting for group separation on the independent variable. Hence, it makes sense to con-
sider only the largest of these eigenvalues. For situations in which mean vectors are not collinear, other
tests such as Wilk’s, Pillai’s, or the Lawley–Hotelling trace (to be discussed), are generally recom-
mended for use in place of Roy’s. When mean vectors are spread out (i.e., not collinear), these other

(a) (b)

μ2

μ2

μ3

μ3

μ1

μ1

FIGURE 11.1 (a) Collinear vectors. (b) Noncollinear vectors. Source: Rencher and Christensen (2012).
Reproduced with permission from John Wiley & Sons, Inc.
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tests are generally more powerful. Note as well that for the case in which only a single eigenvalue is
extracted, θ reduces to V(s) since there is only a single root that is extracted, and hence it must also be the
largest root.

Pillai’s is a function of the trace of (E +H)−1H and as such is a direct measure of how much greater
H is relative to T. The statistical significance of Pillai’s trace can be evaluated as an approximate F-
statistic. Pillai also suggested two alternative F-approximations (Pillai, 1956). Pillai’s trace is quite
robust and is therefore usually the statistic of choice when assumptions such as equality of covariance
matrices are likely violated.

11.11.2 Lawley–Hotelling’s Trace

The Lawley–Hotelling statistic (Lawley, 1938; Hotelling, 1951) is given by:

U s = tr E− 1H =
s

i = 1

λi (11.12)

Consider the difference between V(s) andU(s). In V(s) we took the trace of (E +H)−1H, or (T)−1H. InU(s)

we are taking the trace of E−1H. Hence, in the case of V(s), we are comparing the size ofH relative to T,
whereas in U(s) we are comparing H relative to E; thus, U(s) is a comparison of how much variation is
accounted for by treatments inH relative to how much variation is “left over” in E. Instead of compar-
ing variation in H to the total variation in T, as in V(s), U(s) compares this variation with that unex-
plained, that is, E, analogous to comparing SSbetween to SSwithin in the univariate case. Since T =H + E,
the value of V(s) will always be smaller than U(s).

11.12 EQUALITY OF COVARIANCE MATRICES

Recall that in univariate ANOVA, we required that variances across populations be equal,
σ2j = 1 = σ2j = 2 = σ2j = J . In the MANOVA case, this assumption is also required, but in addition to
it, we also require the assumption that the covariances across populations also be equal. Recall that
we also required equality of covariance matrices in blocking and repeated-measures models, though
occurring in a different context. For a problem in which there are p populations then, we require that

Σ1 = Σ2 = Σ3… = Σp (11.13)

For example, for a three-group MANOVA problem, what (11.13) implies is that the following matrix
must be constant across populations as defined on the levels of the independent variable:

=

σ2v covc covc
covc σ2v covc
covc covc σ2v

where σ2v is a common population variance and covc is a common population covariance. The null
hypothesis is thus

H0 Σ1 = Σ2 = Σ3 (11.14)

tested against the alternativeH1 that at least two matrices of the set Σ1, Σ2, Σ3 are unequal. A test of the
null hypothesis of equal variances and covariances is available and known as the Box M-test. The test
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is described by Box (1949, 1950) in which he attributes it to Wilks (1946), who in turn references the
likelihood ratio method of Neyman and Pearson (1928). The likelihood ratio test (see Johnson and
Wichern, 2007 for details) required for testing (11.14), and which we will use for establishing the
Box M-test, is given by

Λ =
n

g = 1

Sg
Sp

ng − 1 2

(11.15)

where Sg is the sample covariance matrix for groups (or levels or populations) g = 1, 2,…,n, and ng − 1.
The pooled matrix across groups is given by Sp, and as before is equal to the weighted sum of sample
covariance matrices across groups (i.e., levels of the independent variable). What will makeΛ small? If
we assume the exponent ng − 1/2 is constant for a given problem, then the real “action” of Λ is in the
ratio |Sg| to |Sp|. The extent to which (Sg = 1) = (Sg = 2) = (Sg = 3) = (Sg = g) holds is the extent to which the

numerator |Sg| and the denominator |Sp| converge to the same value, under which case,
Sg

Sp
≈ 1 0. On

the other hand, the extent to which (Sg = 1) (Sg = 2) (Sg = 3)… (Sg = g) is different from the denom-
inator is the extent to which an “imbalance” among Sg is occurring, and hence support for the alter-
native hypothesis that at least two Sg are different from one another.

Given Λ, we can now establish the Box M-statistic:

M = − 2 lnΛ (11.16)

Note that in the trivial case where Λ is equal to 0,M is undefined, since ln(0) is likewise undefined. For

Λ equal to 1,M is equal to 0, since ln(1) = 0. Under H0, since we would expect
Sg

Sp
≈ 1 0, it stands that

lower than not values forM are expected. Conversely, as
Sg

Sp
1.0,M gets larger, providing evidence

againstH0 and in favor ofH1, suggesting at least one pairwise difference among population covariance
matrices Σ.

It has been shown that the Box M-test is distributed as an approximate χ2 distribution (Johnson and
Wichern, 2007). An F approximation may also be used (see Box, 1950). The test is rather sensitive to
nonnormality and kurtosis, and so a rejection of the null might occur even in situations for which the
violation of equality of covariance matrices is minimal. For this reason, some authors (e.g., Johnson
andWichern, 2007) suggest interpretingMANOVA tests even in light of a statistically significant find-
ing. We concur, but add also that should the Box-M test reject the null, a visual inspection of the covar-
iance matrices may be in order to detect potentially problematic (or even interesting) patterns in the
data. This highlights a general point emphasized throughout this book, and something to always keep
in mind—as a researcher, you are using these statistical tests to help you discern the presence or
absence of a scientific finding, not for their statistical “lore” alone. If the Box-M test issues a strong
rejection, then not only may it be worth investigating further to satisfy the statistical test, but an unequal
pattern of covariance matrices may also be of interest substantively.Ask questions of your data. Why
are covariance matrices unequal in the first place? Is their inequality due to an interesting pattern in the
data that may be of scientific value? Do not blindly keep trying to appease the test via statistical
assumptions while missing out on what the test may be telling you about your data from a substantive
point of view. If the null is rejected, seek value from its rejection from a scientific (in addition to sta-
tistical) perspective. In general, avoid “checklist data analysis” as much as possible where you simply
tick off assumptions one by one. Explore the intricacies of your data, and what you find may lead to
new scientific insights.
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11.13 MULTIVARIATE CONTRASTS

Recall that whenever we perform a contrast, no matter the complexity of it, such always boils down to a
comparison of two groups. Whether each group is a linear combination of means, or a single mean, we
are nonetheless comparing groups. In the univariate case, we built our contrasts by hypothesizing com-
parisons among population means of the form:

Ci = c1μ1 + c2μ2 + … + cJμJ

When we move from the univariate case to the multivariate case, we are required to build our contrast
not as a function of population means, but rather as a function of populationmean vectors, μ1,μ2,…μp.
Hence, for the multivariate case, we can represent a contrast by:

Ci = c1μ1 + c2μ2 + … + cpμp

Aswas true for the univariate case, unless we are working specifically with population data, we will not
ordinarily know the parameters of our contrast, and hence will be estimating them using functions of
our sample data (i.e., estimators):

Ci = c1y1 + c2y2 + … + cpyp

A relevant null hypothesis is that population mean vectors are equal

H0 Ci = 0

against an alternative that population mean vectors somewhere in the set are unequal:

H1 Ci 0

Now, just as was true for the univariate case, we will want to test our sample contrast for statistical
significance. Hence, we need to know how to estimate the standard error of such contrasts. Recall
how we estimated σ2C in the case of a univariate contrast:

σ2
Ci

= σ2e
j

c2j
n j

for which an estimator for σ2e was provided by MS error. We follow an analogous approach in the mul-
tivariate case. However, we cannot simply use MS error as our estimator. Why not? Because we are in
the MANOVA context and there is no corresponding single MS error value as there was in the uni-
variate context. To obtain our error estimate for theMANOVA case, we must also account, as usual, for
the covariances among dependent variables, which means we will use S as our estimator of . As was
true for the univariate case, we will again compute a t-statistic, only now, because we are working with
a linear combination of dependent variables instead of a single variable, we use T2 as our test statistic.
Hence, the contrast is given by

T2 =
p

i = 1

c2i
ni

− 1

C
'
i S

− 1Ci (11.17)
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Does (11.17) look familiar? It should, since it is somewhat analogous to Hotelling’s T2 featured earlier
in our generalization of univariate t for the case of two levels on the independent variable. Only now,

instead of the constant term for sample size equal to n1n2
n1 + n2

, the new term is now equal to
p

i = 1

c2i
ni
for the

case of the contrast. However, note the similarity between Hotelling’s and (11.17):

T2 =
n1n2

n1 + n2
y1 − y2 ' S− 1 y1 − y2 T2 =

p

i = 1

c2i
ni

− 1

C
'
i S

− 1Ci

In (11.17), we are not restricted to contrasts of the type y1 − y2 . For equal n per group, as noted in

Stevens (2009, p. 197), (11.17) reduces to T2 = n
2C

'
i S

− 1Ci for a paired comparison.

11.14 MANOVA IN R AND SPSS

In now demonstrating a simple example of MANOVA in R, we amend our data slightly from
Table 11.1 to now include three levels on the independent variable. Recall that there are two dependent
variables, and since we can conceptualize quantitative and verbal ability as a composite variable, it
makes sense to consider them simultaneously in a MANOVA. The independent variable for this exam-
ple is whether or not subjects received prior training in courses that would foster the development of
intellectual capacity and learning (1 = no specialized prior training, 2 = some training, 3 = extensive
training). There are a total of n = 3 observations per group. The data are given in Table 11.3.

The null hypothesis we wish to test is

H0
μ11
μ21

=
μ12
μ22

=
μ13
μ23

against a statistical alternative hypothesis of the kind that somewhere between mean vectors there is (or
are) differences. For instance, one possibility is:

H1
μ11
μ21

μ12
μ22

=
μ13
μ23

TABLE 11.3 Hypothetical Data on Quantitative and Verbal Ability as a Function
of Training (1 = No training, 2 = Some training, 3 = Extensive training)

Subject Quantitative Verbal Training

1 5 2 1
2 2 1 1
3 6 3 1
4 9 7 2
5 8 9 2
6 7 8 2
7 9 8 3
8 10 10 3
9 10 9 3
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We generate the vectors Q, V, and T, for variables quantitative, verbal and training, respectively,
then request R to generate the requisite data frame (iq.data):

> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10)
> V <- c(2, 1, 3, 7, 9, 8, 8, 10, 9)
> T <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> iq.data <- data.frame(Q, V, T)

Next, we bind the columns of Q and V to generate our dependent variable, which recall will be a
linear combination of Q and V:

> Y <- cbind(Q, V)

We confirm that Y has been constructed correctly, printing only the first three observations:

> Y
Q V

[1,] 5 2
[2,] 2 1
[3,] 6 3

We now generate factor levels for the independent variable training, naming our new factor T.f.
We also identify T.f as having three levels, none, some, and much to reflect the extent of training
received:

> T.f <- factor(T, levels = 1:3)
> levels(T.f ) <- c("none", "some", "much")

For demonstration, we now proceed to run the wrongMANOVA, requesting Wilk’s Λ as our mul-
tivariate test statistic, then requesting a summary of results:

> manova.fit <- manova(Y ~ T)
> summary(manova.fit, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
T 1 0.17871 13.787 2 6 0.005708 **
Residuals 7
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the output, we note that our effect for T has only a single degree of freedom. However, since T is a
grouping variable with three levels, the degrees of freedom should have been equal to 2 (i.e., 3 − 1 = 2).
Whatwentwrong?Whatwentwrong is thatweusedT insteadofT.f,which recallwehaddesignated asour
factor.Using T is a good example of amistake to avoidwhen fittingmodels. The failure to designate T as a
factor causedR to treat it as a continuous variable, which of course it is not. It is a categorical variablewith
categories corresponding to the levels of the independent variable. That is, R fit a regressionmodel above:

> reg <- lm(Y ~ T)
> anova(reg)
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Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.974 113.1 2 6 0.000017 ***
T 1 0.821 13.8 2 6 0.0057 **
Residuals 7
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that in the ANOVA table above, the p-value for T is equal to the same number that we
obtained earlier (i.e., p = 0.0057). We now fit the correct model:

> manova.fit <- manova(Y ~ T.f)
> summary(manova.fit, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
T.f 2 0.056095 8.0555 4 10 0.003589 **
Residuals 6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice now that the degrees of freedom for T.f are equal to 2, which are the correct degrees of
freedom for the factor. The p-value for Wilk’s Λ is equal to 0.003589, leading to a rejection of the
null hypothesis. We could have also instead requested Pillai’s trace as our multivariate test:

> summary(manova.fit, test = "Pillai")

Df Pillai approx F num Df den Df Pr(>F)
T.f 2 1.0737 3.4775 4 12 0.04166 *
Residuals 6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We note that while still calling for a rejection of H0 at a significance level of 0.05, the observed p-
value for Pillai is larger than that for Wilk’s. We could have also obtained the Lawley–Hotelling test
and Roy’s test by specifying the option test = “Hotelling-Lawley” and test = “Roy”
respectively, though we do not show the output of these tests here.

Analyzing these data in SPSS is straightforward and the output will mimic that generated in R. Conse-
quently, we do not display its output. One can obtain the MANOVA in SPSS through manova Q V by T
(1,3). Of more interest, as it will relate to the material of the following chapter on discriminant anal-
ysis and canonical correlation, we can obtain the eigenvalues and canonical correlations from SPSS:

manova Q V by T(1,3)
/print = sig(eigen).

Eigenvalues and Canonical Correlations

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 14.35158 98.88896 98.88896 .96688
2 .16124 1.11104 100.00000 .37263
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The eigenvalue for the first root can be computed by (0.96688)2/1 − (0.96688)2 = 14.35. This was
calculated using the canonical correlation reported in the far-right column (Canon Cor) which, when
squared, provides a measure of howmuch variance r2 is accounted for by the given function. To get the

squared canonical correlation r2 from the eigenvalue, we compute
λi

1 + λi
for each function. That is, for

the first function, we compute:

r21 =
λ1

1 + λ1
=

14 35158
1 + 14 35158

=
14 35158
15 35158

= 0 93

Notice that the above value of 0.93 matches up with that for the squared canonical correlation for the
first function, (0.96688)2. For the second function, we can likewise compute a squared canonical
correlation:

r22 =
λ2

1 + λ2
=

0 16124
1 16124

= 0 139

We discuss the canonical correlation more thoroughly in Chapter 12. The eigenvalue for the second
root is equal to (0.37263)2/1 − (0.37263)2 = 0.1612. We can see then that the first root dominates the
second in terms of size. What this suggests is that they both lay close to a single line (Rencher and
Christensen, 2012, p. 189). Recall we had said that under such a case, Roy’s test would be most pow-
erful. When we compute Roy’s on this data, we obtain:

> summary(manova.fit, test = "Roy")
Df Roy approx F num Df den Df Pr(>F)

T.f 2 14.352 43.055 2 6 0.0002764 ***
Residuals 6
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As expected, the p-value for Roy’s is smaller than that computed earlier for both Wilk’s and Pillai.
Roy’s largest root in this case provides the most powerful test.

Two eigenvalues are extracted from this analysis because there are three levels on the independent
variable. As we will learn in our discussion of discriminant analysis in Chapter 12, each eigenvalue
extracted corresponds to a “proportion of variance” accounted for by each discriminant function. It
is not “literally” a proportion of variance as it would be in a principal component analysis. However,
calling it such does no harm so long as one realizes its limitation. Referring to it more as a measure of
“importance” is more accurate of an interpretation (Rencher and Christensen, 2012). We will revisit
this issue later in the book when we discuss principal components analysis.

The importance of the first extracted root (eigenvalue) is computed as 14.35/(14.35 + 0.16) = 14.35/
14.51 = 0.989, while the importance of the second extracted root (eigenvalue) is computed as 0.16/
14.51 = 0.011. Clearly, the first discriminant function is responsible for most of the group sep-
aration between groups on the independent variable.

Tests for outliers in MANOVA can be performed using the mvoutlier package (Filzmoser and
Gschwandtner, 2014); for evaluating multivariate normality, Mardia’s test in the MVN package
(Korkmaz, Goksuluk, and Zararsiz, 2014). Multivariate normality can also be evaluated using the Sha-
piro-Wilk test in the mvnormtest package (Jarek, 2012) by calling the function mshapiro.test,
which is a generalization of the Shapiro-Wilk test for univariate normality. Influential observations can
also be detected by requesting Cook’s d values (see Chapter 7 for details). Q–Q plots and histograms
can also be generated.
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For the covariance assumption, we can use the boxM test in the package biotools (da Silva,
2014) to test the assumption of equal covariance matrices. For a test of the homogeneity of variances
only, one can use bartlett.test.

In SPSS, we can obtain Box’s test for our Q–V data by:

/PRINT=HOMOGENEITY

Box’s Test of Equality of Covariance Matricesa

Box’s M 9.949
F 0.849
df1 6
df2 897.231
Sig. 0.532
aDesign: Intercept + T.

The test is not statistically significant, suggesting we do not have evidence to doubt the assumption
of equal variance–covariance matrices between populations on the independent variable. Though recall
as a result of the test being quite sensitive to even minimal assumption violations, it is generally recom-
mended that we proceed with the MANOVA even in cases of a slightly statistically significant Box M-
test. On the other hand, if the violation is rather severe, inspection of covariance matrices may be in
order, both from a statistical point of view, but also more importantly from a scientific one.

11.14.1 Univariate Analyses

It is custom to follow up a statistically significant MANOVA with univariate ANOVAs. However,
when one does so, one should be acutely aware of why one is doing such a thing. Oftentimes research-
ers will follow upwith univariate analyses in an attempt to “break down” or otherwise “decompose” the
multivariate effect. Recall from our earlier discussion of Rao’s paradox, however, that a multivariate
effect may not always “decompose” into individual univariate effects, and vice versa, the pres-
ence of univariate effects does not necessarily indicate the presence of a multivariate effect.
Hence, the idea of performing univariate follow-up tests in an effort to “deconstruct” the multivariate
effect is misguided. Furthermore, there was presumably a reason why you chose MANOVA over inde-
pendent univariate analyses. If you find yourself more interested in the univariate effects than the mul-
tivariate findings obtained from your analyses, you might want to ask yourself why you performed the
multivariate tests in the first place. Recall that the fact that you have numerous dependent variables at
your disposal, by itself, should not be a rationale for why the MANOVA is performed.

Univariate tests can be obtained for our data via summary.aov (manova.fit). Using sum-
mary.lmwill provide us with contrasts on levels of T.f on each dependent variable. For instance, for
quantitative, we can compute:

> summary.lm(aov(Q ~ T.f ))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.3333 0.7935 5.461 0.00157 **
T.fsome 3.6667 1.1222 3.267 0.01709 *
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T.fmuch 5.3333 1.1222 4.753 0.00315 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.374 on 6 degrees of freedom
Multiple R-squared: 0.7976, Adjusted R-squared: 0.7302
F-statistic: 11.82 on 2 and 6 DF, p-value: 0.008289

By default, and contrary to SPSS, R uses the first group (T.f = 1) as the reference group (to generate
similar contrasts in SPSS, use /PRINT=PARAMETER). The intercept estimate is that of the mean of
Q for T = 1 (4.33). The value of 3.67 for T.fsome is the mean difference between T = 2 and T = 1 (8.0 −
4.3). The final value of 5.3 is the mean difference between T = 3 and T = 1 (9.6 − 4.3).

As in univariate ANOVA, there is nothing stopping us from modeling several factors simultane-
ously in MANOVA and computing interaction terms. For example, had we a second factor in our
Q–V data, we could have easily modeled the interaction with a second factor X by computing
manova(Y ~ T.f + X + T.f:X). The interpretation of the interaction term parallels that in univariate
ANOVA, except, of course, it is on the linear combination Y instead of a single dependent variable.

11.15 MANOVA OF FISHER’S IRIS DATA

We now demonstrate MANOVA on Fisher’s classic iris data. Recall that the data consist of a total of
150 observations on three species of iris, 50 on setosa, 50 on virginica, and 50 on versicolor. On each
sample, the length and width of both sepals and petals were recorded. In our analysis, we would like to
learn whether there are “species” (setosa, versicolor, and virginica) differences on a linear combination
of flower features.

We first generate a combination of Sepal.Length + Sepal.Width + Petal.
Length + Petal.Width through cbind, then request the MANOVA:

> attach(iris)
> iris.manova <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length,
Petal.Width) ~ Species, data = iris)
> anova(iris.manova)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.99313 5203.9 4 144 < 2.2e-16 ***
Species 2 1.19190 53.5 8 290 < 2.2e-16 ***
Residuals 147
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By default, R produces Pillai’s test, yielding a value of 1.19 with associated p-value of 2.2e-16.
Clearly, there is an effect of species on the linear combination of flower features. To get all four mul-
tivariate tests, as well as the sums of squares and products matrices, one could compute via the car
package, summary(Anova(iris.manova), univariate = FALSE, digits = 4). Doing
so would reveal that all four multivariate tests are statistically significant. Several options exist for plot-
ting multivariate effects, among them include heplots (see Friendly, 2007, for details).
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11.16 POWER ANALYSIS AND SAMPLE SIZE FOR MANOVA

Power analysis for MANOVA can be conducted using G∗Power similar to how we conducted it in
ANOVA, where one specifies in advance an estimated effect size (entered as f2 in G∗Power), desired
significance level (α), desired power, and the number of groups on the independent variable. Because
the analysis is multivariate, one needs to also specify the number of dependent variables for the anal-
ysis, since this number can no longer be assumed to equal 1 as in the univariate case. As an example,
suppose a researcher estimates an effect size of f2 = 0.10 at a significance level of 0.05, with power set
to 0.95. Suppose the researcher has three groups on the independent variable and is interested in ana-
lyzing such group differences on a linear combination of two response variables. In G∗Power, one spe-
cifies “MANOVA: Global effects,” and then enters the parameters for effect size, error probability,
power, number of groups, and number of response variables:

We see that for the inputted parameters, the total sample size required for this study is 96 (i.e., 32 per
group, since there are three groups).
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11.17 MULTIVARIATE ANALYSIS OF COVARIANCE AND MULTIVARIATE
MODELS: A BIRD’S EYE VIEW OF LINEAR MODELS

As both analysis of variance and analysis of covariance can be considered special cases of the wider
general linear model, so too can the multivariate analysis of variance and multivariate analysis of
covariance be conceptualized as special cases of the wider multivariate multiple regression model
ormultivariate general linear model. That is, we expand the landscape from our earlier general linear
model for regression in (7.7), y = Xβ + ε, to an even more inclusive general linear model, first intro-
duced in Chapter 2:

Y = XB + E (11.18)

where Y is an n × m matrix of n observations on m response variables, X is the model matrix whose
columns contain k regressors which includes the intercept term, B is a matrix of regression coefficients
and E is a matrix of errors. Model (11.18) is adaptable to a variety of variable-types and can accom-
modate a wide number of variables. For example, in the multivariate regression model, because it is
multivariate, Y in (11.18) could contain more than a single continuously distributed response, and X
could contain a mix of continuous and polytomous predictor variables. If we expand (11.18) even fur-
ther, we obtain model (5.11) discussed in the context of ANOVA models:

Y = XB + ZU + E (11.19)

where ZU contains random effect terms (over and above the random effect E). Recall model (11.19) is
the matrix formulation of the mixed-model (Chapter 5), which contains a blend of fixed (in XB) and
random (in ZU) effects. A researcher could also include one or more covariates in a MANOVA in an
effort to reduce the error term (and hence, boost power) for testing treatment effects, yielding theMAN-
COVA model.

The point of this brief discussion is to emphasize the numerous possibilities for fitting a wide variety
of models starting with a very general framework. As one becomes more familiar with more compli-
cated models, one begins to see previously learned models as simply “special cases” of the wider land-
scape. Indeed, both models (11.18) and (11.19) could, in turn, be considered special cases themselves
of the wider generalized linear model, as previously discussed in Chapter 10 in which our focus there
was on the logistic regression model, but where several other “link functions” could have been used
depending on the context.

This is the extent to which we discuss the comparison of parameterization options for the multivar-
iate general linear model. A thorough discussion would require a chapter in its own right if not an entire
book. The reader interested in learning about such parameterization options should consult Fox (1997)
for an overview of such work with regard to the more global models briefly discussed here.

11.18 CHAPTER SUMMARY AND HIGHLIGHTS

• Multivariate analysis of variance (MANOVA) is a statistical method useful for situations in
which one wishes to analyze group differences on a linear combination of dependent variables.
The typical null hypothesis for MANOVA is that there are no population mean differences on a
vector of dependent variables.

• MANOVA can be conceptualized as either an extension of univariate ANOVA or as a more
general linear model of which ANOVA is a special case.
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• ForMANOVA to be a suitable model for a research problem, the hypothesized linear combination
of dependent variables should usually be constructed based on theory, or at the very least, make
some sense a priori to the investigator. If combining dependent variables is not logical for the
given research context, then other than for strictly exploratory pursuits, MANOVA is not
recommended.

• Statistical reasons for running a MANOVA include control over the inflation of the type I error
rate and the capitalization of covariance between dependent variables, which in separate univar-
iate ANOVAs would not be modeled.

• Rao’s paradox describes the fact that one can fail to reject a multivariate hypothesis yet still reject
individual univariate hypotheses, or fail to reject univariate hypotheses yet still discover a mul-
tivariate effect. The essence of the paradox is a reminder that whenever one tests a model, it is the
model you are testing and never individual effects within the model. Even the simplest of models
are still context-dependent.

• Hotelling’s T2 tests for mean population differences between two groups on a linear combination
of response variables. It can be understood as an extension of univariate t, or as a special case of
the wider MANOVA model. Showing how Hotelling’s T2 is derived from univariate t is a pow-
erful way to reveal how its structure is very much analogous to univariate t. Studying its makeup is
also a powerful way of being introduced to the nature of multivariate methods.

• Wilk’sΛ is historically the most popular multivariate test statistic. It is an inverse criterion, mean-
ing that smaller values are more indicative of evidence against the null than are larger values. It is

defined as the ratio of determinants of the error matrix relative to the total matrix,Λ = E
H + E = E

T .

• Pillai’s trace is a multivariate test statistic defined as V s = tr E + H − 1H =
s

i = 1

λi
1 + λi

, where λi

are eigenvalues.

• Roy’s largest root is another multivariate test statistic, given by θ = λ1
1 + λ1

, where λ1 is the max-

imum eigenvalue extracted for the given problem. Roy’s test is most powerful over competing
multivariate tests whenmean vectors are collinear. In problems where only a single eigenvalue
is extracted, θ and V(s) will be the same.

• Lawley–Hotelling’s Trace is another multivariate test statistic, given by

U s = tr E − 1H =
s

i = 1
λi.

• MANOVA requires the assumption of equality of covariance matrices. This assumption can be
tested using the Box M-test, though because the test is sensitive to distributional assumptions,
even when Box reveals a statistically significant finding (thereby rejecting the assumption of
equal variance-covariance matrices), it is recommended that in most cases one should nonetheless
proceed with the MANOVA. Nonetheless, both statistically and substantively, the Box M-test is
important because it provides insight into the structure of covariance matrices.

• Contrasts in MANOVA can be constructed in a similar manner as contrasts in univariate
ANOVA, only that in MANOVA, mean vectors are being compared instead of simply univariate
means.

• Following up a MANOVA with individual univariate ANOVAs on each dependent variable is
acceptable if one has a theoretical reason for doing so. Because of Rao’s paradox, however,
one should not habitually conduct the follow-up univariate analyses in an effort to “decompose”
the multivariate effect. Multivariate models are distinct from univariate ones.
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REVIEW EXERCISES

11.1. Describe how multivariate analysis of variance differs from univariate analysis of vari-
ance. What are the distinguishing features? Discuss how MANOVA can be understood as
either an extension of ANOVA or how ANOVA can be understood as a “special case” of
MANOVA.

11.2. In the context of MANOVA, describe what is meant by a linear combination or linear com-
posite of variables.

11.3. Discuss why it is that even if one has several response variables at his or her disposal, MAN-
OVA may still not be a suitable statistical approach.

11.4. Discuss why using scalars of “1” in the linear combination (1)quantitative + (1)verbal = group
would be considered a naïve approach to generating the given linear combination.

11.5. Discuss how the concept of linear combinations is not at all “new” to MANOVA and how it
has been featured, sometimes indirectly, in virtually all statistical methodologies up to now
(and further on) surveyed in this book.

11.6. Why is it that if the variate is not in some sense, even if minimally, “meaningful,” then the fact
that MANOVA helps to regulate the type I error rate is not in itself a “selling point” to using
MANOVA.

11.7. Discuss what is meant by the familywise error rate.

11.8. Discuss the essential feature of Rao’s paradox. As an applied researcher, how does this par-
adox influence the way you analyze your data? Why is the paradox especially relevant to your
own research pursuits and your reading of the scientific literature?

11.9. Describe in words Hotelling’s T2 and draw as many parallels as you can between it and uni-
variate t.

11.10. Describe the nature of theH and Ematrices of MANOVA. How are they similar and different
from scalar quantities used in ANOVA? Is the correspondence between H and E to such sca-
lars in ANOVA a perfect one? Why or why not?

11.11. Why is Wilk’s Λ referred to as an inverse criterion? Explain.

11.12. What does a Wilk’s Λ of 1.0 mean? What does a Wilk’s Λ of 0.0 imply?

11.13. When is it most appropriate to use Roy’s largest root as a multivariate test? Give two sce-
narios where the value of Roy’s is guaranteed to match that of Pillai’s. Why is this so?

11.14. Explain how the Box-M test goes about testing the assumption of equal covariance matri-
ces. Referring to its formula, explain the structure of the test.

11.15. Distinguish between a univariate and a multivariate contrast.

11.16. Discuss the components of themultivariate general linear model Y = XB +E. Discuss how
this model can be considered a special case of the model Y =XB + ZU +E and how this latter
model can be considered a special case of the generalized linear model.

11.17. Recall the data in which quantitative ability Q and verbal ability V were hypothesized as a
function of training T. Make up data for a variable named prior experience P, with levels
“none” and “at least some” accounting for howmuch prior educational experience individuals
brought to the study. Generate the data such that there is a statistically significant training by
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prior experience interaction effect on the variate. Interpret its meaning, then conduct simple
main effects and post-hocs to tease apart the interaction effect.

11.18 Consider data from Holzinger and Swineford (1939) (contained in package lavaan in R,
(Rosseel, 2012). The complete data set contains 301 observations on the following 15 variables
(note that tests x1–x9 constitute 9 of the 15): id (identifier), sex, ageyr (age in years), agemo
(age in months), school (school attended by the child), grade, x1–x9 (9 tests of mental ability).
We rename the data frame hs and print a few cases below:

> library(lavaan)
> hs <- data.frame(HolzingerSwineford1939)
> library(car)
> some(hs)

> some(hs)

id sex ageyr agemo school grade x1 x2 x3 x4 x5

2 2 2 13 7 Pasteur 7 5.333333 5.25 2.125 1.666667 3.00

20 21 2 12 3 Pasteur 7 6.333333 8.75 3.000 3.666667 3.75

34 36 2 12 3 Pasteur 7 4.166667 6.00 2.375 3.333333 4.25

x6 x7 x8 x9
2 1.285714 3.782609 6.25 7.916667
20 2.571429 3.478261 5.35 4.916667
34 1.857143 5.391304 4.35 5.638889

(a) Test the hypothesis that mental tests x1 through x9, considered as a composite, are a
function of sex.

(b) Adapt the analysis in part (a) to include grade as a second independent variable in the
model. Evaluate the potential effects for sex, grade, and comment on whether or not
you have evidence to believe there is a sex by grade (i.e., two-way) interaction.

(c) Adapt the analysis in part (b) to include school as a third independent variable in the model.
Evaluate the three-way interaction.

11.19. Anderson (2003) analyzed data on Egyptian skulls (p. 345) where it was hypothesized that
change in skull size is a function of period of time (i.e., “epoch”). Skull size is operationally
defined with four different variables: mb (maximum breadth of skull), bh (basibregmatic
height of skull), bl (basialveolar length of skull), nh (nasal height of skull). Duplicate Ander-
sen’s analysis in R. The data is stored in the HSAUR package (Everitt and Hothorn, 2015).
A few cases from the data frame appear below. Is there evidence that the linear combination
mb + bh + bl + nh is a function of epoch?

> library(HSAUR)
> skulls

epoch mb bh bl nh
2 c4000BC 125 131 92 48
6 c4000BC 138 137 89 56
20 c4000BC 132 131 101 49
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11.20. Reanalyze the data in 11.19, this time defining the linear combination of response variables as
composed of only bh, bl, and nh, discarding mb. Is epoch statistically significant? Did the
p-value for epoch change? Why might it have changed?

Further Discussion and Activities

11.21. We have learned that the multivariate analysis of variance is a relatively technically elegant
statistical method. However, does application of the statistical method to empirical data
“advance” science more than if we only had univariate methods (e.g., ANOVA) at our
disposal? Do you believe it is reasonable, substantively, even if doable mathematically, to
hypothesize linear combinations of dependent variables as representative of constructs?
Are social scientists’ claims made stronger or weaker by hypothesizing linear combinations
rather than single variables as responses?What benefits or drawbacks can you think of to oper-
ationalizing variables in this way of linear combinations, that either advance, or delay the pur-
suits of scientific knowledge? Discuss.
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12
DISCRIMINANT ANALYSIS

When two or more populations have been measured in several characters, x1,…, xs, special interest attaches
to certain linear functions of the measurements by which the populations are best discriminated … In the
present paper the application of the same principle will be illustrated on a taxonomic problem… We shall
first consider the question: What linear function of the four measurements

X = λ1x1 + λ2x2 + λ3x3 + λ4x4

will maximize the ratio of the difference between the specific means to the standard deviations within
species?

(Fisher, 1936, p. 466)

Discriminant analysis is a statistical method first proposed by Fisher in 1936 for the purpose of clas-
sifying objects, subjects, or items into typically one of two or more mutually exclusive populations.
Analogous to regression in which the task is to make predictions on a response variable based on a
linear combination of predictors, the job of discriminant analysis is likewise to use a linear combination
of explanatory variables (typically, continuous ones) to predict a response on a binary or polytomous
dependent variable.

Recall that in MANOVA, we were interested in testing hypotheses about population differences on
a mean vector. In linear discriminant analysis (LDA), we turn things around, and ask whether a linear
combination of predictors might prove useful in predicting group membership. More formally, for a
two-group problem, the discriminant function is the linear combination of predictors that maximizes
the distance between the two group mean standardized vectors and ideally reduces errors of
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classification. More technically, LDA seeks a projection (i.e., a mapping of vectors onto a vector sub-
space) of observations such that the ratio of between-group variability to within-group variability is
maximized. If a cost function is incorporated into the analysis, we can say as well that, in general,
discriminant analysis seeks to minimize the cost of misclassification, though it is not necessarily
the case that good discriminant functions are always one-to-one with good classification. As Timm
(2002, pp. 419–420) notes, “While one may intuitively expect a good discriminant to also accurately
predict group membership for an observation, this may not be the case. A classification rule usually
requires more knowledge about the parametric structure of the groups.”

Fisher first demonstrated the technique of discriminant analysis on the iris data first introduced in
Chapter 8 and also analyzed as a MANOVA in the previous chapter. In the MANOVA, we were inter-
ested in learning whether mean species differences (setosa, virginica, and versicolor) could be inferred
to exist on a linear combination of flower features sepal length, sepal width, petal length, and petal
width. In the current chapter, we “reverse” the problem, and ask whether one can use a linear combi-
nation of these four features to maximize discrimination between species. Fisher’s contribution in 1936
was to show how one could predict the species of iris based on characteristics of sepals and petals.

Many introductory to intermediate sources are available on discriminant analysis. Among them are
Johnson and Wichern (2007), Rencher (1998), and Flury (1997).

12.1 WHAT IS DISCRIMINANT ANALYSIS? THE BIG PICTUREON THE IRIS DATA

To motivate our development of discriminant analysis, we consider first the end result of Fisher’s anal-
ysis, which we will also generate for ourselves later in the chapter. Consider Figure 12.1, which
appeared on the final page of Fisher’s seminal 1936 paper. The diagram is one of the final classification
results based on using linear functions, called discriminant functions, to classify species of iris. With-
out even knowing what the discriminant functions are yet, through inspection of the diagram, we can
informally assess how “good” the functions were that Fisher developed.

Consider first the classification of setosa. Notice how that distribution of classification scores is
very well separated from both versicolor and virginica. Informally then, whatever function rules were
derived from the LDA appear to have done a pretty good job at providing separation between setosa
and the other two species. Are they discriminating well between versicolor and virginica? Not as well it
seems, since between these there is substantial overlap in distributions. The goal of this chapter is to
learn what these discriminating functions look like, how they are obtained, and how to assess their
“goodness” in terms of how well they discriminate, analogous to how we evaluated regression equa-
tions in terms of how well they could make predictions.

As we will see, Fisher desired his discriminant functions to be ones that would “maximize the ratio
of the difference between [emphasis added] the specific means to the standard deviations within
[emphasis added] species” (Fisher, 1936, p. 466). That is, Fisher derived functions that maximized
between variation relative to within variation. Does this sound familiar? This is an analogous idea
to that encountered in our study of the analysis of variance in Chapter 3 through MS between and MS
within, and even more so in themultivariate analysis of variance of Chapter 11 via matricesH and E.
In MANOVA, the goal could be said to use a grouping variable to make predictions on a linear com-
posite variable. We tested null hypotheses about population mean differences on a mean vector, but we
did not identify what functionwas actually responsible for maximizing differences between groups. In
discriminant analysis, we learn the nature of such functions, the so-called discriminant functions.
Refer to Table 12.1 for an overview comparison of the two approaches in terms of the typical makeup
of response and predictor variables in each case.
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12.2 THEORY OF DISCRIMINANT ANALYSIS

In surveying some of the theory behind discriminant analysis, we begin with the situation of predicting
membership on two populations, then move on to considering LDA for several populations. Along the
way, we demonstrate how features of the output obtained in LDA can be related to that obtained in
MANOVA. This comparison is extremely useful so that the user recognize and appreciate the simi-
larity of these models. Often in statistical analyses, researchers may be using very similar underlying
models that simply go by different names and have different applied purposes. Appreciation of the
similarity between models allows one to understand their underlying structures and the generality
of statistical methods.

15

Iris setosa

Iris versicolor

Iris virginica

20

Means and two-thirds
weighted mean

25 30
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FIGURE 12.1 Fisher’s discriminant function analysis of the Iris data. Source: Fisher (1936).

TABLE 12.1 Comparison of Typical Response and Predictor Variables for MANOVA versus
Discriminant Analysis

Response Variable Predictor Variables

Multivariate analysis of variance Continuous Dichotomous (Hotelling’s T2)
or polytomous (MANOVA)

Discriminant analysis Dichotomous or polytomous Continuous
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12.2.1 Discriminant Analysis for Two Populations

In a discriminant analysis for predicting membership on one of two mutually exclusive populations, we
want to derive a linear combination of predictor variables that best discriminates group membership on
a binary response variable. Recall what it means for categories to bemutually exclusive—practically,
it means if you are in one category, you cannot simultaneously be in the other. In binary discriminant
analysis, you are either in one group or the other, you cannot be in both simultaneously.

Recall from Chapter 2 the definition of a linear combination of the form:

ℓi = a1y1 + a2y2 + … + apyp

= a y
(12.1)

where a = (a1, a2, …, ap). These values are scalars, and serve to weight the respective values of y1
through yp, where p is the number of variables. The essence of discriminant analysis is to find a vector a
that will maximize the standardized difference between groups on the response variable. That is, we
want a vector that maximizes

d =
ℓ1 − ℓ2
sℓ

where sℓ is the pooled standard deviation of linear combinations. Because we know that ℓ1 − ℓ2 can be
negative, we will use the squared distance instead:

d2 =
ℓ1 − ℓ2

2

s2
ℓ

(12.2)

But what vector will maximize the squared distance in (12.2)? It can be shown (see Rencher and
Christensen, 2012, Chapter 8; Tatsuoka, 1971, Chapter 6) that the squared distance between mean
vectors is a function of a, given by:

d2 =
ℓ1 − ℓ2

2

s2
ℓ

=
a y1 − y2

2

a Spa
(12.3)

where a is the transpose of estimated coefficients, y1 − y2 is the mean difference between vectors, and
a Spa is the variance of ℓ (i.e., s2

ℓ
= a Spa). It can be shown further that the maximum occurs when

a = S− 1
p y1 − y2 (12.4)

or when a is any multiple of (12.4). The maximizing vector a in this sense, is not unique. However, the
direction of the vector is unique. What this means is that though we can multiply values of a by a
scalar, the ratios of elements of awill remain the same (Rencher and Christensen, 2012). For example,
if a1 = 10 and a2 = 20, the ratio of “2 to 1” (i.e., a2 to a1) remains even if we multiply by a scalar. Recall
that if a is a vector, then when multiplied by a scalar of 3, for instance, 3a simply elongates the vector
without its changing direction. This is what we mean by saying the direction is unique. Consider a
simple vector (1, 3) multiplied by a scalar of 2 (Figure 12.2):
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The length of the vector increased by a factor of 2, yet the direction of the vector remained
the same.

12.2.2 Substituting the Maximizing Vector into Squared Standardized Difference

We have said that the squared standardized difference between groups, that of (12.3), will be maxi-
mized by finding the vector (12.4). Substituting (12.4) into (12.3), we can state:

d2 =
ℓ1 − ℓ2

2

s2
ℓ

= y1 − y2 S− 1
p y1 − y2 (12.5)

We can see that structurally, we are “squaring” the mean difference in vectors, that of y1 − y2 (i.e.,
y1 − y2 y1 − y2 ) and dividing by the pooled covariance matrix, Sp, where multiplying by its inverse,
S− 1
p , recall, acts here as division in matrix operations. To understand (12.5) better, imagine for a

moment if we wrote it as:

ℓ1 − ℓ2
2

s2
ℓ

=
y1 − y2

2

Sp

Though the above of course is not a technically correct way of displaying the equation, it does give a
sense of what is going on. When we compute (12.5), all we are doing is generating a ratio of squared
mean vector differences in the numerator relative to an overall measure of variance and covariance in ℓ.
Interpreted geometrically, what (12.5) is “accomplishing” is making an adjustment on the original axes
in the Cartesian plane that best accounts for mean vector separation by consideration of the contents of
Sp, which of course contain variances and covariances. By “standardizing” the squared distance

(2, 6)

(1, 3)

0

0

1

2

3

4

5

6

1 2 3

2v

FIGURE 12.2 Multiplication of a vector by a scalar of 2.
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y1 − y2
2, this effectuates a new dimension (axis) along which group separation is maximized. For a

simple demonstration of the geometrical interpretation, see Lattin, Carroll, and Green (2003,
pp. 429–434).

We demonstrate the essential concepts of discriminant analysis through a simple and straightfor-
ward example. Consider the hypothetical generic data in Table 12.2 having response variable yi
and predictors x1 and x2.

Our goal is to find a linear combination of x1 and x2 such that the discrimination between groups 0
and 1 on yi ismaximal. That is, the task is to generate a linear combination of x1 and x2 that will aid in
predicting group membership on yi. But what does maximal discrimination mean? It is possible that
our discriminant function, because of the nature of our data, will do less than a perfect job at discrim-
inating between groups. What then does it mean to say the function will maximally discriminate?

To understand what this means, we draw on our knowledge of least-squares regression. What did it
mean to say we were fitting the least-squares line? It meant that of all the possible lines we could the-
oretically fit to our sample data, the least-squares line is the one that minimized the sum of squared
errors around the line (or plane in the case of multiple regression) better than any other line that could
be fit to the given data. Did this fact guarantee that for the given set of data the sum of squared errors
would be necessarily small? Not at all. For sloppy, high-variability data, the least-squares line will
likewise provide a sloppy fit. But then, OLS cannot guarantee anything about data. It can only guar-
antee to minimize the sum of squared error on that data.

A parallel to OLS is somewhat evident in discriminant analysis. By the theory of LDA, we knowwe
are maximally discriminating between groups, but whether this maximum discrimination is “good” or
not will depend on the data we are computing the function on. Analogous to building a house with poor
versus quality materials, LDA, as was true for OLS regression, will produce as good of a function
(house) as the data (materials) allow, but no better. Regardless of the statistical model, it must always
be remembered that no matter how sophisticated the model may be, it can never work miracles on
effects that are just not there to begin with.

12.3 LDA IN R AND SPSS

We carry on now with a discriminant analysis on the data in Table 12.2. We enter our data in R by
generating the relevant vectors and construct the data frame, which we name discrim:

TABLE 12.2 Hypothetical Data onBinary Response
and Continuous Predictors

Subject y x1 x2

1 0 4 2
2 0 3 1
3 0 3 2
4 0 2 2
5 0 2 5
6 1 8 3
7 1 7 4
8 1 5 5
9 1 3 4

10 1 3 2

399LDA IN R AND SPSS



> y <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
> x1 <- c(4, 3, 3, 2, 2, 8, 7, 5, 3, 3)
> x2 <- c(2, 1, 2, 2, 5, 3, 4, 5, 4, 2)
> discrim <- data.frame(y, x1, x2)
> discrim

y x1 x2
1 0 4 2
2 0 3 1
3 0 3 2
4 0 2 2
5 0 2 5
6 1 8 3
7 1 7 4
8 1 5 5
9 1 3 4
10 1 3 2

We perform the discriminant analysis by calling the function lda (“linear discriminant analysis”)
denoting y as a function of x1 + x2:

> library(MASS)
> lda.fit <- lda(y ~ x1 + x2, data = discrim)
> lda.fit

Call:
lda(y ~ x1 + x2, data = discrim)

Prior probabilities of groups:
0 1

0.5 0.5

By default, the prior probability of group membership is set at 0.5 for each group. For some pro-
blems, we may want to adjust this prior probability to differ from the default. This can be done for a
similar reason why we may wish to incorporate baseline or base rate information in a wide variety of
problems, such as the probability of surviving versus not surviving an operation, or the probability of
passing or failing a university course. As discussed in the Appendix, these are prior probabilities, so
they should to some extent reflect the “current status” with regard to the probability of a success or
failure. Priors in this regard could also be selected as a function of sample size per group to represent
proportional “baselines” in the population.

R provides us with the cell means across each group, then follows this up with the discriminant
function coefficients:

Group means:
x1 x2

0 2.8 2.4
1 5.2 3.6
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Coefficients of linear discriminants:
LD1

x1 0.4973955
x2 0.4310761

The coefficients of linear discriminants are the raw coefficients of the discriminant function esti-
mated on our data. We can obtain the linear discriminant function scores quite easily (only the first
three scores are given below):

> predict(lda.fit)

$class
[1] 0 0 0 0 0 1 1 1 0 0

Levels: 0 1

$posterior
0 1

1 0.67646834 0.32353166
2 0.91102713 0.08897287
3 0.83042643 0.16957357

LD1
1 -0.4310761
2 -1.3595477
3 -0.9284716

The above are the posterior probabilities of group membership, along with the discriminant function
scores for LD1. This information is summarized in Table 12.3.

The first two columns in Table 12.3, Posterior 0 and Posterior 1, are the probabilities of being
classified into group 0 or 1 based on the estimated discriminant function. Note that because they
are probabilities, they are continuously scaled measures, not binary ones as required to predict

TABLE 12.3 Posterior Probabilities and Predicted Group Membership (Posterior G), along with
Discriminant Scores

Posterior 0 Posterior 1 Posterior G D Scores Y X1 X2

0.68 0.32 0 −0.43 0 4 2
0.91 0.09 0 −1.36 0 3 1
0.83 0.17 0 −0.93 0 3 2
0.92 0.08 0 −1.43 0 2 2
0.56 0.44 0 −0.13 0 2 5
0.03 0.97 1 1.99 1 8 3
0.04 0.96 1 1.92 1 7 4
0.09 0.91 1 1.36 1 5 5
0.53 0.47 0 −0.07 1 3 4
0.83 0.17 0 −0.93 1 3 2
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membership on the response variable. The third column, Posterior G, is the predicted group member-
ship based on the discriminant function. This group classification is based on the derived discriminant
scores of the fourth column, D Scores. Notice that the sign of the discriminant scores, + or −, corre-
sponds with whether an observation was classified into group 0 or 1, since zero is the balance point
used for classification here where n1 = n2 (James et al., 2013, p. 141). We note from inspection of the
column Posterior G and that ofD scores that the function correctly classified all of the cases for yi = 0,
and 3 out of 5 for yi = 1. That is, our function misclassified two cases. We can request R to produce the
following classification table to summarize this fact, sometimes called a confusion matrix:

> table(discrim$y, predict(lda.fit)$class)

0 1
0 5 0
1 2 3

Along the main diagonal of the matrix are the correct classifications. The misclassifications appear
in the off-diagonal. The confusion matrix confirms the results of our analysis regarding the misclassi-
fied cases, that though two cases actually belong to yi = 1, they were instead predicted into yi = 0 (the
two misclassified cases are in row 2, column 1).

We now conduct the analysis in SPSS. As we will see, the output essentially mirrors that of R,
though SPSSwill automatically also provide us with the corresponding eigenvalue for the discriminant
function. The following syntax generates the discriminant analysis:

DISCRIMINANT * requests the discriminant analysis procedure

/GROUPS=y(0 1) * specifies the binary grouping variable having levels “0” and “1”

/VARIABLES=x1 x2 * the predictors

/ANALYSIS ALL * includes all variables in the analysis

/SAVE=CLASS SCORES * requests to save classification results and discriminant scores

/PRIORS EQUAL * sets the prior probabilities as equal (in this case, 0.5)

/STATISTICS=RAW * requests raw coefficients

/PLOT=CASES * requests a plot of the discriminant function results

The eigenvalue for the discriminant function is 0.915 and accounts for 100% of the extraction
(Table 12.4). Contrary to how “% of variance” may appear in SPSS, the 100% figure is not an esti-
mate of effect size or variance explained. It would be incorrect to conclude that the discriminant
function accounts for 100% of the variance in the response variable. The “100%” figure in this case
denotes the fact that this is the only discriminant function extracted for the analysis, which, of course,
makes sense, since there are only two groups on the response variable. Had we a problem where more
than a single discriminant function were extracted, this figure would change, because not all of the
“variance” (we will have more to say about the use of the word variance here later) would likely
be accounted for by only the first discriminant dimension.

The canonical correlation, equal to 0.691, and when squared, (0.691)2 = 0.48, provides us with a
measure of association or effect size for the discriminant function. The squared canonical correlation is

equal to the ratio
λi

1 + λi
=

0 915
1 + 0 915

= 0 48. Wilk’s lambda of 0.522 yields a p-value of 0.103, and

hence the function is not statistically significant at α = 0.05; however, depending on our priority for
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minimizing type II errors, the function may still be of use, even if statistically significant at a more
liberal level (such as 0.15).

The standardized canonical discriminant function coefficients (Table 12.5, middle) reveal which
variables have the greatest “impact” on the discriminant function. For our data, variable x1 has the
largest absolute weight (0.854) and hence can be said to be more “relevant” to the discriminant function
than x2, which has a weight of 0.578. Note that these are the standardized versions of the raw
coefficients generated in R earlier (Table 12.5, left). Also included is the intercept (constant) term
of −3.283, which, just as in regression, is required for obtaining predicted values. The model equation
for raw scores is thus:

yi = −3 283 + 0 497x1 + 0 431x2

The structure matrix (Table 12.5, right) provides the raw bivariate correlations between the given
observed variables and the discriminant function. The relative magnitude of these coefficients does
not always correspond with those of the standardized coefficients, since both coefficients measure
something different. However, for these data, both the standardized and the structure coefficients gen-
erally tell the same story, in that x1, with a standardized coefficient of 0.854 and structure coefficient of
0.817, is more relevant to the discriminant function than x2 with a standardized coefficient of 0.578 and
structure coefficient of 0.523.

SPSS next provides the classification results that are more or less parallel to those given earlier in R:

TABLE 12.4 Eigenvalue and Significance Test for Discriminant Function

Eigenvalues

Function Eigenvalue % of Variance Cumulative % Canonical Correlation

1 0.915a 100.0 100.0 0.691

Wilks’ lambda

Test of function(s) Wilks’ lambda Chi-square df Sig.

1 0.522 4.548 2 0.103

aFirst 1 canonical discriminant functions were used in the analysis.

TABLE 12.5 Unstandardized Coefficients (Left), Standardized Coefficients (Middle), and Structure
Coefficients (Right) for Discriminant Analysis

Canonical Discriminant
Function Coefficients

Standardized Canonical
Discriminant Function
Coefficients Structure Matrix

Function Function Function
1 1 1

x1 0.497 xl 0.854 x1 0.817
x2 0.431 x2 0.578 x2 0.523
(Constant) −3.283
Unstandardized coefficients
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Casewise Statistics

Highest Group Second Highest Group
Discriminant
Scores

Predicted
Group

P(D > d | G = g)

P(G = g | D = d)
Squared Mahalanobis
Distance to Centroid

Squared Mahalanobis
Distance to CentroidCase Number

Actual
Group p df Group P(G = g | D = d) Function 1

Original 1 0 0 0.671 1 0.676 0.180 1 0.324 1.655 −0.431
2 0 0 0.614 1 0.911 0.254 1 0.089 4.907 −1.360
3 0 0 0.942 1 0.830 0.005 1 0.170 3.183 −0.928
4 0 0 0.568 1 0.920 0.325 1 0.080 5.205 −1.426
5 0 0 0.470 1 0.556 0.523 1 0.444 0.976 −0.133
6 1 1 0.257 1 0.968 1.286 0 0.032 8.095 1.990
7 1 1 0.286 1 0.964 1.140 0 0.036 7.722 1.923
8 1 1 0.614 1 0.911 0.254 0 0.089 4.907 1.360
9 1 0a 0.430 1 0.528 0.623 1 0.472 0.850 −0.066
10 1 0a 0.942 1 0.830 0.005 1 0.170 3.183 −0.928

aMisclassified case



Matching up the results with those of R is straightforward. The second column, Actual Group, and
the third column, Predicted Group, provide the same information we generated earlier in Table 12.3.
As we noted then, and as reported by SPSS, cases 9 and 10 were misclassified, but all other cases were
classified correctly. By default, SPSS also provides us with Mahalanobis (squared) distances. These
distances take the general form (in terms of mean vectors),

D2 = y1 − y2 S− 1 y1 − y2

where y1 and y2 are mean sample vectors and S−1 is the inverse of the pooled sample covariance matrix
of S1 and S2, respectively. Notice that values (in the SPSS output) of D2 (now in terms of distances of
points from class centers), coincide with the respective columns reporting predicted probabilities of
group membership to the immediate left ofD2. This is not a coincidence, since P(G = g |D = d) denotes
the probability that a case belongs in a given group g given its respective Mahalanobis distance. Cases
with relatively high distances relative to a given centroid (i.e., mean of discriminant scores) have a
lower probability of being classified into that group. Conversely, cases with relatively small distances
have an increased probability. The right-most column of the SPSS output provides the computed dis-
criminant scores, analogous to those reported by R and given in Table 12.3. Entire chapters exist on so-
called classification analysis, and a further discussion of these procedures is beyond the scope of the
current chapter. However, an understanding of how to classify based on discriminant scores or D2, as
evidenced from R and SPSS output for our example, provides the essential ideas about what classifi-
cation analysis is generally all about.

12.4 DISCRIMINANT ANALYSIS FOR SEVERAL POPULATIONS

Up to now, we have discussed discriminant analysis for the case of using a linear combination of pre-
dictors to predict group membership where there are only two groups on the response variable. If there
are more than two groups defined on the response, we need to expand the theory underlying the method
similar to how we did so in the case of MANOVA when extending it from univariate ANOVA.

For a problem in which there are more than two groups, we require more than a single discriminant
function to account for group separation. The number of functions necessary to maximally discriminate
between groups is referred to as the dimensionality of the separation (Timm, 2002). Referring once
more to Fisher’s iris data, while one discriminant function may distinguish species setosa from versi-
color and virginica for instance, hypothetically, a second discriminant function may prove useful in
differentiating between versicolor and virginica. Each discriminant function would then serve a
purpose when it comes to the overall discrimination between species.

We survey some of the theory behind discriminant analysis for several populations by expanding the
theory already discussed for the two-population discriminant function. We then illustrate how to con-
duct an analysis for the multi-population case.

12.4.1 Theory for Several Populations

Recall for the two-group problem, we sought a vector a that maximally separated ℓ1 − ℓ2
2
. The sep-

aration criterion for the two-group case was given by (12.3). At its core, d2 was expressing a very sim-
ple idea, that of a squared difference between means relative to overall variance. If the squared

difference between means, ℓ1 − ℓ2
2
is large relative to overall variance s2

ℓ
, then separation is “better”

than if ℓ1 − ℓ2
2
is relatively small or equal to overall variance, s2

ℓ
. Of course, the overtones to what is

accomplished in ANOVA are glaring. What we found for the two-group problem was that the vector
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a = S− 1
p y1 − y2 is what provides the maximum separation between groups on the binary response.

When we made the relevant substitution, we got (12.5).
We now extend these principles to the p-group case for p populations where we have a polytomous

response variable. For this, we will naturally invoke ideas and matrices from MANOVA, since recall
that LDA and MANOVA are essentially inverses of one another. The LDA for several groups is quite
easy to grasp if the principles of MANOVA were understood. We follow Rencher and Christensen
(2012, p. 289) quite closely in our development.

Recall that MANOVA featured two primary matrices: the “hypothesis”matrix, orH, and that of the
“error” matrix, or E. In going from the two-group case to the multigroup situation, we will use H in
place of y1 − y2 y1 − y2 and E in place of Sp. This substitution yields λ, a ratio of a Ha to a Ea:

λ =
a Ha
a Ea

(12.6)

Some algebra on (12.6) reveals that:

λ =
a Ha
a Ea

a Ha = λa Ea

a Ha − λEa = 0

We now ask the question, “What values of a (other than a = 0, which is the trivial case) results in a
maximum for λ?” We find solutions by:

Ha− λEa = 0

E− 1H− λI a = 0 (12.7)

The solutions of (12.7) are the eigenvalues and corresponding eigenvectors of E−1H (Rencher and
Christensen, 2012).

The number of nonzero eigenvalues is the rank ofH and is the smaller of the number of predictors k

or one less the number of populations p. The largest eigenvalue λ1 is the maximum value of λ =
a Ha
a Ea

,

with a1 being the coefficient vector that generates the maximum. In obtaining the eigenvectors a1, a2,
…, as of E

−1H corresponding to λ1 to λs eigenvalues, we generate s discriminant functions of the like,
ℓ1 = a1y, ℓ2 = a2y,…, ℓs = asy , which reveals the dimensions or directions of differences among
y1, y2,…, yp. As noted by Rencher and Christensen (2012), such discriminant functions are uncorre-
lated but are not orthogonal because E−1H is not a symmetric matrix. When we survey principal com-
ponent analysis in Chapter 13, we will extract linear combinations that are both uncorrelated and
orthogonal. This distinction is a crucial one when deciphering between discriminant functions and prin-
cipal components. Components have the stronger property of orthogonality.

As an example of discriminant analysis for several groups, recall the Q–V data of Chapter 11
(Table 11.3), in which we performed a MANOVA testing the null hypothesis of no mean vector dif-
ferences on training, having levels 1 = no training, 2 = some training, 3 = extensive training. Suppose
instead we wished to learn whether the linear combination of Q and V can differentiate between train-
ing groups. We compute the discriminant analysis as follows:

> library(MASS)
> lda.fit <- lda(T.f ~ Q + V, data = iq.data)
> lda.fit

406 DISCRIMINANT ANALYSIS



Call:
lda(T.f ~ Q + V, data = iq.data)

Prior probabilities of groups:
none some much

0.3333333 0.3333333 0.3333333

Group means:
Q V

none 4.333333 2
some 8.000000 8
much 9.666667 9

Note that the prior probabilities, by default, are set to 0.33 in each group. This is analogous to them
being set to 0.5 by default in the two-group problem, only that now, because we have three groups, we
divide the total probability of 1.0 by 3, yielding 0.33 per group. We also note the group means reported
on Q and V for each level of the training factor. They are 4.33, 8.00, 9.67, and 2, 8, 9 for groups 1, 2,
and 3, respectively.

Next are given the raw discriminant function coefficients. Recall that because we have three groups
on the independent variable, this calls for two discriminant functions to be extracted:

Coefficients of linear discriminants:
LD1 LD2

Q 0.02983363 0.8315153
V 0.97946790 -0.5901991

Proportion of trace:
LD1 LD2

0.9889 0.0111

Plots of discriminant scores across LD1 (i.e., the first discriminant function) and LD2 are given
below (to get the plots with the labels instead of numbers, levels(T.f ) <- c("none",
"some", "much")).

> plot(lda.fit)
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A helpful way to read these plots is to draw a vertical line at approximately LD1 = 0 and a horizontal
line at approximately LD2 = 0. Looking at LD1, for instance, it is clear that the function is providing
good separation between group 1 versus 2 and 3, while for LD2, it is not providing nearly as much
separation. Of course, these are very small data so we might not put too much stock in the results,
but the essence on how to read these plots is the same for larger data sets as well.

How “important” is LD1 compared with LD2? Recall that we can obtain a measure of the overall
relevance of a discriminant function by contrasting its eigenvalue to the sum of eigenvalues extracted:

λi
s

j = 1
λ j

(12.8)

where λi is the ith eigenvalue for the ith discriminant function and
s

j = 1
λ j is the sum of all s eigenvalues

from j = 1 (i.e., the first) to the last (i.e., s). Recall that the eigenvalues obtained through MANOVA for
this problem were equal to 14.35 and 0.16 for functions 1 and 2 respectively. Hence, for the first func-
tion, (12.8) is equal to 14.35/(14.35 + 0.16) = 14.35/14.51 = 0.98897, which is as noted in R’s output

under Proportion of trace. For the second function, λi
s

j = 1
λ j is equal to 0.16/14.51 = 0.011,

which is reported by R as well for LD2. We already suspected by a look at the LD plots that the first
function was “doing all the work,” and indeed, our computation of (12.8) for each function confirms it.
LD1 is accounting for most of the group separation.

12.5 DISCRIMINATING SPECIES OF IRIS: DISCRIMINANT ANALYSES
FOR THREE POPULATIONS

We now demonstrate a discriminant analysis for three populations on the iris data. Recall that these data
were analyzed as aMANOVA in the previous chapter. Since LDA is essentially the “reverse” ofMAN-
OVA, we remark once more on parallels between the two analyses. Our goal is to learn whether we can
predict species membership (setosa, versicolor, virginica) based on knowledge of explanatory vari-
ables sepal length, sepal width, petal length, and petal width.

> lda.iris <- lda(Species ~ ., iris)

Note that since we are modeling all predictors, we can specify the model statement as “ ~ .” to
indicate this. The output now follows:

> lda.iris

Call:
lda(Species ~ ., data = iris)

Prior probabilities of groups:
setosa versicolor virginica

0.3333333 0.3333333 0.3333333
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Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:
LD1 LD2

Sepal.Length 0.8293776 0.02410215
Sepal.Width 1.5344731 2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width -2.8104603 2.83918785

Proportion of trace:
LD1 LD2

0.9912 0.0088

As a result of having a total of three groups, the prior probabilities, by default, are again set at 0.33
for each. LDA has extracted two linear discriminant functions, LD1 and LD2. Recall that it extracted
two as a result of the response variable having three levels. The proportion of trace figures
reveal that the first eigenvalue and second eigenvalue extracted account for approximately 99.12%
and 0.88% respectively of the total sum of eigenvalue. Clearly, the first discriminant function is much
more relevant than the second. To gain an appreciation of their relative importance, we can plot the
discriminant functions. Here, we plot the first function (dimen = 1):

plot(lda.iris, dimen = 1)
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We can see that the first function appears to do a good job of separating setosa from versicolor and
virginica. To visualize results for both functions, we request dimen = 2, and also request a density plot
displaying the performance of the first function in distinguishing between species:

> plot(lda.iris, dimen = 2)
> plot(lda.iris, type = "density", dimen = 1)
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As confirmed by both plots, the first linear discriminant function, LD1, is doing a great job at dif-
ferentiating versicolor and virginica from setosa. The second linear discriminant function, LD2, is not
differentiating species very well. Of course, this aligns with the fact that the second eigenvalue
extracted accounts for only 0.88% of the sum total of eigenvalues.

We request classification results:

> fit <- lda(iris$Species ~., iris)
> table(iris$Species, predict(fit)$class)

setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49

We can see that the discriminant analysis does a perfect job in the sample at classifying setosa (50
for 50), but makes two errors in classifying versicolor (48 for 50) and one error in classifying virginica
(49 for 50).

12.6 A NOTE ON CLASSIFICATION AND ERROR RATES

While on the topic of classification, we should also emphasize that discriminant function analysis is
usually distinguished by many authors as distinct from what is generally known as classification anal-
ysis. Their difference is best summarized by Timm (2002):

A classification rule usually requires more knowledge about the parametric structure of the groups. The goal
of classification analysis is to create rules for assigning observations to groups that minimize the total prob-
ability of misclassification or the average cost of misclassification. Because linear discriminant functions
are often used to develop classification rules, the goals of the two processes tend to overlap and some
authors use the term classification analysis instead of discriminant analysis. (p. 420)
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In the current chapter, our focus has been on linear discriminant analysis. We have not covered
classification analysis in any depth other than displaying select results of said analyses in R and SPSS
output in the form of predicted values and confusionmatrices. Linear classification functions have been
developed in the pursuit of generating optimal rules that attempt tominimize errors in classification.
Quadratic classification functions have also been developed for situations in which it is not reason-
able to assume equality of covariance matrices across groups (James et al., 2013).

Though we do not discuss classification in any depth in this chapter, it behooves us nonetheless to
consider how we can conceptualize the importance of costs associated with misclassification. For
example, let us consider the simplest of cases, that of classification for two populations. In
Table 12.6 shows a 2 × 2 table where Decision denotes the choice we are making with regard to clas-
sifying into populations P1 and P2. Population reflects the actual true population status. The costs of
misclassification, denoted by C(2|1) and C(1|2) are given as follows:

• C(2|1) is the cost associated with deciding on D2 when in actuality, P1 is the correct population.

• C(1|2) is the cost associated with deciding on D1 when in actuality, P2 is the correct population.

The elements of C(2|1) and C(1|2) in Table 12.6 are the costs associated with making the wrong
decision. The reader may have noticed that if we regard P1 as standing for the null hypothesis and P2 as
the alternative hypothesis in a hypothesis-testing setup, then C(2|1) represents the cost of making a type
I error. Likewise, C(1|2) represents the cost of making a type II error.

You might ask how and why estimating costs is relevant in the discriminant problem. Recall
from our discussion earlier in the book, that in any decision, it behooves us to consider the costs
of making the wrong decision, and, even if informally, quantifying these costs in terms of a cost
function. True, for Fisher’s iris data, the costs associated with misclassifying an observation into
the wrong species class are likely in actuality not so great. That is, if a case of versicolor is mis-
classified as virginica, though to the plant biologist this may indeed be symbolic of a catastrophe,
in the end, nobody gets hurt (though apparently iris flowers are somewhat toxic, so be careful!).
However, it is quite another matter when considering the costs of misclassification in the treat-
ment of mental illness, for instance. If a classification rule designates a client’s suicidal proba-
bility as “low risk” when in fact the client is at high risk of committing suicide, the cost
associated with making the wrong decision could indeed be catastrophic. Likewise, if a discrim-
inant function predicts pre-flight wing de-icing on an airplane to not be required when in fact it is
required, the costs of making a wrong decision in this context could likewise be life-threatening
or catastrophic.

Decisions dominate science as they do everyday life. Each decision has associated with it an
error rate, whether known or unknown. A point emphasized throughout this book is that decision
criteria need to be set in an intelligent and thoughtful manner, relatively specific to the cost functions

TABLE 12.6 Decision Table for Discriminant Analysis
with Binary Dependent Variable

Decision

D1 D2

Population P1 0 C(2|1)
P2 C(1|2) 0
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for a given problem. The problem of course inherent in any decision task is in estimating or otherwise
quantifying the costs associated with making wrong decisions. Many times these costs are implicit in
that we do not always acknowledge their existence, or are even aware of their existence.

12.6.1 Statistical Lives

As an example, consider the situation where on a stretch of highway, one or two lives have been lost in
each of the preceding 10 years. Suppose that each of these deaths is quite easily attributed to not having
a median separating the lanes of oncoming traffic. Each year, however, nothing changes. Deaths occur,
but still, no median is constructed. Could these deaths be avoided? Of course. If they could be avoided
by constructing the median, then why is the median not constructed? Quite simply, the energy, in terms
of money, political motivation, and so on, is simply not “worth it” in terms of saving 1–2 lives per year.
That is, statistically, losing 1–2 lives per year is, even if implicitly, regarded as acceptable risk and
associated cost for this problem. Each death in this regard is generally what is referred to as a statis-
tical life. But what if in the following 2 years, each year 10 persons die on the highway instead of only
1–2? What happens is that a median is constructed the following year. Why? Statistically speaking,
because the risk and costs associated with the “status quo” decision of doing nothing have become
too high. Under the new data of 10 deaths, the decision is changed to one of putting up a median,
and consequently, the required finances and political motivation suddenly surface.

Our point then in our brief discussion of costs of misclassification is merely to emphasize an
awareness of them in virtually every decision-context one may consider. The assessment of them,
and hence their quantification, can be quite challenging. The point is, however, that they are usually
still there, and any decision, made in an intelligent and rational manner, requires their consideration
whether the problem is one of highway construction, career choices, family decisions, medical sur-
gery choices, or spinning the wheel in roulette. Indeed, much of statistical and probabilistic analysis
can be said to serve the end goal of rational decision-making. And as emphasized, it is impossible to
make good decisions without at least some insight into the costs and benefits of making the right or
wrong choices.

We have only skimmed the surface with regard to the field known as decision analysis, which is
largely (but not exclusively) a branch of probability and statistics. The reader interested in learning
more about how probabilities and other considerations (e.g., value appraisals) can be used in pragmatic
decision-making is encouraged to consult Goodwin and Wright (2004). A useful source on decision-
making in the medical sciences is Hunink et al. (2001). For the behavioral and psychological side of
decision-making, see Kahneman and Tversky (2000).

12.7 DISCRIMINANT ANALYSIS AND BEYOND

Just as was true for logistic regression in which we said higher-order factorial and within-subjects
designs could be used, such extensions can also be applied to discriminant analysis. For instance, sup-
pose we wished to classify recovery (yes versus no) based on repeated health status measurements
taken at several times over the course of a year. One could estimate classification rates based on this
series of repeated measurements. One could also test the hypothesis that the repeated measure interacts
with another variable (e.g., gender) in predicting recovery. The interested reader is referred to Lix and
Sajobi (2010) for discriminant analysis for repeated measures.

All of the model-building strategies reviewed in Chapter 8 on multiple regression such as forward
selection, backward elimination, and stepwise, are also available in discriminant analysis. Just as is
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true with the application of many other statistical models, cross-validation of a discriminant analysis
is always a good idea if one has such availability in terms of sample size. The idea of statistical
“learning” (Hastie, Tibshirani, and Friedman, 2009) often involves separating data first into a train-
ing set as well as a test set. Various sample-splitting approaches can be used such as the holdout
(also known as leave-one-out) method in which all but one observation is used in generating a clas-
sification rule. The rule is then evaluated on how well it classifies the omitted observation. As dis-
cussed by Rencher and Christensen (2012), such a method can prove useful in estimating error rates.
See James et al. (2013) for a good discussion of training versus test error rates in linear classifica-
tion. Hastie, Tibshirani, and Friedman (2009) and Izenman (2008) are also excellent (if not very
advanced) sources. The essential idea is that error rates based on training data are usually not
expected to be the same as those on test data, and hence cross-validating results, in one form or
another, is usually advised. Models are said to “learn” on training data, and then be evaluated on
test data. Cross-validation, however, is not always employed, and as mentioned, its use will depend
greatly on the availability of data and whether splitting a sample into two or more sets is even fea-
sible. At minimum, researchers would do well to encourage cross-validation of their model at the
conclusion of research papers if they are unable (or lack desire) to cross-validate their own studies.
For a useful (yet technical) discussion of cross-validation in a medical context, see Houwelingen and
Cessie (1990).

12.8 CANONICAL CORRELATION

We close this chapter with a brief survey of canonical correlation analysis (CCA). Recall that in
results obtained both in MANOVA and LDA, software provided us with canonical correlation coef-
ficients for respective discriminant functions. We demonstrated how these coefficients could be
related to eigenvalues extracted in accounting for the respective discriminant functions. But what
are these canonical correlations, exactly? In concluding this chapter, we survey the nature of this
coefficient, as well as provide an example of one of the first canonical correlation analyses,
Hotelling’s analysis of 1936:

Concepts of correlation and regression may be applied not only to ordinary one-dimensional variates but
also to variates of two or more dimensions … For example the scores on a number of mental tests may be
compared with physical measurements on the same persons. The questions then arise of determining the
number and nature of the independent relations of mind and body shown by these data to exist, and of
extracting from the multiplicity of correlations in the system suitable characterizations of these independent
relations. (Hotelling, 1936, p. 321)

CAA is a method for assessing the linear relationship between two sets of linear combinations.
For example, suppose a researcher would like to evaluate the hypothesis that intelligence is related to
achievement in school. The researcher could, in practice, collect data on a student’s IQ using a single
test, then use this to predict these same students’GPA in school. One could also test for a possible linear
relationship using Pearson’s correlation coefficient, evaluate it for statistical significance, and proceed
to make an inference on the population.

However, on a substantive level, we must ask the question of whether that single IQ test truly “cap-
tures” the construct of intelligence. If we believe there is more to measuring IQ than the administration
of a single test, then we might wish to use an additional measure in assessing one’s IQ—perhaps
another test that purports to measure another facet of intelligence. Likewise, we must ask whether
GPA truly captures all there is to know about school achievement. In addition to GPA, we might
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use the general test from the GRE,1 for instance, to assess one’s mastery of verbal, quantitative, and
analytical skills. It is in contexts such as these where canonical correlation may prove useful. We wish
to generate a linear combination of one set of variables (e.g., IQ test 1 and IQ test 2) and use that linear
combination to relate to another linear combination (e.g., GPA and GRE).

As another motivating example, suppose a researcher would like to assess the degree of relationship
between reading and arithmetic. One might conceptualize the construct of “reading ability” by (1) read-
ing speed, and (2) reading power, and define the construct of “arithmetic ability” by (1) arithmetic
speed and (2) arithmetic power. By generating linear combinations of reading speed + reading power
on the one hand, and arithmetic speed + arithmetic power on the other, the researcher could then cor-
relate these two linear combinations. This was exactly the approach used by Hotelling (1936). We will
reproduce his analysis toward the end of this chapter.

For canonical correlation to be substantively interpretable by the research scientist, each linear com-
bination is usually hypothesized to represent some kind of construct or “variate.”Aswas the case in our
discussion of MANOVA, if the constructed variates do not carry with them some kind of theoretical
meaning, then canonical correlation is usually not advised, except other than for exploratory purposes.
Usually, the researcher employing canonical correlation should have at least some reason for wanting
to combine variables into linear combinations other than the fact that he or she simply has many vari-
ables at his or her disposal. As always, theory should guide whatever statistical analyses you perform,
not simply the availability of data.2

12.9 MOTIVATING EXAMPLE FOR CANONICAL CORRELATION:
HOTELLING’S 1936 DATA

Harold Hotelling obtained data from Truman L. Kelley in which measurements on the aforementioned
variables were recorded on 140 seventh-grade school children: reading speed, reading power, arithme-
tic speed, and arithmetic power. What Hotelling wanted to know from these data is whether reading
speed and reading power, considered together, or as a set, were linearly related to arithmetic speed and
arithmetic power, also considered together, or again, as a set. That is, Hotelling wanted to assess the
linear relationship between the construct of reading and the construct of arithmetic, but knowing all too
well that these constructs are multifaceted, incorporated a statistical method that would consider both
speed and power simultaneously on each side of the equation. We can express the function statement
for this problem as:

reading speed + reading power = arithmetic speed + arithmetic power

As we originally proposed when introducing MANOVA, one naïve way of computing the bivariate
r between these constructs of reading and arithmetic would be to simply add reading speed to reading
power, and arithmetic speed to arithmetic power. That is, naively, we could compute the bivariate cor-
relation between the sums of

reading speed + reading power

1 The GRE, or “Graduate Record Examination” is a standardized test published by ETS, the Educational Testing Service. It is
taken by thousands of graduate school applicants each year as one of the many criteria used on which academic committees base
entrance requirements into graduate school. The “general test” on the GRE tests skills such as verbal reasoning, quantitative
abilities and aptitude, as well as analytical capacities.
2 Once more, as discussed in previous chapters, this is not to discourage exploratory work. However, even the most rudimentary
exploration is somewhat theory-guided. As a researcher, you should have some “reason” for wanting to correlate linear combi-
nations over and above the fact that it can be done statistically.
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and
arithmetic speed + arithmetic power

However, if we simply added them in this fashion, we would have no guarantee that these linear
combinations would be maximally correlated and yield the largest R possible. That is, as we did in
our initial “attempt” at MANOVA, our addition of reading speed to reading power implicitly weighted
these variables as (1) reading speed + (1) reading power. Likewise, we implicitly weighted the con-
struct of arithmetic with values of “1”: (1) arithmetic speed + (1) arithmetic power. Does using
weights of “1” result in the maximum correlation possible between the two linear composites? Prob-
ably not. What is needed is a method of estimating these coefficients that will weight the variables of
each construct in such a way that themaximum correlation between linear combinations is achieved.
This is the canonical correlation we seek.

Below is the correlation matrix analyzed by Hotelling, which we have reproduced in R:

reading speed reading power arithmetic speed arithmetic power

reading speed 1.0000 0.6328 0.2412 0.0586

reading power 0.6328 1.0000 -0.0553 0.0655

arithmetic speed 0.2412 -0.0553 1.0000 0.4248

arithmetic power 0.0586 0.0655 0.4248 1.0000

In what follows, we learn how to take such a correlation matrix and decompose it into canonical
correlations. The canonical variates extracted will represent the dimensions along which the constructs
reading and arithmetic are maximally linearly related. For a proof of why the canonical correlation is
the maximum correlation, see Anderson (2003, pp. 495–496).

12.10 CANONICAL CORRELATION AS A GENERAL LINEAR MODEL

Canonical correlation can be interpreted as a technique that encompasses other techniques as special
cases. Indeed, in learning statistical methods, it is advantageous to the learner to be able to see some
analyses as “subcategories” of other analyses. In terms of function statements, canonical correlation
can be expressed as

y1, y2 = x1, x2

where y1,y2 is one linear combination, and x1,x2 another. Notice that from this “wider” analysis can be
identified many smaller analyses in the following function statements:

• If we use x1, x2 to predict y1, y2, both continuous, then the model can be conceptualized as a
multivariate multiple regression. It is a multiple regression because we have more than a single
explanatory variable. It is multivariate multiple regression because we have more than a single
response variable.

• If we drop one of the dependent continuous variables, y2, such that our model is y1 = x1, x2, and we
are interested in having continuous variables x1, x2 predict y1 simultaneously, the analysis
becomes a multiple regression. It is a multiple regression because we have more than one explan-
atory variable predicting a single response variable.

• If we keep y1, y2 as continuous but change x1, x2 to categorical predictors with “levels,” then the
model becomes a two-way factorial multivariate analysis of variance.
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• If we again drop one of our dependent variables and make y1 binary or polytomous (i.e., having
several groupings), then our analysis could either be a discriminant analysis or logistic regression
(or even a support vector machine). Recall that discriminant analysis and logistic regression,
though differing in assumptions and interpretation, both use explanatory variables to predict
group membership on a response variable.

We summarize the idea of model “generality” toward the end of this chapter. We also revisit it in
Chapter 15 when we discuss path analysis and structural equation modeling (SEM). As we will see,
canonical correlation itself can be conceived as a special case of the wider SEM framework.

12.11 THEORY OF CANONICAL CORRELATION

We begin the development of canonical correlation by first considering two sets of random variables
y = (y1, y2,…, yp) and x = (x1, x2,…, xp). As mentioned earlier, the first set of p variables y1, y2,…, yp
might consist of a set of measures of intelligence, while the second set of p variables x1, x2,…, xpmight
consist of scholastic achievement data. Or, in the case of Hotelling’s data, they might consist of reading
speed and reading power for y1, y2,…, yp and arithmetic speed and arithmetic power for x1, x2,…, xp. It
is important to recognize that both sets of measurements are on the same individuals. The goal of CCA
is to measure the extent to which these two sets of variables are linearly related.

Notice that in the situation in which we were to reduce each set to a single variable, y1 and x1, the
canonical correlation would reduce to the simple Pearson correlation coefficient r in which the linear
relationship between two variables is assessed. Canonical correlation is simply the maximum bivar-
iate correlation, but on sets, or linear combinations, of variables rather than on individual variables.

Technically, canonical correlation accomplishes something somewhat analogous to principal com-
ponents analysis (see Chapter 13) in that it seeks to transform the first p1 coordinate axes along with a
transformation of the second p2 coordinate axes to a new system p1 + p2 that depicts the correlations
between vectors.

Recall the sample covariance matrix, S of Chapter 2:

S = sjk =

s11 s12 … s1p
s21 s22 … s2p

…

…

sp1 sp2 … spp

(12.9)

where sjk are the covariances for variables j by k. Equation (12.9) can be partitioned as:

S =
Syy Syx
Sxy Sxx

where Syy and Sxx are the covariance matrices for y and x respectively, and Syx and Sxy are covariance
matrices between y and x. Now, suppose we have two linear combinations, ℓ1 = a y and ℓ2 = b x. The
sample correlation coefficient between two linear combinations is defined as
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rℓ1,ℓ2 =
covℓ1,ℓ2

s2
ℓ1
s2
ℓ2

=
a Syxb

a Syya b Sxxb

Note the parallel between the correlation between linear combinations above and the “ordinary”
Pearson correlation between two variables (rather than variates). In the numerator, we have
a Syxb, which is essentially (at least in concept) a cross-product of sorts, somewhat analogous
(again, at least in concept) to the cross-product in an ordinary Pearson correlation. In the

denominator, we have a Syya b Sxxb which is analogous to the product of standard deviations

in ordinary Pearson correlation. The only conceptual (not technical) difference between canonical cor-
relation and ordinary Pearson correlation is that the former is conducted on a linear combination of
variables, while the latter is performed on much “simpler” linear combinations (i.e., consisting of only
single variables). If you forever think of simple correlation as a correlation of linear combinations
consisting of only single variables, then canonical correlation will rightfully appear as an exten-
sion and expansion into more complex linear combinations made up of several variables. That is,
even single variables can be regarded as linear combinations; they are simply linear combinations of
only one variable. Of course, linear combinations typically refer to a much longer string of variables,
however, by reducing the concept to only a single variable, the generality of canonical correlation
comes to light.

The goal of canonical correlation analysis is to find coefficient vectors a and b such that the cor-
relation between linear combinations, rℓ1,ℓ2 , is as large as possible. How can these coefficients be
found? They are obtainable in several ways, one of which is appeal to a multiple R-like statistic, of
which R2 may be defined as:

R2 =
SyxS− 1

xx Sxy
Syy

Notice that we are dividing by the determinant of Syy, Syy . We can also rewrite the above as:

R2 = S− 1
yy SyxS− 1

xx Sxy (12.10)

Why does this form ofR2 make sense? One way to understand why, in an informal sense, is to consider
what is contained in the product S− 1

yy SyxS− 1
xx Sxy. Again, notice that what we are computing is somewhat

analogous to what we compute when calculating Pearson r. That is, we are computing the product Syx
by Sxy and then “dividing” by the product Syy by Sxx, only we have to write S− 1

yy and S− 1
xx (i.e., using

inverses) to denote the “division” because we are using matrices. The computation of R2 is somewhat
conceptually analogous to Pearson r because the product is divided by the product of standard devia-
tions. Recall Pearson r:

r =

n

i= 1
xi−x yi−y

n−1

s2x s2y
=

cov

s2x s2y
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Of course, it is not the same as Pearson r, since in (12.10) we are in amultivariable setting and there is
a lot more going on in (12.10) than with r. But if you are able to spot parallels, or even generic inexact
similarities between simpler statistical concepts and computations and more advanced ones, you will
be well on your way to realizing that understanding advanced statistical procedures usually depends on
your grasp of the simplest, most core essentials. Advanced statistical methods are usually expansions
and extensions of such core, fundamental concepts, and many times these can be used as stepping
stones to more sophisticated methodologies, or at minimum, informal ways to try to make sense of
formulae.

The number of canonical correlations extracted will be the smaller of the number of y variables or x
variables. Just as for ordinary Pearson r, canonical correlations are invariant to linear transformations
on scales of the variables making up the correlation. That is, even if we linearly transposed the scale of x
or y, the canonical correlation between variates would remain the same.

12.12 CANONICAL CORRELATION OF HOTELLING’S DATA

We perform a simple canonical correlation on Hotelling’s data discussed at the outset of this section.
We generate Hotelling’s matrix in R:

> cancor <- c(1.0000, .6328, .2412, .0586,
+ .6328, 1.0000, -.0553, .0655,
+ .2412, -.0553, 1.0000, .4248,
+ .0586, .0655, .4248, 1.0000)
> cancor.matrix <- matrix(cancor, 4, 4, byrow = TRUE)

> cancor.matrix
[,1] [,2] [,3] [,4]

[1,] 1.0000 0.6328 0.2412 0.0586
[2,] 0.6328 1.0000 -0.0553 0.0655
[3,] 0.2412 -0.0553 1.0000 0.4248
[4,] 0.0586 0.0655 0.4248 1.0000

Because it is a correlation matrix, it is symmetric, meaning that the lower triangular is a mirror
image of the upper triangular. The correlation between reading speed and reading power is the highest
correlation (row 1, column 2, r = 0.6328), with the correlation between arithmetic speed and arithmetic
power being the second highest (row 3, column 4, r = 0.4248). The correlation between arithmetic
speed and reading power is quite small (r = −0.0553) as is the correlation between reading power
and arithmetic power (r = 0.0655).

The relevant canonical correlations as found by Hotelling (1936, p. 342, (6.2)),

$cor
[1] 0.39450592 0.06884787
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R next provides us with the raw coefficients for the extracted canonical correlations, both for the x
variables and the y variables:

$xcoef
Can.1 Can.2

1 1.256845 0.2970177
2 -1.025317 0.7852413

$ycoef
Can.1 Can.2

3 1.1044722 -0.01818009
4 -0.4527216 1.00758746

Two canonical correlations are represented (Can.1 and Can.2) on four variables. The weights
associated with the first canonical correlation are 1.2568 and −1.0253 for reading speed and reading
power, and 1.1045 and −0.4527 for arithmetic speed and arithmetic power, respectively. The weights
associated with the second canonical correlation are 0.2970 and 0.7852 for reading speed and reading
power, respectively, and −0.0182 and 1.0076 for arithmetic speed and arithmetic power, respectively.
Hence, the first canonical correlation is given by:

1.2568(reading speed) - 1.0253(reading power) WITH 1.1045
(arithmetic speed) -0.4527(arithmetic power)

where “WITH” is replaced by the canonical correlation of 0.3945. That is, the above weighting of
reading speed with reading power correlates to a degree of 0.3945 with the above weighting of
arithmetic speed and arithmetic power. If we square the coefficient, we can say that approximately
16% [i.e., (0.3945)2 = 0.1556] of the variance is accounted for by this first canonical dimension.
The second canonical correlation is given by

0.2970(reading speed) + 0.7852(reading power) WITH -0.0182
(arithmetic speed) + 1.0076(arithmetic power)

where, this time, “WITH” is replaced by the canonical correlation of 0.0688. Again, we conclude that
the above weighting of reading speed with reading power is correlated to a degree of 0.0688 with the
above weighting of arithmetic speed and arithmetic power given the extraction of the first canonical
dimension. That is, the canonical correlation of 0.0688 is the maximum correlation possible between
these linear composites given the extraction of the first canonical correlation (i.e., uncorrelated to it,
though not orthogonal, see Rencher and Christensen (2012, p. 408); Mukhopadhyay (2008, p. 369)). If
we square the coefficient, we can say that approximately 0.005 [i.e., (0.0688)2 = 0.005] of the variance
is accounted for by this second canonical dimension.

12.13 CANONICAL CORRELATION ON THE IRIS DATA: EXTRACTING
CANONICAL CORRELATION FROM REGRESSION, MANOVA, LDA

We close this chapter by computing a canonical correlation on the iris data analyzed through MAN-
OVA of the previous chapter and through LDA of the current chapter. The correlation between variates
that we are about to calculate is a strong way to conceptualize the underlying similarity among these
multivariate techniques. As discussed,MANOVA, LDA, and regression analysis can all be concep-
tualized as special cases of the wider canonical correlational model.
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When we run the MANOVA in SPSS, we obtain (where species has levels 0, 1, 2):

manova sepal_length sepal_width petal_length petal_width by
species(0, 2)
/print = sig(eigen).

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F

Pillais 1.19190 53.46649 8.00 290.00 .000

Hotellings 32.47732 580.53210 8.00 286.00 .000

Wilks .02344 199.14534 8.00 288.00 .000

Roys .96987

Note.. F statistic for WILKS' Lambda is exact.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Eigenvalues and Canonical Correlations

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor.

1 32.19193 99.12126 99.12126 .98482
2 .28539 .87874 100.00000 .47120

The first canonical correlation between variates (species) and (iris features) is reported to be
0.98482. As a demonstration, recall from Chapter 11 that Pillai’s is defined as

V s = tr E + H − 1H =
s

i = 1

λi
1 + λi

The respective eigenvalues for this problem, as noted above, are 32.19193 and 0.28539, with which

V(s) = 1.19190 can be easily verified.We can also compute V(s) as
s

i = 1
r2i , where r

2
i are respective squared

canonical correlations, which for this problem can also be easily confirmed. And since LDA is essen-
tially the “reverse” of MANOVA, the above canonical correlations provide a general “link” between
these procedures. But what about regression? The corresponding analysis would be a multivariate
regression since there are several response variables and a single predictor. However, the only ana-
lytical difference between such a model and that of the MANOVAmodel would be in coding the inde-
pendent variable appropriately to accommodate a regression framework. Otherwise, the two analyses
are essentially the same. Whether the model be ANOVA, MANOVA, LDA, or regression, canonical
correlation subsumes them all.

12.14 CHAPTER SUMMARY AND HIGHLIGHTS

• Discriminant analysis, originally proposed by R.A. Fisher in 1936, is a procedure useful for clas-
sifying objects, subjects, or items into one of two or more mutually exclusive populations. The
response variable is either dichotomous or polytomous, making ordinary least-squares regression
typically inappropriate.

• Discriminant analysis is essentially the reverse ofmultivariate analysis of variance. In MAN-
OVA, the linear composite is the response variable; in discriminant analysis, the linear composite
is the predictor.
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• Through the computation of eigenvalues and eigenvectors, discriminant analysis finds a vector
that maximizes the ratio of the difference between population means to the standard deviations
within. This vector is called the discriminant function.

• The number of discriminant functions extracted will be the smaller of the number of predictors
or one less the number of populations on the response variable.

• Discriminant analysis in R can be performed using the lda function with an analogous model
statement to that used for the lm function.

• Prior probabilities of population membership can be set to represent a priori base rate knowl-
edge before conducting the discriminant analysis, analogous to how the probability of “success”
versus “failure” can be set prior to modeling a binary variable with the binomial distribution.
These prior probabilities can have an influence on the post-discriminant analysis classification
results.

• For any discriminant analysis extracting more than a single function, the respective eigenvalue
can be compared relative to the sum of eigenvalues to ascertain the relative “importance” that the
function carries with discriminating populations.

• As was true in the case of MANOVA,Wilks’ lambda can be obtained for each discriminant func-
tion along with an associated significance test. A consideration of error rates and their respective
costs, even if informally, should be considered in any decision rule, not only those used in LDA.

• Canonical correlation analysis (CCA) is a method for assessing the linear relationship between
two sets of linear combinations.

• Each linear combination is usually hypothesized to represent some kind of construct or “vari-
ate.” If the variates are not meaningful, then other than for blind data reduction, canonical cor-
relation is usually not advised.

• Scalars for the linear combinations are chosen such that they result in linear combinations that are
maximally correlated. “Maximally correlated” does not equate to obtained canonical correla-
tions being necessarily “large.”

• Harold Hotelling’s early use of canonical correlation was to correlate the linear combination of
reading speed + reading power to arithmetic speed + arithmetic power.

• Canonical correlation can be seen as a technique that encompasses other techniques as “special
cases.” For instance, if y1, y2 = x1, x2 is the function statement for canonical correlation, then
y1 = x1, x2 is the function statement for a multiple regression.

• The number of canonical correlations extracted is equal to the lesser of the number of variables
on the left-hand or right-hand side of the function statement.

• Canonical correlation can be derived in many ways, one of which is through a multiple R-like
statistic. As is true of Pearson r, canonical correlations are scale invariant.

• Canonical correlation subsumes ANOVA, MANOVA, LDA, and regression and is pedagog-
ically useful in linking and understanding such methods. In many statistical models, one is indi-
rectly obtaining canonical correlations.

REVIEW EXERCISES

12.1. Briefly summarize the similarities and differences between themultivariate analysis of var-
iance (MANOVA) and linear discriminant analysis (LDA). When is one analysis more suit-
able than the other?

12.2. Discuss the conceptual similarities between regression analysis, discriminant analysis, and
logistic regression. On a conceptual, practical level, technicalities aside, what should be the
motivating decision regarding which analysis a researcher should choose?

421REVIEW EXERCISES



12.3. Compare the discriminant analysis on two populations to that on several populations. What
are the primary technical distinctions?

12.4. Discuss the relevance of the following for the two-group discriminant problem:

ℓ1 − ℓ2
2

s2
ℓ

= y1 − y2 S− 1
p y1 − y2

12.5. Interpret and discuss the statement “The maximizing vector a is not unique, however, the
direction is.” What does this mean, exactly?

12.6. Compare a residual in least-squares regression to that of one in discriminant analysis for two
populations. How could they be considered conceptually similar? Different?

12.7. Why is it important to be aware of costs of misclassification in a discriminant analysis or any
other procedure in which decisions are made regarding a case?

12.8. Distinguish between raw versus standardized discriminant functions. Which, in general,
should be interpreted? Why?

12.9. Conduct an LDA on Fisher’s 1947 data in which a linear combination of bodyweight and
heartweight is used to differentiate between populations of sex. Summarize your overall
findings.

12.10. Compare and contrast theMANOVA of Fisher’s iris data to the discriminant analysis of the
iris data. How does output from each procedure compare? What are the similarities and
differences?

12.11. Recall the achiev data of Chapter 3. Perform a discriminant analysis using ac to predict
group membership on teach. Summarize the overall findings of your analysis, and compare
them to the fixed effects ANOVA analysis of the same data conducted in Chapter 3. Note as
many parallels and differences between the two analyses as you can.

12.12. Give an example of a substantive application of canonical correlation from your research
area of interest. That is, when might a researcher be interested in performing canonical cor-
relation in your field?

12.13. For Hotelling’s data, why is simply correlating (1)reading speed + (1)reading power to (1)
arithmetic speed + (1)arithmetic power not going to give us the canonical correlation?

12.14. In what way can canonical correlation be considered a general linear model and encompass
other techniques as “special cases?”

Further Discussion and Activities

12.15. It has been shown that a two-group discriminant analysis generates weights that are propor-
tional to those estimated in the analogous regression analysis (e.g., see Flury and Riedwyl,
1985; James et al., 2013). Perform a regression analysis on the iris data where variables sepal
length, sepal width, petal length, and petal width are used to predict categories on species
setosa and versicolor. Then, perform the analogous discriminant analysis. Compare the
results of regression to discriminant analysis in each analysis and comment on any similarities
and differences.
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13
PRINCIPAL COMPONENTS ANALYSIS

Of course the term “best fit” is really arbitrary; but a good fit will clearly be obtained if we make the sum of
the squares of the perpendiculars from the system of points upon the line or plane a minimum …

(Pearson, 1901, p. 560)

Suppose a researcher has collected data on 100 variables and is interested in knowing whether the infor-
mation in this collection of variables can be expressed in fewer than 100 dimensions. Perhaps the
majority of the variability in this set of variables can be summarized in 4–5 dimensions without losing
too much of the original information. These 4 or 5 dimensions could then potentially be used as pre-
dictors in a future analysis. The researcher may even wish to try to identify these new dimensions and
give them names. An appropriate statistical tool for this purpose is that of principal components anal-
ysis (PCA).

Principal components analysis is a technique concerned with extracting information from a covar-
iance or correlation matrix such that a group of p random variables can be represented by fewer than p
component dimensions. PCA attempts to reduce the dimensionality of a group of correlated variables
into a set of mutually orthogonal linear combinations of the variables of lower dimension (i.e., of
lower rank) yet simultaneously attempting to explain most of the variance in the original variables.
Substantively, PCA can be considered a data reduction technique.

Technically, principal components analysis involves the rotation of the original coordinate system
to a new coordinate system with inherently desirable statistical properties. More precisely, we seek to
define an orthogonal transformation to a diagonal covariance matrix. Recall that a diagonal matrix
means that everywhere else other than the main diagonal are zeros, which implies a covariance among
variables (or components, in this case) equal to zero. Principal components analysis is essentially, and

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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quite simply, a re-expression of the variance encapsulated in a data matrix such that the reduction in
dimensionality may provide more “insight” into patterns not immediately obvious by inspection of
a covariance matrix alone. Computationally, PCA reduces to solving for the eigenvalues and
eigenvectors of an at least semi-positive definite matrix by a process generally referred to as eigenvalue
analysis or spectral decomposition.

The general idea of PCA is depicted in Figure 13.1, featuring a bivariate plot on variables A1 and
A2. The vectors E1 and E2 are the principal components. Essentially, all that PCA does is establish new
axes on the original data so that variance ismaximized. Note that as is the case of the original A1 and
A2 axes (i.e., representing the abscissa and ordinate, respectively), the angle between E1 and E2 is one
of 90o. That is, the components extracted, E1 and E2, are orthogonal to one another.

A second related goal of PCA is to attempt to account for the substantive structure of these derived
component variables, and if possible, to name these newly obtained variates. Identifying whether these
linear combinations are substantively meaningful is sometimes a priority for the user of PCA, while
other times, a primary goal is to estimate scores based on the newly obtained components and use these
scores as inputs to other analyses. When the priority is to name underlying latent qualities of the input
variables, exploratory factor analysis is a popular alternative to PCA, to be discussed in the following
chapter.

13.1 HISTORY OF PRINCIPAL COMPONENTS ANALYSIS

The history of principal components analysis can be traced to Karl Pearson’s work in 1901 in a paper
published in Philosophical Magazine titledOn Lines and Planes of Closest Fit to Systems of Points
in Space. In the paper, Pearson outlined the essential method of PCA using a least-squares approach.
His technique for obtaining components has generally come to be known as the planes of closest fit
approach (Anderson, 2003, p. 466). Pearson introduced the problem as follows:

In nearly all the cases dealt with in the text-books [sic] of least squares, the variables on the right of our
equations are treated as the independent, those on the left as the dependent variables. The result of this treat-
ment is that we get one straight line or plane if we treat some one variable as independent, and a quite dif-
ferent one if we treat another variable as the independent variable. There is no paradox about this; it is, in
fact, an easily understood and most important feature of the theory of a system of correlated vari-
ables. (p. 559)

A2

E2

A1

E1

FIGURE 13.1 Basic principal components analysis where E1 and E2 are extracted components.
Source: Modified from Pearson (1901).
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The quote from Pearson quite simply notes that the regression of y on x is not the same as the regres-
sion of x on y, and that each has its own regression line. The motivation for principal components anal-
ysis comes from Pearson’s following words, where he considers the situation in which both
independent and dependent variables comprise an entire set or system:

In many cases of physics and biology, however, the “independent” variable is subject to just as much devi-
ation or error as the “dependent” variable… In the case we are about to deal with, we suppose the observed
variables – all subject to error – to be plotted in plane, three-dimensioned or higher space, and we endeavor
to take a line (or plane) which will be the “best fit” to such a system of points. (pp. 559–560)

Pearson then goes on to give an example of principal components and methods for finding roots,
then specifies many algebraic and geometrical implications of the fitting of the new best-fit line,
beginning first with telling us exactly what he considers to be a “best-fitting” line:

Of course the term “best fit” is really arbitrary; but a good fit will clearly be obtained if we make the sum of
the squares of the perpendiculars [emphasis added] from the system of points upon the line or plane a
minimum…We shall make U = S(p2) a minimum. If y were the dependent variable, we should have made
S(y − y)2 a minimum.

(Pearson, 1901, p. 560)

With these words, Pearson contrasted his method of principal components with that of the then fairly
recent, but still relatively established, method of least-squares in which the sum of squared deviations
about the regression line is minimized (i.e., S(y − y)2 in Pearson’s quote). Instead of minimizing this
sum, Pearson wanted to minimize the sum of squared perpendiculars (i.e., U = S(p2)) and gave
Figure 13.2 to illustrate what he was up to. A principal component is a line that minimizes the sum
of these squared perpendicular distances.

Pearson then went on to derive the principal components and provided a geometrical representation
of his derivation (Figure 13.3).

In Figure 13.3, Pearson drew 3 lines, EE , FF , and AA . The lines EE’ and FF’ are the least-squares
regression lines of y on x and x on y, respectively. The line AA is the principal components line. As
summarized by Pearson (p. 566):

B

A P3

Pπ
P
π

P
3

P4

P
4

P2
P

2

P1
P

1

FIGURE 13.2 Pearson’s 1901 depiction of minimizing perpendiculars. Each P1, P2 is the perpendicular
distance from the component line (best-fit line in Pearson’s use of the word) to the given data point.
Source: Pearson (1901).© 1901 Taylor and Francis.
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EE’ is found by making S(y − y)2 a minimum,

FF’ is found by making S(x − x)2 a minimum,

AA’ is found by making S(p2) a minimum.

The line AA is the first principal component accounting for maximum variance in the vari-
ables. The line BB , “line of worst fit” is the second principal component accounting for max-
imum variance unexplained by AA , but orthogonal to it since it is positioned at a 90o angle
relative to the first component. Pearson’s original representation of the principal components line
of best fit will surely make more sense once we have surveyed a modern treatment of PCA in the
remainder of this chapter.

13.2 HOTELLING 1933

Harold Hotelling is also historically recognized as an “inventor” of principal components analysis. In
1933, Harold Hotelling published a paper titled Analysis of a Complex of Statistical Variables Into
Principal Components, inThe Journal of Educational Psychology, emphasizing the technical simi-
larities between it and factor analysis. Referring to a set of observed x variables, Hotelling began
his paper:

The x’s will ordinarily be correlated. It is natural to ask whether some more fundamental set of independent
variables exists, perhaps fewer in number than the x’s, which determine the values the x’s will take. If γ1, γ2,
… are such variables, we shall then have a set of relations of the form xi = fi(γ1, γ2, …) (i = 1, 2, …, n).
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FIGURE 13.3 Principal component line of best fit versus least-squares regression lines. Source: Pearson (1901).
© 1901 Taylor and Francis.
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Quantities such as the γ’s have been called mental factors in recent psychological literature. However in
view of the prospect of application of these ideas outside of psychology, and the conflicting usage attaching
to the word “factor” in mathematics, it will be better simply to call the γ’s components of the complex
depicted by the tests. (p. 417)

Hotelling’s reference to “mental factors” was as a result of much of the driving force behind com-
ponents analysis and factor analysis occurring in the field of psychology in the early 1900s. Despite
Hotelling’s apparent alignment of PCA with the factors of factor analysis, PCA should not be inter-
preted nor viewed as a “special case” of factor analysis. Many writers have warned against equating
PCA with FA (e.g., see Jolliffe, 2002). Hence, we emphasize from the outset—principal components
analysis is not equivalent to factor analysis. PCA generates successive orthogonal linear combina-
tions of the variables, whereas factor analysis, as we will see in the chapter to follow, generates linear
combinations of the hypothetical factors. And whereas PCA models focus on variance, factor analysis
models focus more on commonality among variables. How this distinction materializes in practice is
that in PCA, the to-be-analyzed matrix in the case of a correlation matrix typically contains unit var-
iances (1’s) along the main diagonal. That is, the trace is equal to the sum of variables inputted into the
analysis. Or equivalently, the trace is equal to the sum of the variances of the variables (for which in the
case of a correlation matrix, that sum of variances is equal to the number of variables subjected to the
analysis). In this way, each observed variable in the procedure contributes a single unit of variance
before the correlation matrix is subjected to analysis. In factor analysis, however, the main diagonal
consists of what are called communalities, or, more crudely, the amount of shared variance that the
given variable has in common with other variables also subjected to the factor analysis.

As well, though PCA and FA often result in similar findings (assuming of course that components or
factors are actually empirically present and not merely a wishful hope of the researcher), PCA is gen-
erally considered a relatively atheoretical technique when contrasted to FA. That is, a principal com-
ponents analysis simply seeks to reduce the dimensionality of observed data. Factor analysis also seeks
to reduce the dimensionality of data, but usually under the assumption that unobserved or latent vari-
ables subsume the observed correlation among the set of variables. The user of principal components
often does not, at least to such an extent, assume an underlying “latent” scientific structure. Rather, she
simply seeks to make the observed data more parsimonious through the extraction of components. In
general, principal components analysis is a much simpler procedure than that of the factor-analytic
methods, both in derivation and extraction, and also generally in substantive use and application.
And though PCA is generally widely accepted across virtually all scientific fields, factor analysis car-
ries with it a storied past of severe criticism, misuse, and rejection. One of the technical issues that
plagues exploratory factor analysis (EFA), as we will discuss in the next chapter, is that loadings
for factors are not unique, and hence all EFA solutions are subject to an orthogonal rotation and
are contingent upon how many other factors are extracted. Principal components, on the other hand,
derives loadings that do not change regardless of how many other components are “kept.” Though
eigenvectors which make up the given component are not unique in the strict mathematical sense
of the word, the component is “stable” regardless of how many other components are interpreted or
kept along with it. The “uniqueness” of the component is that it is well-defined. In factor analysis,
extracted factors are typically not. This is a major problem when attempting to apply (and interpret)
the factor-analytic technique to real research variables. Mathematically, it is not really an issue, but
scientifically, it very much is.

We delay further discussion of factor analysis to the following chapter where we will also discuss
some of the similarities and differences between EFA and PCA. For now, we focus our attention on
components analysis.
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13.3 THEORY OF PRINCIPAL COMPONENTS ANALYSIS

We now consider a summary of the formal development of principal components. Our treatment is very
brief. For much deeper and thorough technical introductions to PCA the reader is encouraged to consult
Johnson and Wichern (2007) and Jolliffe (2002) where the latter provides a book-length and thorough
treatment of the topic along with applications. Izenman (2008) also gives a very good and deep over-
view of the technique.

We start by considering x to be a random vector of p observed variables with covariance matrix Σ.
For ordinary PCA, the p random variables will usually be measurable on a continuous scale. PCA can
also be performed on the standardized covariance matrix, that is, correlation matrix R. The decision as
to whether to analyze the covariance or correlation matrix for PCA is an important one, one which will
be discussed later in this chapter.

We know from results in matrix theory (see Appendix) that associated with covariance matrix Σ are
p eigenvalues and p eigenvectors. For example, supposing p = 10 observed variables in Σ, then it stands
that we can extract 10 eigenvalues and 10 eigenvectors. We will see that each of these extracted eigen-
values and associated eigenvectors are associated with a principal component, and hence for p = 10
observed variables, there will be extracted a total of 10 components. Generally, there are always
as many principal components extracted as there are variables that serve as inputs to the prin-
cipal components analysis. The goal of PCA is to learn whether fewer than p components can be used
to summarize the variance in the original p variables.

13.3.1 The Theorem of Principal Components Analysis

Principal components analysis is founded on a theorem that says if the expectation of the random vector
x is equal to 0 (i.e., E(x) = 0) and for a covariance matrix Σ, then one can conduct an orthogonal linear
transformation to generate components that have maximum variance and are unrelated to successive
components. See Anderson (2003, p. 464) for a proof of this theorem, though from an applied point of
view, the proof of the theorem will not provide a great deal of insight.

To obtain components, we can perform eigendecomposition. For every square matrix A, we can
obtain a scalar λ and a vector x (other than zero) so that the following equality holds:

Ax = λx (13.1)

The scalar λ is called an eigenvalue of the matrixA and the vector x is called an eigenvector associated
with λ. To solve for λ and x, we can re-write (13.1) as

Ax− λx = 0

A− λI x = 0

It stands that if A − λI 0, then this implies that (A − λI) has an inverse, which means that x = 0 is the
only solution. This is referred to as the trivial solution. To obtain nontrivial solutions, we deliberately
set A − λI = 0 and find values of λ that can be substituted into (A − λI)x = 0 to then provide a solution
for x.

The equation A − λI = 0 is called the characteristic equation. For a matrix A that is n n (i.e.,
square, with n rows and n columns), the characteristic equation will have n roots, that is, n eigenvalues
λ1, λ2, …, λn, not all necessarily different from one another and not all nonzero. Eigenvectors are
unique only up to multiplication by a scalar. That is, we can multiply the elements of a given eigen-
vector without “changing” the eigenvector in any fundamental way. As noted in Rencher and
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Christensen (2012), this idea of “uniqueness up to multiplication by a scalar” can be more formally
expressed by:

A− λI kx = k0 = 0

where k is some scalar. What the above says is that if x is a vector, then so is kx, where k is the factor by
which we are multiplying (or “scaling”) elements of the eigenvector. What this means fundamentally in
matrix terms is that we can adjust the length of x, but that the direction of the vector from the origin is
unique (i.e., “unique” meaning that the direction remains the same even after the length adjustment).
See Rencher and Christensen (2012, p. 33) for details.

If eigenvectors are unique up to multiplication by a scalar, the question then becomes one of having
some way to set the values of the eigenvector in some consistent, normative way so that the variance of
derived components cannot grow infinitely large depending on the size of the weights chosen. The way
that is typically adopted in PCA is to scale the eigenvector such that x x = 1. That is, we scale the
eigenvector such that its length (i.e., x x) is equal to 1. An eigenvector of length 1 is said to be
normalized.

13.4 EIGENVALUES AS VARIANCE

We have discussed the fact that each extracted eigenvector is associated with a respective eigenvalue.
Each eigenvalue represents the variance for the given component. A given component of the p
extracted components accounts for a certain amount of variance in the observed variables. This var-
iance is encapsulated in the associated eigenvalue for this component so that, similar to what was done
in LDA (but not exactly the same, since discriminant functions are typically not orthogonal (Rencher
and Christensen, 2012, p. 408), if we would like to know the proportion of variance accounted for, we
take the ratio of the given eigenvalue to the total of the eigenvalues extracted. For a covariance matrix,
this total variance will be whatever the total variance is summing across the original variables subjected
to the PCA. For a correlation matrix, since each variable is standardized to have a variance of 1, the total
variance across variables is equal to simply the sum of variables. That is, in the case of a correlation
matrix, p represents the total variance sought to be “explained” in the observed data. For example,
suppose the PCA extraction revealed eigenvalues 1.5, 1.0, and 0.5 for a three-variable problem.
The proportion of variance accounted for by the first extracted component would be 1.5/(1.5 + 1.0
+ 0.5) = 1.5/3 = 0.50, or, 50%. Ideally, in the spirit of data reduction, one hopes that most of the original
variance in the data can be accounted for by as few components as possible.

13.5 PRINCIPAL COMPONENTS AS LINEAR COMBINATIONS

We have discussed that an extracted component is, in actuality, made up of an eigenvector associated
with an eigenvalue. In this way, the elements of the extracted eigenvector simply represent the
“weights” by which we attribute a measure of “importance” to the given observed variables. For exam-
ple, for a three-variable problem, there will be three components extracted. The three linear combina-
tions can be expressed as:

ℓ1 = a1x = a11x1 + a12x2 + a13x3
ℓ2 = a2x = a21x1 + a22x2 + a23x3
ℓ3 = a3x = a31x1 + a32x2 + a33x3
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where a1 through a3 are vectors of coefficients or “loadings” corresponding to each extracted principal
component, and x is a vector of random variables, which in this example consists of three variables. It is
easy to see that a principal component is nothing more than a weighted sum, a linear combination
of the observed variables, each weighted by respective elements of the extracted eigenvector. What
features are special to this extraction?What characteristics do these linear combinations possess? What
is so unique about these linear combinations, these components? We discuss these issues next, starting
with the extraction of the first component.

13.6 EXTRACTING THE FIRST COMPONENT

The goal of PCA is to extract the first component a1x (i.e., ℓ1) such that its variance ismaximized. But
what does this mean, exactly? This means that the component will account for as much of the variance
in the original observed variables as possible. That is, out of all the linear combinations that could the-
oretically be computed on the observed variables, the “principal” component is the linear combina-
tion accounting for themost variance. However, since we could feasibly make the variance of a1x (i.e.,
the linear combination) large by simply multiplying it by a constant, we must place a constraint on its
maximization.What this means is that we cannot arbitrarily inflate the variance of a component without
bound so that we account for increasingly larger amounts of variance. What we need is a guidepost, a
benchmark of sorts from which to do our maximization. This benchmark is what we can refer to more
generally as an imposed constraint on our analysis. These constraints are present in many statistical
procedures where a maximization or minimization technique is applied. In the case of PCA, as we have
already alluded, it is ordinarily the case to impose the constraint that the sum of squared loadings for
the component sum to 1.0. That is, when we extract our first component, we are maximizing the
variance of a1x subject to the constraint a1a1 = 1 . This particular constraint is referred to as a
normalizing constraint. We are seeking to maximize the variance of the linear combination relative
to the length of a (i.e., the squared length of a is a1a1 = 1).

How does the maximization take place? The actual maximization procedure is usually accom-
plished by using Lagrange multipliers, which we will not detail here, but suffice to say is a wide-
spread technique in linear algebra and the field of numerical analysis that is often used to find
maximum or minimum values of a function when that function is first subjected to certain constraints
(such as the normalizing constraint of a1a1 = 1). For details, see Jolliffe (2002). For a lucid overview of
Lagrange multipliers as used in structural equation models, see Mulaik (2009).

13.6.1 Sample Variance of a Linear Combination

We have said that the principal component is the linear combination of random variables extracted that
has maximal sample variance out of all possible linear combinations that could have been extracted.
But to know what this means, we need to know just what quantity it is actually maximizing. That is,we
need to know what the sample variance of a linear combination actually is. In helping us arrive at
the answer, recall first the “ordinary” sample variance for a variable:

s2 =

n

i = 1
yi − y

2

n − 1

What we need now is the equivalent variance computation for a linear combination. Recall that a linear
combination ℓ, in its most general form, is equal to

430 PRINCIPAL COMPONENTS ANALYSIS



ℓi = a1y1 + a2y2 + + apyp = a y

and is simply a weighted sum (we use y1 through to yp here instead of x1 through xp as we did for the
earlier components). That is, the composite variable ℓi is merely a weighted sum of the random vari-
ables y1, y2,…, yp. When we compute a linear combination, we are in actuality generating an entirely
new variable. And just like any other variable, we want to be able to compute its mean and variance.
Recall that the mean of ℓi is easily computed. We simply sum up the respective values of our new var-
iable ℓi and divide by the number of pieces of information that went into the sum. The mean for the
linear combination ℓi is thus:

ℓi =
1
n

n

i = 1

ℓi

What is the variance of the linear combination? We can compute it the same way we computed the
variance of the variable yi above, but this time, with respect to ℓi:

s2
ℓi
=

n

i = 1
ℓi − ℓ

2

n − 1
(13.2)

In addition to computing s2
ℓi
as in (13.2), the variance of ℓi can also be expressed through the following

using matrix notation:

s2
ℓi
= a Sa (13.3)

That is, the variance of ℓi is a function of the weights a used in deriving the linear combination as well as
the sample covariance matrix S. So when we speak about the variance of a principal component in this
chapter, we will be talking about (13.3). It is simply the variance of an optimally derived linear com-
bination of variables having special properties, which we call the principal component.

Getting back to our discussion of extracting the first principal component, we can now put our
understanding on a more solid footing. That is, the first principal component extracted is such that
s2
ℓi
= a Sa ismaximized. That is, the first principal component is that linear combination that accounts

for maximum variance in the original variables subjected to the analysis.

13.7 EXTRACTING THE SECOND COMPONENT

Now that we have extracted the first component to account for maximal variance subject to the con-
straint that a1a1 = 1, we now wish to extract the second and ensuing components. Similar to the first
component, the second component, that of a2x, is extracted subject to the constraint that its variance
again be maximized and that a2a2 = 1. However, in addition to the constraint of a2a2 = 1 imposed, the
second component is extracted subject to a second constraint. That second constraint is that the covar-
iance of the second component with that of the first component be equal to 0. That is, we extract
and maximize the variance of a2x subject to the constraints a2a2 = 1 and cov a1x, a2x = 0. We can
also refer to this second condition more simply as a2a1 = 0 The conditions a2a1 = 0 and
cov a1x, a2x = 0 both can be used to represent the idea of zero correlation between components
(Jolliffe, 2002, pp. 5–6). That is, the two vectors are geometrically perpendicular, and their dot
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product is equal to zero. More formally, the idea of orthogonality is that of a covariance matrix of
derived components ℓi through ℓp that is a diagonal matrix with component variances along the main
diagonal and zeros everywhere else. If Sℓ is the variance-covariance matrix of components, then we
want Sℓ to be:

Sℓ = ASA =

s2
ℓ1 0 … 0

0 s2
ℓ2 … 0

0 0 s2
ℓ3 0

0 0 … s2
ℓp

(13.4)

In other words, we are diagonalizing the matrix to one with only variances s2
ℓ1
, s2

ℓ2
,…, s2

ℓp
along the

main diagonal. These, as we will see, are the respective eigenvalues, λ1, λ2, …, λp of Sℓ.

13.8 EXTRACTING THIRD AND REMAINING COMPONENTS

As a recap, the first component is extracted subject to the normalizing constraint. The second compo-
nent is extracted subject to the normalizing constraint and the orthogonality constraint, that of
a2a1 = 0 The third principal component extracted, a3x, will be so subject to the normalizing constraint
but will also be orthogonal to components one and two. That is, a3a1 = 0and a3a2 = 0. This third com-
ponent will exhibit maximal variance subject to these two constraints. Note as well that if the third
component is the last component to be extracted, then we can also say that this component exhibits
minimal variance out of the three components. That is, it is the least “relevant” (in the sense of var-
iance) component in accounting for variance in the observed data.

Remaining components are extracted in an analogous fashion. That is, each remaining linear com-
bination is extracted that accounts for maximal variance given the already included extracted com-
ponents before it, which really means, in PCA, given that it is orthogonal to the previously extracted
components.

13.9 THE EIGENVALUE AS THE VARIANCE OF A LINEAR COMBINATION
RELATIVE TO ITS LENGTH

We have discussed the idea that when extracting linear combinations (i.e., components), we are doing
so such that we extract the component that has maximal variance, but subject to the constraint that it
does so relative to the squared length of the eigenvector (equal to a a). We can express this idea of
“relative to” through a ratio, essentially comparing the variance of the linear combination to its squared
length (where a a is usually set at 1):

a Sa
a a

(13.5)

This is the eigenvalue of the linear combination. As usual, we denote the eigenvalue by λ (“lambda”),
and write:

λ =
a Sa
a a
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The eigenvalue is also the maximum value of the ratio a Sa/a a. For a proof of why the
variances a1x, a2x and a3x are given by the eigenvalues λ1, λ2 and λ3 , see Johnson and Wichern
(2007, p. 432).

Theoretically, though seldom if ever in practice, a PCA could generate eigenvalues that are
approximately equal. What this means substantively (i.e., from a scientific point of view) is that each
extracted component is accounting for approximately the same amount of variance. The solution to this
problem is, pragmatically speaking, to prioritize that component of the two which makes the most sub-
stantive sense (if either of them do). As we will see, the fact that a component explains a certain amount
of variance is not always justification alone for keeping it or attempting to interpret it.

Furthermore, it sometimes happens that one or more eigenvalues are equal to zero. This is sugges-
tive of a redundancy (or “dependency”) among observed variables, which may imply that one variable
is an exact linear combination of one or more other variables. As Jolliffe (2002) notes:

Any PC with zero variance defines an exactly constant linear relationship between the elements of x. If such
relationships exist, then they imply that one variable is redundant for each relationship, as its value can be
determined exactly from the values of the other variables appearing in the relationship … Ideally, exact
linear relationships should be spotted before doing the PCA, and the number of variables reduced accord-
ingly. (p. 27)

Hence, as recommended, a potential solution is to examine the raw observed variables (not com-
ponents) and delete variables as necessary to ease the dependency, then redo the components analysis.

13.10 DEMONSTRATING PRINCIPAL COMPONENTS ANALYSIS:
PEARSON’S 1901 ILLUSTRATION

To demonstrate a very simple principal components analysis, we consider data featured in Pearson’s
1901 paper (Pearson, 1901, p. 569). Pearson gave data on two variables, x and y, which we repro-
duce below:

> x <- c(0.0, 0.9, 1.8, 2.6, 3.3, 4.4, 5.2, 6.1, 6.5, 7.4)
> y <- c(5.9, 5.4, 4.4, 4.6, 3.5, 3.7, 2.8, 2.8, 2.4, 1.5)
> pc.data <- data.frame(x, y)
> pc.data

x y
1 0.0 5.9
2 0.9 5.4
3 1.8 4.4
4 2.6 4.6
5 3.3 3.5
6 4.4 3.7
7 5.2 2.8
8 6.1 2.8
9 6.5 2.4
10 7.4 1.5

> plot(x, y)
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Obviously, the data are currently in two dimensions (x and y). However, do we really need these two
dimensions to account for the variance in the data? The job of principal components analysis will be to
learn whether the variance in the data can be accounted for primarily by the first component. Because
there are two variables, PCA will extract two components. We are hoping, however, that the first com-
ponent accounts for most of the variance and that we could conveniently discard the 2nd component as
not worthwhile.

We will perform the PCA directly on the covariance matrix. First, we build the covariance matrix:

> A <- cov(pc.data)
> A

x y
x 6.266222 -3.381111
y -3.381111 1.913333

We can verify that R has constructed the matrix correctly by computing variances and pairwise cov-
ariances to match the entries above:

> cov(x, y)
[1] -3.381111
> var(x)
[1] 6.266222
> var(y)
[1] 1.913333

We now run the PCA on the covariance matrix A using R’s princomp, using covmat = A to
identify the covariance matrix we want analyzed:

> pca <- princomp(covmat = A)
> summary(pca)
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Importance of components:
Comp.1 Comp.2

Standard deviation 2.8479511 0.262164656
Proportion of Variance 0.9915973 0.008402695
Cumulative Proportion 0.9915973 1.000000000

R has extracted two components (Comp.1 and Comp.2), which should make sense, since there are
two variables in Pearson’s original data. The standard deviation of the first component is 2.848. When
we square this number, we get the variance of the component, equal to (2.8479511)2 = 8.11, which is
the eigenvalue for the first component. The standard deviation of the second component is 0.262.
When we square this number, we get the variance of the component, equal to (0.262164656)2 =
0.07, which is the eigenvalue (rounded up) for the second component.

The proportion of variance accounted for by the first component is equal to approximately 0.99,
computed as the variance for the given component divided by the total sum of variances across both
components (i.e., 8.11/(8.11 + 0.07)) = 8.11/8.18 = 0.99. The proportion of variance accounted for by
the second component is equal to 0.008, computed as the variance for the given component divided by
the total sum of variances across both components (i.e., 0.07/8.18 = 0.008).

We obtain the loadings in R by:

> loadings(pca)

Loadings:
Comp.1 Comp.2

x -0.878 -0.479
y 0.479 -0.878

Recall that the loadings for a principal component are actually elements of the eigenvector that make up
the component. That is, in a linear combination (component) of the form

ℓi = a1y1 + a2y2 + + apyp = a y

the “loadings” are the values a1, a2, …, ap.
We can also easily obtain the same eigenvectors as above, as well as the corresponding eigenvalues,

within rounding error by solving for them directly using R’s eigen function:

> eigen(A)
$values
[1] 8.11082525 0.06873031

$vectors
[,1] [,2]

[1,] -0.8778562 -0.4789243
[2,] 0.4789243 -0.8778562

Note that the loadings and eigenvectors (i.e., $vectors) are identical. We can easily demonstrate
the orthogonality of eigenvectors by obtaining their dot product:

> eigen.1 <- c(-.8778562, 0.4789243)
> eigen.2 <- c(-0.4789243, -0.8778562)
> eigen.1%*%eigen.2

[,1]
[1,] 0
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The product of eigenvectors computed in R is equal to 0, confirming that both extracted components
are orthogonal to one another, as they are required to be.

We can also easily demonstrate that each eigenvector extracted must have a length equal to 1.0. That
is, recall that the sum of squared loadings must equal 1.0 (x x = 1).We verify that this is indeed the case:

> sum(eigen.1*eigen.1)
[1] 1
> sum(eigen.2*eigen.2)
[1] 1

Recall that components analysis does not generate “new” variables, but rather simply transforms
existing ones into new linear combinations. Because of this, the actual total variance in the sample
data remains the same. This idea is encapsulated by a general property of principal components
analysis:

p

i = 1

λi = s21 + s22 + + s2p (13.6)

That is, the sum of eigenvalues will equal the sum of variances of the original variables, where p is
the number of observed variables, λi is the ith eigenvalue, and s21 + s22 + + s2p is the sum of the
respective variances for each observed variable. PCA does nothing more than summarize the variance
of the original variables in a different way. It “repackages” the variance of the original variables onto
new dimensions. The transformation does not fundamentally change the variability inherent in the data.
It only reorganizes it. Indeed, property (13.6) can be used as a quick check of one’s work in computing
components in that if the sum of eigenvalues for a covariance matrix does not total the sum of observed
variable variance, it could be indicative of a miscalculation or other more serious problem. In a stan-
dardized covariance matrix, otherwise known as a correlation matrix, the sum of eigenvalues should
be equal to the sum of variables subjected to the analysis, since for a correlation matrix each observed
variable contributes a single unit of variance (i.e., value of 1) at the outset of the analysis.

We can easily confirm (13.6) for Pearson’s data. Recall the eigenvalues for components 1 and 2
were equal to 8.11 and 0.07, respectively, for a sum of 8.18. The original variances of variables x
and y were equal to 6.27 and 1.91 respectively, for likewise a sum of 8.18. We can see then that
the total variance in the data has been preserved. All the PCA has done is to find new axes, mutually
orthogonal to one another, for which the first few (in our case, first only) hopefully accounts for as
much of the total variance as possible. PCA does not “change” the amount of variance in a set of data,
it merely reconstructs the dimensions on which this variance exists and is represented.

13.11 SCREE PLOTS

The scree plot is a graphical device used for helping to decide the number of worthwhile components
to retain from a principal components or factor analysis. It is generally attributed to Cattell (1966),
though as noted in Jolliffe (2002), scree plots were well in use before Cattell. In a scree plot, eigen-
values are plotted in order of decreasing magnitude. Generally, and quite subjectively, where one sees a
“bend” or “elbow” in the plot, one uses this as a cut-off point for the number of components to retain.

We obtain a scree plot in R by following up the princomp function with the plot function:

> plot(pca,type="lines")
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For Pearson’s data, the plot clearly reveals that the first component is accounting for the majority of
the variance, while the second component is accounting for little (Figure 13.4). Naturally, scree plots
are more useful when the number of components is quite large. For instance, consider Figure 13.5,
where a plot was made for an eight-component problem, one which we will feature toward the end
of this chapter (where we analyze the generic matrix cormatrix).

Inspection of Figure 13.5 reveals that the “elbow” appears to occur at component number 2, which
may suggest the retention of one to two components, the first explaining quite a bit more variance than
that of the second.

Contrary to what some researchers profess about the scree plot along with Cattell’s original enthu-
siasm for it, I personally do not find them very useful. There is nothing inherently significant about the
elbow in the graph, and one can usually draw an identical conclusion about component retention with
or without the plot. In the time before high-speed computers, the scree plot may have been a bit more
helpful in assisting one to wade through numerical complexities and make sense of one’s data (Tucker,
2009). As well, as we will discuss more so with regard to factor analysis, component or factor retention
is somewhat of an art at best, and should be influenced more by researcher judgment than by a simple
diagram such as the scree plot. And in applications of PCA to physical phenomena such as extracting
components of digital images, choosing the number of components to retain will have less to do with a
bend in a scree plot and much more to do with features of the image one wishes to account for. For an
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example of such an application to “eigenfaces” and how PCA can be used in facial recognition, see
Izenman (2008, Chapter 7).

Hence, though the use of the scree plot is not to be discouraged, if you find yourself retaining a
certain number of components based solely on the results of such a plot, seeking additional advice
when interpreting your findings is probably in order. Scree plots should be used at most as aids to
decision-making in this regard, and not relied on exclusively for the determination of the number
of components or factors.

How many components should you then retain? The purpose of the analysis should, in part, influ-
ence your decision. Presumably, components analysis was performed for one of two reasons or both:

• You wished to reduce a large body of data into a few components that account for most of the
variance in the original data, but you are not overly concerned with substantive interpretation
of the components since you simply wanted to use the component scores in a future analysis
(e.g., regression analysis) as a predictor of a response variable.

• You wished to reduce the large body of data into fewer components but were also very interested
in the interpretation of these extracted components.

The question of component retention is rarely easily answered, and its answer depends in large part
on howmany components can be properly interpreted or otherwise valued by the researcher, unless the
extraction was done for purely statistical variance-maximization reasons alone or for a task such as
pattern recognition with images. The following guidelines may nonetheless prove useful:

• Using a scree plot, as discussed, detect where the primary “elbow” occurs, and base the retention
of components on this indicator. However, recall that this must be considered a very crude and
atheoretical way of proceeding in making the decision regarding component retention. As noted,
we generally advise against using the scree plot exclusively as a decision tool in this regard. It can
be useful as an initial screening of your components solution, however.

• Retain only those components that have eigenvalues associated with them that are greater than or
equal to the average of eigenvalues. The rationale behind this rule is that because eigenvalues are
corresponding variances that represent each component, the average eigenvalue can be considered
the average variance of the observed variables subjected to the PCA. Hence, in this way, the most
“important” components will be those that are “above average” relative to the set of extracted
eigenvalues. In a correlation matrix, the average of eigenvalues is equal to 1. This is generally
known as the Guttman–Kaiser criterion, which originated with Guttman’s work in 1954 and
was adapted and modified by Kaiser (1960, 1961). Yeomans and Golder (1982) summarize
the decision-rule:

The technique is justified in the original Guttman article in terms of it providing a lower bound for
the number of common factors underlying a correlation matrix of observed variates having unities
in the main diagonal. More intuitively the argument has been advanced that no component
“explaining” less than the variance of an original variate can be deemed to represent a significant
source dimension. (pp. 222–223)

However, as noted by these same authors, using the criterion as a decision rule, especially an exclu-
sive one, is usually ill-advised. Under most circumstances they found the criterion to be a poor pre-
dictor of the number of factors or components inherent in a set of data. They also found that only
when the number of factors is substantially lesser than the number of variables, and communalities
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are relatively high, does it make any sense to use the criterion at all. Hence, these authors advise that if
one is to use the criterion, one be sure to also include information about estimated communalities. Con-
sult Preacher and MacCallum (2003) for a detailed discussion of why the adoption of arbitrary deci-
sions when deciding on the number of factors to retain can prove problematic.

Overall then, our general recommendation regarding the Guttman–Kaiser criterion is similar to that
of using the scree test: it is a poor decision tool if used exclusively to render a decision, but is poten-
tially useful if used in conjunction with researcher expertise and judgment. The moral of the story is
clear, in that in most cases, component retention cannot be made based on statistical evi-
dence alone.

13.12 PRINCIPAL COMPONENTS VERSUS LEAST-SQUARES REGRESSION LINES

The reader initially examining the principal component plot first produced by Karl Pearson in 1901
(Figure 13.2) might very well ask a good question: What is the difference between a least-squares
line and a principal component “line?” After all, they look very similar in that they both seem to
account for variation in the plane. However, as mentioned, they are constructed in a different manner.
Recall Pearson’s explanation discussed earlier in reference to his original 1901 article. In least-squares
regression, we regress y on x so that the so-called “least-squares criterion” is satisfied. Recall that in
ordinary least-squares, the objective is to fit a line subject to the minimization criteria that the sum of
squared errors be as small as possible. That is, the line is fit subject to keeping n

i = 1ε
2
i to a minimum.

What this amounts to geometrically is minimizing the squared vertical distances between observed
values and fitted values along the regression line, as depicted in Figure 13.6.

In PCA on the other hand, we do not wish to minimize the vertical distances. Geometrically, we
want to minimize the sum of squared orthogonal or perpendicular distances from the line. This is
why Pearson minimized S(p2), which represented the sum of squared perpendicular distances, where
S stood for “sum” and p2 stood for “squared perpendiculars.” That is, in PCA, we minimize the per-
pendicular distances rather than the vertical ones. We can see from Pearson’s plot (Figure 13.2) that
this is indeed what he had in mind.

FIGURE 13.6 Vertical distances are minimized in least-squares regression.
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13.13 COVARIANCE VERSUS CORRELATION MATRICES: PRINCIPAL
COMPONENTS AND SCALING

The most ideal situation for a PCA is that all variables subjected to the analysis are measured in the
same units. That is, principal components is most suitable when all observed variables are measured on
the same or at least similar metric. Eigenvalues and eigenvectors are not invariant to scale, which
means that depending on whether one analyzes the covariance or correlation matrix, one will generally
obtain different roots and vectors (Anderson, 2003). As summarized by Rencher and Christen-
sen (2012):

Generally, extracting components from S rather than R remains closer to the spirit and intent of principal
components analysis, especially if the components are to be used in further computations. However, in some
cases, the principal components will be more interpretable if R is used. For example, if the variances differ
widely or if the measurement units are not commensurate, the components of S will be dominated by the
variables with large variances. The other variables will contribute very little. For a more balanced repre-
sentation in such cases, components of R may be used. (pp. 419–420)

Performing a PCA on R rather than S will not result in the same analysis. For one, the variance
accounted for by each component is not guaranteed to remain constant across both matrices, nor will
the coefficients of the eigenvectors remain the same. Also, though the components extracted from S are
not scale invariant, the components extracted from R are so. This is simply because R itself is scale
invariant, whereas S, of course, is not. Recall from Chapter 2 that two variables could have a very high
covariance yet less linear standardized relationship simply due to the fact that one or both variables
exhibit high variances, which is what may be in part making the covariance large. In the case of cor-
relation, due to standardization (i.e., dividing the average cross-product by the product of standard
deviations), correlations become scale invariant.

To summarize then, if variables have wildly different variances, then standardizing the covariance
matrix to get the correlation matrix is a reasonable solution, so long as one is aware that differences
exist when analyzing the one matrix versus the other and that different solutions for each may be
obtained. Otherwise, in the case of analyzing S, variables with much higher variances will dominate
the determination of components. For a demonstration and example of this effect, see Rencher and
Christensen (2012, pp. 420–422). For further considerations on the differences between PCA on
the covariance versus correlation matrix, consult Jolliffe (2002). If in doubt, there is nothing preventing
a researcher from trying both solutions and then comparing the two. If the variances of one or more
variables is having an influential impact, the comparison could help to shed light on the issue (e.g., see
James et al., 2013, p. 381).

13.14 PRINCIPAL COMPONENTS ANALYSIS USING SPSS

We now demonstrate a PCA in SPSS on cormatrix, a hypothetical correlation matrix consisting of
eight observed variables, tests 1–8 (T1–T8). Principal components analysis is considered an “option”
in SPSS’s factor analysis function (the so-called “components analysis” option of factor analysis). As
already discussed, however, factor analysis should not be equated with that of components analysis
proper.

In preparing the matrix, we specify in SPSS that the input data is of the form of a matrix, then list the
observed variables of the matrix (first row of code below). We will base this components analysis
assuming 1000 observations are available on each variable, hence the reason why the third line of
the input reads “1000 1000…” a total of eight times (once per variable). We also use the first column
of the matrix to specify CORR for each row, which tells SPSS that correlations appear in each row:
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MATRIX DATA VARIABLES=ROWTYPE_ T1 T2 T3 T4 T5 T6 T7 T8.
BEGIN DATA
N 1000 1000 1000 1000 1000 1000 1000 1000
CORR 1.00000
CORR .343 1.00000
CORR .505 .203 1.00000
CORR .308 .400 .398 1.00000
CORR .693 .187 .303 .205 1.00000
CORR .208 .108 .277 .487 .200 1.00000
CORR .400 .386 .286 .385 .311 .432 1.00000
CORR .455 .385 .167 .465 .485 .310 .365 1.00000
END DATA.

To run the components analysis, we request:

FACTOR MATRIX=IN(CORR=*) * specifies a correlation matrix is being
inputted.
/PRINT= INITIAL EXTRACTION CORRELATION REPR * requests initial and
extraction communalities for both original matrix and reproduced
matrix.
/CRITERIA FACTORS(8) * requests that 8 factors (i.e., components) be
extracted, which is the maximum number in this case.
/EXTRACTION=PC * specifies the extraction to be that of principal
components.
/METHOD=CORRELATION. * requests the correlation matrix be analyzed.

The first part of the output is the correlation matrix we requested in our syntax. SPSS gives us the
full correlation matrix, not only the lower triangular. We confirm that the correlation matrix matches
that which we input into SPSS.

Correlation Matrix

T1 T2 T3 T4 T5 T6 T7 T8

Correlation T1 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455
T2 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385
T3 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167
T4 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465
T5 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485
T6 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310
T7 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365
T8 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000
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Next are the communalities (given below), both the initial and the extracted.

Communalities

Initial Extraction

T1 1.000 1.000
T2 1.000 1.000
T3 1.000 1.000
T4 1.000 1.000
T5 1.000 1.000
T6 1.000 1.000
T7 1.000 1.000
T8 1.000 1.000

Extraction method: principal component analysis

Notice that all initial communalities are equal to 1.0. Recall that the reason why they are all equal to
1.0 is because we are requesting a principal components solution for this correlation matrix, and
hence each variable is contributing unit variance to begin. In the typical exploratory factor analysis
solution, as we will discuss next chapter, the initial communalities will no longer be equal to 1.0,
and hence each variable will no longer contribute unit variance. For instance, in the case of principal
axis factoring, initial communalities will reflect the degree to which the given observed variable shares
variance with other variables in the model. Indeed, such measures will be a more accurate and repre-
sentative depiction for what is meant by communalities. We will discuss this concept more thoroughly
when we survey factor analysis in the following chapter.

The extraction communalities reflect the degree to which a given variable shares commonality
across the extracted components. Because we are extracting the maximum number of components
(eight) in this case, SPSS reports all extraction communalities equal to 1.0, the same as those for
the initial communalities. Had we requested a smaller number of components to be extracted (i.e.,
seven or less), then all of the extracted communalities would not have been equal to the initial
communalities.

Next, SPSS provides us with the breakdown of the eigenvalue extraction:

Total Variance Explained

Component

Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.447 43.088 43.088 3.447 43.088 43.088
2 1.157 14.465 57.554 1.157 14.465 57.554
3 0.944 11.796 69.349 0.944 11.796 69.349
4 0.819 10.237 79.587 0.819 10.237 79.587
5 0.658 8.226 87.813 0.658 8.226 87.813
6 0.390 4.873 92.686 0.390 4.873 92.686
7 0.336 4.201 96.887 0.336 4.201 96.887
8 0.249 3.113 100.000 0.249 3.113 100.000

Extraction method: principal component analysis.
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The eigenvalue for the first extracted component is equal to 3.447 and is clearly the largest of all
eigenvalues extracted. Since there are a total of eight possible components, the variance explained by
component 1 is equal to 3.447/8 = 0.43088, or 43.088% as shown in the first row of the table. Com-
ponent 2 has associated with it an eigenvalue of 1.157, which accounts for 1.157/8 = 0.1446, or 14.46%
of the variance. SPSS also provides the cumulative percentage of variance explained, which for com-
ponents 1 and 2, is equal to 43.088 + 14.465 = 57.55%.

Notice that the extraction sums of squared loadings, located in the right-hand side of the output, are
identical to those on the left-hand side. The reason for this is because in a PCA,whether we extract all
possible components or a subset of all possible components, the extraction of eigenvalues for each
component remains the same. In factor analysis, however, as we will see in the following chapter, this
is typically not the case, and the value of eigenvalues will change depending on the number of factors
extracted. This is a key and important difference between principal components analysis and factor
analysis.

Next are the component loadings in SPSS’s component matrix. These are scaled eigenvectors cor-
responding to each eigenvalue. That is, the first eigenvector, for component 1, that of 0.766, 0.563,
0.591, 0.693, 0.663, 0.559, 0.680, and 0.707, is the scaled eigenvector corresponding to the first
extracted eigenvalue of 3.447. The sum of squared loadings for each eigenvector is equal to its
respective eigenvalue. Note that this is different than what we mentioned earlier about the sum of
squared eigenvector weights equalling 1.0. Because SPSS treats PCA as a special case of factor anal-
ysis, the sum of squared loadings for each component is equal to respective eigenvalues.

Component Matrixa

Component

1 2 3 4 5 6 7 8

T1 0.766 –0.492 0.096 0.080 0.054 0.084 –0.053 –0.377
T2 0.563 0.123 –0.619 0.427 0.072 0.293 0.076 0.072
T3 0.591 –0.074 0.531 0.526 –0.099 –0.120 0.214 0.132
T4 0.693 0.463 0.002 0.101 –0.382 –0.110 –0.371 –0.020
T5 0.663 –0.585 0.066 –0.284 0.004 0.137 –0.180 0.286
T6 0.559 0.531 0.370 –0.363 0.053 0.338 0.142 –0.029
T7 0.680 0.232 –0.059 –0.055 0.629 –0.277 –0.061 0.028
T8 0.707 –0.051 –0.353 –0.359 –0.310 –0.246 0.297 –0.012

Extraction method: principal component analysis.
aEight components extracted.

Virtually all observed variables load relatively high on component 1, especially T1 (0.766), T4
(0.693) and T8 (0.707). Negative signs for loadings are interpreted to mean that the given variable
is negatively associated with the component. For instance, the negative loading of –0.492 for T1
on component 2 indicates a moderate negative relationship between T1 and the given component
(whatever we shall name it, if it indeed makes sense to give it a name for these data).
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We can generate the respective scree plot in SPSS:
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The scree plot confirms what the numerical output suggested, that the first component accounts for
the majority of the variance in the variables.

13.15 CHAPTER SUMMARY AND HIGHLIGHTS

• Principal components analysis (PCA) is a statistical technique that extracts information from a
covariance or correlation matrix such that the original information within the matrix may be repre-
sented in fewer dimensions hopefully without a loss of too much information.

• The number of principal components extracted from a data set will generally equal the number of
variables in that data set and originally subjected to the PCA. The user retains the number of com-
ponents that adequately account for as much of the original variance as possible. Should the user
choose to keep all derived components, then no data reduction has occurred, and only a transfor-
mation of the original axes to new dimensions has taken place.

• PCA can be said to have originated with the work of Karl Pearson in 1901 and was extended with
the work of Harold Hotelling in 1933.

• The primary technical distinction between principal components analysis and factor analysis is
that the former generates successive orthogonal linear combinations of the variables, whereas fac-
tor analysis generates successive linear combinations of the factors. Principal components anal-
ysis and factor analysis often yield similar findings but should nonetheless be regarded as distinct
techniques.
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• The primary theorem of PCA states that for a vector of random variables with associated covar-
iance matrix, an orthogonal linear transformation can take place that generates components hav-
ing maximum variance and which are unrelated to successive components extracted. In the classic
PCA, each component extracted is orthogonal to those previously extracted.

• PCA generally proceeds by the extraction of eigenvalues and eigenvectors from a covariance
matrix. The extracted eigenvalues correspond to variances of the components. The extracted
eigenvectors correspond to weights used to derive the components and are often and conveniently
scaled such that the length of the component equals 1.0. This is typically referred to as the nor-
malizing constraint.

• PCA is most ideally performed on variables measured on the same units. Caution should be exer-
cised when conducting PCA on variables not of the same units. Analysis of the correlation matrix
instead of that of the covariance matrix may be suitable in cases that feature such incommensurate
variables.

• The scree plot, depicting eigenvalues in decreasing order, is a tool that may prove useful in help-
ing the analyst decide on the number of components to retain. However, other than in a purely
exploratory sense, it should never be used exclusively in deciding on the number of components
to keep.

• A comparison of PCA to linear regression reveals that while ordinary least-squares regression
seeks to minimize the sum of squared errors around the line of best fit, that is, the vertical dis-
tances from the line, PCA likewise seeks to minimize the sum of squared errors around the line of
best fit, but this time, it is the perpendicular distances (not vertical) that are minimized. Pearson
clearly distinguished between these two cases in his 1901 paper in which he originated PCA.

• The sum of eigenvalues for a PCA is equal to the sum of variances of the original variables, that is,
the trace of the covariance matrix. This is because PCA does not “change” data, it merely projects
it onto new axes as a way of “re-expressing” it. The original variance in the variables remains
intact.

REVIEW EXERCISES

13.1. Interpret Karl Pearson’s quote to open this chapter that “the term ‘best fit’ is really arbitrary.”
What does this mean, exactly? And how did such thinking on his part reflect ingenuity in devel-
oping the principal components solution?

13.2. Provide two interpretations of the goal of principal components analysis. Which do you think is
most relevant? Why?

13.3. Why is it said that PCA seeks to define an orthogonal transformation to a diagonal covariance
matrix? What does this mean, exactly, and what does it mean for the covariance matrix to be
diagonal?

13.4. We said that PCA reduces to solving for the eigenvalues and eigenvectors of an at least semi-
positive definite matrix. What does it mean for the matrix to be semipositive definite, and why
does this matter in the context of PCA?

13.5. Recall Francis Galton’s correlational ellipse (left). Compare and contrast Pearson’s ellipse of
1901 (right). Can you identify similarities?
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13.6. Explain why it is true that there are generally as many principal components extracted in PCA
as there are variables input into the procedure. Why does this make sense?

13.7. Recall that the theorem of principal components states that if the expectation of the random
vector x is equal to 0 (i.e., E(x) = 0) and for a covariance matrix Σ, then one can conduct
an orthogonal linear transformation to generate components that have maximum var-
iance and are unrelated to successive components. Explain what it means for components to
have “maximum variance.”

13.8. What does it mean to say that eigenvectors are unique only up to multiplication by a scalar?

13.9. How is the eigenvector usually scaled in PCA, and what is this constraint typically called?

13.10. Discuss how a principal component is a linear combination. What does this mean, exactly?
How are the linear combinations obtained in PCA similar or different to previous linear com-
binations encountered in this book (e.g., t-tests, regression, discriminant analysis)? That is,
what distinguishes these different types of linear combinations for each setting?

13.11. What is the variance of a linear combination equal to, and how does PCA go about “normal-
izing” this variance?

13.12. Explain the process of extracting the first and second principal components. What condition
must be satisfied when extracting the second component that did not (and could not) apply
when extracting the first?

13.13. Compare the procedures of principal components analysis to that of least-squares regression.
How are they similar? How are they different?

13.14. Under what conditions should the correlation matrix rather than the covariance matrix be ana-
lyzed in a PCA? Which matrix is more in the “spirit” of PCA?

13.15. Conduct a principal components analysis on variables x1 through x9 representing nine tests of
mental ability of the Holzinger and Swineford (1939) data. Interpret results. How many com-
ponents would you extract? Why? Without knowing more about the variables x1–x9, their
meaning and nature, and the general substantive purpose for conducting the PCA, why might
decisions regarding component retention be difficult if not impossible in a substantive, as
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opposed to, statistical context? That is, why might the statistical indicators of component
retention not be enough for you to make a decision?

13.16. Anderson (2003, p. 471) performed a PCA on a subset of the iris data using only the species
versicolor. Duplicate that analysis, and confirm that the first component extracted accounts for
the majority of the variance in the original data.

Further Discussion and Activities

13.17. A useful strategy for better understanding and appreciating statistical methods is to compare
methodologies to one another. In the case of principal components analysis, a comparison of
the geometry of PCA to that of the analysis of variance (ANOVA) proves insightful. Read
Smith (1980) and provide a brief account of how the two techniques compare geometrically.

13.18. The biplot is an innovative graphical technique for depicting multivariate data in spirit similar
to how scatterplots are used to depict bivariate data. They are the multivariate analog to the
scatterplot. The seminal publication for biplots is Gabriel (1971). Read this article and then for
the PCA performed in Exercise 13.16, generate a biplot in R using biplot(). Interpret
the plot.
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14
FACTOR ANALYSIS

When the factors are partialled out from the observed variates there no longer remains any correlation
between these.

(Jöreskog, 1978, pp. 453, 455)

Factor analysis is a statistical method used to uncover latent structures that may hypothetically underlay
covariance or correlation among typically continuously observed variables. A more crude designation
of the method is that it is a data reduction technique, similar in vein to that of principal components
analysis in which linear combinations are extracted from empirical observations. As emphasized in the
previous chapter, however, factor analysis is not equivalent to principal components analysis, and as
argued by many, efforts to seemingly equate them are severely misguided (e.g., see Chatfield and Col-
lins, 1981). More technically, we may say that the task of factor analysis is to approximate one matrix,
whether it be the covariance or correlation matrix, by one of lower rank (Eckart and Young, 1936).
More in the spirit of Jöreskog’s quote, we can also interpret the factor-analytic model as addressing
the question of whether there exist a number of factors, necessarily less than the number of observed
variables, such that the partial correlations between every pair of observed variables equal zero. As
noted by Gnanadesikan (1997, p. 16), this interpretation also gives rise to the factor-analytic model
of the current chapter.

While principal components analysis seeks to generate linear combinations of observed random
variables, in factor analysis, it is the observed variables that are hypothesized as linear combinations
of hypothetical underlying factors. While the priority of PCA was to explain as much of the total
variance of variables as possible, the priority of factor analysis is to explain the covariance or corre-
lation, or more generally, the commonality among variables. And though factor analysis and principal
components do share the goal of summarizing variation of a potentially large number of variables into a
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With Applications in SPSS and R, Second Edition. Daniel J. Denis.
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smaller set of linear combinations, the assumptions that underlie each procedure are quite different, and
their purposes and applications can equally be quite distinct.

14.1 HISTORY OF FACTOR ANALYSIS

Factor analysis is an enormous subject and has a turbulent history to say the least. Since its original
inception with the work of Spearman (1904a), the method has been a favorite target of criticism. And
though the mathematics and structural development of factor analysis has been, historically, generally
agreed upon, it is its usage and ties to psychological theory, along with its philosophical difficulties that
have been at the root of the majority of criticisms directed at the procedure (e.g., see Mulaik, 1987). As
will be elucidated on later in this chapter, I believe the storied and extensive criticism of factor analysis
to be somewhat misguided. The statistical procedure cannot be blamed for its misuse, just as a set of
tools cannot be held responsible for the poor construction of a building. It is the users of factor analysis
who are well deserving of attack for its extensive misuse, abuse, and too often arbitrary “discovery” of
factors. Used correctly, and with an appreciation of its limitations, factor analysis is a helpful tool in the
arsenal of the social or natural scientist on par with any other statistical method so long as one does not
prescribe powers to it for which it does not possess. We thus find that factor analysis has much merit to
it if used judiciously in the hands of a cautious and conscientious data analyst. Should the technique not
be used with this sense of care, we strongly believe it can misguide more than it can serve, and under
these circumstances should not be used at all.

One domain where factor analysis has especially (and successfully) flourished is in test construction
and item analysis. For an excellent account of the history of factor analysis, along with its philosophical
foundations, the reader is strongly encouraged to refer to Mulaik (1987).

14.2 FACTOR ANALYSIS AT A GLANCE

To motivate our technical development of factor analysis, we consider first a brief overview of the end-
result of a factor analysis performed on the Holzinger and Swineford data of 1939, where recall a subset
of the data consists of tests of mental ability. These tests were subjected to a factor analysis, in which
the following output was obtained:

Factor1 Factor2
visual perception 0.354 0.376
cubes 0.232 0.219
lozenges 0.364 0.293
paragraph comprehension 0.866 0.112
sentence completion 0.794 0.205
word meaning 0.815 0.114
addition 0.126 0.624
counting dots 0.864
straight-curved capitals 0.288 0.635

We can see, for instance, that the bivariate correlation between visual perception and factor 1 is
0.354, the correlation between visual perception and factor 2 is 0.376, and so on for the remainder
of the variables. Note especially that there exist high correlations between paragraph comprehension,
sentence completion, and word meaning on factor 1, and relatively high correlations between addition,
counting dots, and straight-curved capitals on factor 2. These correlations between variables and fac-
tors are called loadings. They are used in part to help name the hypothetical factors. Note carefully that
factor 1 and factor 2 are not “observed” variables. They are, from a technical standpoint, linear
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combinations, and from a substantive standpoint, potentially hypothetical constructs extracted from
the factor-analytic procedure. Observed variables that helped generate the factors are then correlated to
the factors for the purpose of attempting to name these latent (or “unobserved”) constructs.

In this chapter we survey some of the theory and application of this controversial technique, as well as
highlight some of the more salient issues and concerns that lay at the forefront of the data-analytic tool. It
is important to understand that of all the statistical tools surveyed in this book, factor analysis, and its
close relative structural equationmodeling, their subjects at least, are perhaps the most philosophically
difficult to disentangle. Factor analysis, its theory and application, is a subject on whichmany books have
been written. Even rotational methods for FA alone can take up half a book. In this chapter, we genuinely
only scratch the surface to provide a basic overview and introduction to some of its features. For a thor-
ough, authoritative and book-length study of factor analysis, consult Mulaik (1972).

14.3 EXPLORATORY VERSUS CONFIRMATORY FACTOR ANALYSIS

In this chapter we consider only exploratory factor analysis, leaving the study of confirmatory fac-
tor analysis to the following chapter where we include our study of it as a special case of structural
equation modeling. The distinction between exploratory versus confirmatory factor analysis is, by its
nature, quite fuzzy. As noted by Jöreskog, pioneer in the field of factor analysis:

Most studies are to some extent both exploratory and confirmatory since they involve some variables of
known and other variables of unknown composition. The former should be chosen with great care in order
that as much information as possible about the latter may be extracted. (1978, p. 444)

Though we refrain here from delving too deeply into philosophical discussions of their differences,
it is enough to define the exploratory model as factor analysis performed with fewer a priori theoret-
ical predictions about what one will discover or uncover from the outset of the analysis. Needless to
say, this definition is limited, since whenever one undertakes a factor analysis of any kind, the
researcher usually arrives at the scene with at least some idea of what he or she will find. However,
in a confirmatory factor analysis one usually makes many more explicit predictions about virtually
every facet of the hypothesized model, which often includes hypothesizing correlated error terms,
constraining select parameters to certain values, or even testing improvement in model fit by slight
modifications of the tested model.

One might summarize this distinction to say that what differentiates EFA from CFA is that in the
former, the specification of the model is usually quite elementary and “automatic,”whereas in the later,
the specification of the model, essentially every part of it, is required and expected before the model-
fitting process even begins. On the technical side, the difference between EFA and CFA is that through
the identification of proper constraints, CFA can generate uniquely estimated factor loadings
(Rencher and Christensen, 2012). As we will discuss, loadings in EFA are typically not uniquely deter-
mined. We survey why this is the case later in this chapter.

14.4 THEORY OF FACTOR ANALYSIS: THE EXPLORATORY
FACTOR-ANALYTIC MODEL

As we have undoubtedly come to see thus far in our study of statistical modeling, understanding sta-
tistical analysis is very much facilitated by an awareness that for each and every statistical procedure,
there is an underlying hypothesized statistical model that we, as researchers, must implicitly or explic-
itly propose at the outset. Other than for simple descriptive statistics computed on samples, statistical
modeling is the process of arriving at the data with an a priori imposed hypothetical structure, however

451THEORY OF FACTOR ANALYSIS: THE EXPLORATORY FACTOR-ANALYTIC MODEL



simple or complex. This is true whether we are working in a binomial situation in which we have to
hypothesize a value for p (probability of success) or in more complex modeling situations in which we
are confronted with many more parameters. Whatever the model in each case, we impose the given
model onto empirical data, and the extent to which it fits or “accounts” for the data, generally speaking,
it is regarded as “well-fitting.” The extent to which our model does not fit is a sign that our theory needs
revision.

Be sure to note that whenever you test a model, you want it to be under test, not the data, otherwise
there is little point to model-fitting at all. Sometimes researchers, upon learning that their model does
not fit, blame the data for not being as it somehow “should” be. Before any model-fitting occurs, you
need to ensure that your data was collected in a scientifically standardized fashion, and have a
clear understanding of the population to which you seek to generalize. If your model then does not
fit the data, your theory should be to blame, not the data.1 Just imagine where physics would be if all
along we decided our theories were correct and the atoms were wrong.

14.5 THE COMMON FACTOR-ANALYTIC MODEL

The model traditionally assumed in most exploratory factor-analytic work is the following, usually
referred to as the common factor-analytic model:

x = μ + Λf + ε (14.1)

where x is a vector of random variables that are assumed observable (or “manifest”), μ is a vector of
means for the random variables in x, Λ is a matrix of factor loadings, f is a vector of unobservable
common factor random variables,2 and ε is a vector of specific factors. These specific factors comprise
of variation unexplained by μ +Λf for each observed variable in vector x.

The model in (14.1) is customarily written in terms of mean deviations, that is,

x −μ = Λf + ε

When we “unpack” the model for p variables and m factors, we find:

x −μ = Λf + ε
x1 − μ1 = l11 f 1 + l12 f 2 + + l1m f m + ε1

x2 − μ2 = l21 f 1 + l22 f 2 + + l2m f m + ε2

xp − μp = lp1 f 1 + lp2 f 2 + + lpm f m + εp

1Of course, should you discover after the fact that you collected data from the wrong population, then yes, in this sense, your data
may be to “blame” for the model not fitting. I am not meaning to discount or disregard this possibility. What I am saying is that if
you have collected data from your intended population and your hypothesized model does not fit, the most likely explanation for
the nonfit is your model, not the data.
2 In some models, we may wish to consider the vector as fixed instead of random. However, such a model, as noted by Anderson
(2003), would imply that the individuals specifically sampled are of interest, instead of regarding them as a random sample from a
wider population. See Anderson (2003, p. 571) for details.
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where x1, x2,…, xp are observed variables, μ1, μ2…, μp are the means of the p variables, l11, l21,…, lp1
are loadings for the p variables across f1, f2…, fm factors, and ε1, ε2…, εp are errors associated with each
observed variable x1, x2, …, xp.

Notice that the model of (14.1) is strikingly similar to the regression models discussed earlier in the
book. Consider a side-by-side comparison of these models:

x −μ = Λf + ε versus y = xβ + ε

Consider for now only the right-hand sides of each model Λf + ε versus xβ + ε. We see that for both
models, observed vectors x and y are linear functions of observed estimated coefficients,Λ in the factor
model, and β in the regression model. These weights are both applied to f and x, respectively. But here
is where the factor-analytic model and the regression model differ.Whereas in the regression model x is
a vector of observed manifest variables, in the factor model, f is a vector of unobserved latent vari-
ables. That is, as the theory goes in EFA, there are no real, true, empirical variables contained in the
vector f as there are in the vector x in the regression model. This is the key distinction between these two
models. In the factor analysis model, we are essentially hypothesizing that x is a function, in part, of
unobserved variables. In the regression model, other than for the error term (which can be regarded as
an “unobservable” variable) we make no such assumption, instead hypothesizing that y is a function of
observed variables (i.e., the predictor variables chosen by the researcher).

Both models also have a vector of errors, ε, which in each case can be thought of as variation unac-
counted for by the systematic portion of each model. In observed data, these will assume the name of
errors in regression, whereas in factor analysis, these generally assume the name of unique variances.
Some factor analysts further delineate unique variance into two components, one of specific variance
and the other of error variance. The distinction is that specific variance is thought to be variance that is
generally uncorrelated with other variables. In this regard, it is considered to be “true” variance, which
is a reliable part of a variable that is found in no other variable. It is “particular” to the given observed
variable. Error variance, on the other hand, is variance that is not necessarily unique to the given var-
iable. While specific and error variances may indeed exist at a theoretical level, they can be inexorably
difficult to distinguish in a pragmatic manner, and we at times use these terms interchangeably. Our
position is that the error term in factor analysis can be more or less thought of as analogous (or at min-
imum, similar) to the error term in the regression model, at least in the attempt to conceptually “bridge”
the two methodologies. Both essentially represent variation unaccounted for by the given systematic
portion of the model, that being x − μ = Λf in factor analysis and y = xβ in regression.

A model is defined by the assumptions it makes. This is especially true of the factor-analytic
model. We consider shortly the many assumptions made by the exploratory factor analysis model.
We restrict our discussion for now to the orthogonal model, in which “orthogonal” in this context
implies a requirement that estimated factors be uncorrelated, and hence each factor accounts for a
distinct amount of covariance among observed variables. There is no “overlap” in the orthogonal
model. This assumption can be relaxed somewhat, and later in this chapter we will briefly discuss factor
models in which orthogonality among factors is not a requirement. We refer to such models as oblique
factor models.

Before considering the assumptions, it is worth asking whether the assumptions we are about to
discuss are necessarily correct when applied to empirical data. The answer is that for some assump-
tions, given the way in which the covariance or correlation matrix is analyzed and decomposed, we
can be assured that these assumptions will hold. For instance, the fact that we are beginning with
the orthogonal model and specifying it as such guarantees that the assumption of no covariance among
factors will be satisfied. We are assured it is satisfied because we are parameterizing our model as such.
In other cases however, assumptions are not guaranteed in this way, and we make them oftentimes out
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of convenience, or as a means to identify3 the given model. The situation is not unlike that of assump-
tion-making in regression models. We regularly assume, for instance, that errors are normally distrib-
uted, but we are required to perform residual analyses (as an imperfect approximation to the errors) in
order to verify this assumption to learn if it is even plausible in practice. In other cases, the “assump-
tion” of OLS regression that the sum of squared errors will be kept at a minimum value is not a true
assumption at all but is more of a constraint imposed by the method of estimation. This is a condition
imposed by the method. The assumption that errors are not related, on the other hand, though conven-
ient, may not hold in practice after a further investigation into residual plots and such.

14.6 ASSUMPTIONS OF THE FACTOR-ANALYTIC MODEL

Perhaps more than any other statistical method, an understanding of the assumptions of factor analysis
is vital. We now survey the most salient of these. In our discussion of each, we try as much as possible
to “unpack” the assumption so that the reader becomes aware of what these assumptions actually mean
in practice.

1. It is typically assumed that the mean of the latent vector f is equal to 0. That is, E(f) = 0. Why is
this assumed? It is assumed as such mostly for convenience, and since the actual vector f is latent
and thus unobserved, it is especially easy to make this assumption (how easy it is to make
assumptions about variables that do not exist!). This idea of imposing a constraint of sorts on
a model may seem quite arbitrary within an EFA framework, but when we consider structural
equation models in the following chapter, we will see that the act of constraining parameters to
specific values is common practice, and the assumption that E(f) = 0 in the exploratory model
will no longer seem so bold an assumption.

2. In the orthogonal factor-analytic model, it is assumed that factors do not covary. That is, in a
covariance matrix of estimated factors, we would expect pairwise covariances between factors
to equal zero. And because we are still dealing with an unobserved random vector f, it is con-
venient to assume that the variances of these derived factors will equal 1.0, E(ff ) = I. That is, the
covariance matrix of factors we would expect to be an identity matrix. For instance, for a
two-factor model:

cov f =
1 0 0

0 1 0

The fixing of these variances in a factor model provides another assumption or constraint and
hence a parameter we do not need to estimate. In an oblique factor model, one in which we allow
the extracted factors to correlate, this assumption will no longer hold, and we will expect the off-
diagonal elements to be unequal to zero. As a general reference to what we are talking about,
note that in a multiple regression we do not constrain the covariances between observed variables
to equal 0. We deal with such issues with measures such as the variance inflation factor (VIF)
discussed in Chapter 7. However, when we standardize variables, we do in a manner of speaking
“constrain” the variances to equal 1.0 by the simple fact that standardizing a variable gives it a

3 Identification will be discussed in more detail in the following chapter on structural equation modeling. For now, it is enough to
know that a parameter is deemed “identified” if there is enough information in the data to estimate it. If all parameters in a model
are identified, the model is said to be identified.
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mean of 0 and a variance of 1.0. Again, it is pedagogically useful to appreciate the parallels and
differences between the factor analysis model and the classic multiple regression model in terms
of what assumptions are made (and not made) in each. Statistical modeling, in general, is very
much the imposing and freeing of constraints on parameters before we overlay it onto
empirical data.

3. It is assumed that the errors in the factor-analytic model have a mean equal to 0. Since the matrix
of errors, ε, is a random vector, the assumption is that E(ε) = 0. This assumption is not unlike that
of the assumption for the error term in the classic multiple regression model.

4. We assume that the errors, the specific variances in ε, do not covary. That is, the unexplained
variation for each observed variable has nothing in common with the unexplained variation for
another observed variable. More generally, in matrix terms, we assume the covariance matrix of
errors to have zeros everywhere except the main diagonal (i.e., a diagonal matrix) where are
located the variances of the errors. We can state this assumption more concisely to say that

the expectation of the cross-product of errors is equal to a matrix ψ (e.g., ψ =
ψ1 0

0 ψ2

).

Does this seem like an unreasonable assumption? Is it unreasonable to assume that specific
variances (contained in the errors) are unrelated? It may be, which is one reason why confirm-
atory factor analysis is useful in contexts in which we do wish to hypothesize a covariance
among errors. It would seem reasonable in many substantive scenarios that the unexplained var-
iance in a given observed variable is related to the unexplained variance in a second observed
variable. In the following chapter on structural equation models, we discuss how we can allow
the matrixψ to be something other than a diagonal matrix, thus freeing up errors to covary. Such
decisions are usually heavily steeped in the theory of the researcher.

5. Finally, it is assumed that the estimated factor and its specific (or “unique”) variance do not cov-
ary. That is, E(εf ) = 0. The analogous assumption in regression (though incorporating an
“observed” variable rather than a latent one) is that E(εx ) = 0, that is, the covariance between
the error term and the predictor variable is equal to 0. As we have seen throughout this book, this
is a common assumption made in linear models, and hence it is a relatively convenient one to also
make in the case of the factor-analytic model.

We also expect that observed variables are linearly related in the common factor model. More spe-
cifically, we assume linearity in the common factors. If there is little to no correlation among
observed variables, then it should be obvious that performing a factor analysis will not make much
sense, analogous to computing a variance on a set of data consisting of constants would likewise make
little sense. And if nonlinear relationships are hypothesized among variables instead of linear ones,
then options such as nonlinear factor analysis are also available (e.g., see Yalcin and Amemiya
(2001)), though not discussed in this book.

14.7 WHY MODEL ASSUMPTIONS ARE IMPORTANT

In light of the aforementioned assumptions and constraints, recall again why explicitly stating model
assumptions is important and relevant, not only in the factor-analytic model but generally in all sta-
tistical models. Recall that we use a model to provide a rational and coherent theoretical representation
of the observed data. In identifying the model, we need to make certain basic assumptions about the
structure we are imposing, otherwise, it is virtually impossible to fit anymodel to data since it is impos-
sible to even begin the process.Wemust start somewhere, and that “somewhere” takes the form of a
statistical model along with its implied and imposed assumptions and constraints. This idea is not
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unlike that of a psychologist coming to the careful analysis of human behavior with a priori “back-
ground” assumptions already in place, whether emanating from psychoanalytic, behaviorist, or human-
istic traditions. The point is that when we seek to explain or model, or otherwise provide a narrative to
empirical data, we usually have to come to the data with at least some theoretical stance, even if min-
imal. Even in the age of “Big Data” and the popular mantra “let the data speak for themselves,” the
choice of algorithm and other facets of the search are still typically selected in advance of seeking out
patterns in data. The eyes one uses to see often plays a significant role in what is seen. Not only is
this psychologically true, but it is paramount to statistical modeling. In both cases, we are fitting nar-
ratives to data.

Indeed, in the early stages of the COVID-19 outbreak in 2020, it was often said that predicting (i.e.,
“modeling”) the path of the disease depended very much on the assumptions one incorporated into the
modeling. Now, these assumptions can often be well-grounded (e.g., the behavior of similar viruses in
the past, and their known trajectories), but the point is that to set up virtually any statistical model, one
must “set the stage” for it by incorporating certain baseline assumptions or beliefs. These sometimes
take the form of constraints imposed on the analysis, and other times come from expert judgment.
Either way, whatever model you are using (whether factor analysis or other), you can be sure there
are “starting points” to it in some form.

14.8 THE FACTOR MODEL AS AN IMPLICATION FOR THE COVARIANCE
MATRIX Σ

The assumptions that we made for the factor-analytic model imply a structure of the covariance matrix
among observed variables. We follow Johnson and Wichern (2007) in showing how the assumptions
made in (14.1) imply the observed covariance matrix to be a function of factor loadings plus an error
variance containing uniqueness. That is, (14.1) implies:

= ΛΛ + ψ

To see why this is true, consider once more the factor model thus stated:

x −μ = Λf + ε

When we “square” x − μ, or in matrix terms, multiply x − μ by its transpose (x − μ) to get the covar-
iance matrix, we perform the same operation on the right-hand side, and get

x −μ = Λf + ε
x −μ x−μ = Λf + ε Λf + ε

(14.2)

When we expand the right-hand side of (14.2), we obtain

Λf + ε Λf + ε = Λf Λf + Λfε + ε Λf + εε

Hence, what all the above means simply is that we can write (x − μ)(x − μ) as equivalent to
Λf(Λf ) +Λfε + ε(Λf) + εε .

When we take the relevant expectations, we get:

E x −μ x−μ = ΛE ff Λ + E εf Λ + ΛE fε + E εε (14.3)
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Now, recall the assumptions we began with in developing the factor model. Since E(f) = 0, and
E(ff ) = I, (14.3) reduces to:

E x −μ x −μ = ΛE ff Λ + E εf Λ + ΛE fε + E εε
= Λ I Λ + 0 Λ + Λ 0 + E εε
= ΛΛ + 0 + 0 + ψ
= ΛΛ + ψ

(14.4)

Equation (14.4) is very important. In words, it says that the covariance matrix Σ is equal to “squared”
factor loadings (ΛΛ ) plus error associated with each observed variable (ψ). Recall that since ψ is a
diagonal matrix containing only error variances along the main diagonal and covariances equal to 0
everywhere else, the factor model under consideration does not allow error terms to covary.

14.9 AGAIN, WHY IS Σ = ΛΛ +ψ SO IMPORTANT A RESULT?

Result (14.4) is of significance in defining the factor-analytic model because it reveals that one can
essentially reproduce or regenerate the covariance matrix by knowledge of the factor loadings
and specific variances. Hence, if we can estimate loadings for Λ, and likewise consider the unique var-
iances in ψ, we can, in theory, account for the makeup of the covariance matrix Σ. Just as the goal of
building a model in regression is to regenerate existing data through specification of a suitable regres-
sion model, in factor analysis, the goal is to specify a model such that the covariance matrix Σ is recon-
structed. The trick in factor analysis is, of course, to specify a matrix Λ that is best suited in
reproducing Σ. Should the matrix Λ contain a single factor? Should it contain two factors? Three?
If a factor-analytic solution is to be deemed somewhat sensible and reasonable, determining the appro-
priate or correct number of factors is one of the most significant challenges faced by the analyst. Tech-
nically, however, the challenge reduces down to reproducing the covariance matrix Σ. Theoretically
and substantively, the job is that much more difficult, and the factor analyst must also justify the repro-
duction of the covariance matrix based on a meaningful, substantive solution, not only one that ade-
quately reproduces Σ.

14.10 THE MAJOR CRITIQUE AGAINST FACTOR ANALYSIS: INDETERMINACY
AND THE NONUNIQUENESS OF SOLUTIONS

The primary criticism against factor analysis since its inception is that the derived factor loadings in the
matrix Λ are not unique. Recall that for a solution to be unique implies there to be a single solution to
the equation. The estimation ofΛ actually does, in a manner of speaking, provide a unique solution, but
only up an orthogonal matrix. The implication of this is that regardless of the solution obtained in
the estimation process, we are able to quite freely rotate the factor solution yet still provide the
same reproduction of the covariance matrix as with the original solution. As Mulaik (1972)
summarizes:

Thus factor analysis, at least in the traditional sense, is concerned with the problem of analyzing a variable
into components… from a strictly mathematical point of view, there is an infinite number of potential sets
of components which might be determined for a given set of variables. Because of this mathematical ambi-
guity, the history of factor analysis has been filled with controversy over what are the appropriate compo-
nents into which to analyze a set of variables. These controversies are by no means over today. (pp. 95–96)
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The two components Mulaik speaks of are the common factors and unique factors previously dis-
cussed. Mulaik’s words were written in 1972 but are just as relevant today.

In what follows, we work through the technical argument to show that the factor solution is only
unique only up to an orthogonal matrix. Recall what the orthogonality of a matrix implies. If matrixT is
an orthogonal matrix, it implies that TT = T T = I, where I is the identity matrix with values of 1
along the main diagonal. Consider now introducing this matrix into the factor-analytic model we have
been working with. We post-multiply the loading matrix Λ by TT , and get:

x−μ = Λf + ε
= ΛTT'f + ε

Notice that we haven’t “changed” the model per se, since if T is orthogonal, then it must be true that
TT is equal to I, and so we could have just as easily written the above model as:

x −μ = ΛTT f + ε
= ΛIf + ε

So, what is the big deal? What is the problem then with introducing the orthogonal matrix T? The
problem is that ΛTT f + ε in x − μ = ΛTT f + ε can be written as (ΛT)(T f) + ε. That is, we may
consider our original matrix of loadings Λ, subject to the transformation T to be equal to ΛT, and
the vector of factors f to be equal to (T f). What this means is that through an orthogonal transforma-
tion matrix T, we are able to define a new loading matrix ΛT and a new factor vector (T f).

The question now becomes, does this new definition ofΛ and f change things in terms of the model?
We check this through taking the relevant expectations once more. We take the expectation of (T f),
and since E(f) = 0, then it stands that E(T f) = 0. That is, the expectation of the transformed factor
vector is identical to that of the untransformed vector. In both cases, before transformation and
after, the expectation is equal to 0. In plain English, this means that both the original factor vector
and the transformed factor vector have the same mean.

The next question that needs to be addressed is whether the expectation of the covariance of (T f)
changes as a result of its transformation by T. With the transformation, the covariance term becomes
T ’Cov(f)T. SinceT is an orthogonal matrix, and by definitionTT = I, this means that the covariance
of the transformed factor matrix (T f) remains I. Hence, the point is that the transformation of f by the
orthogonal matrix T does not alter the expectation for the covariance matrix of f. Again, in plain Eng-
lish, this means that both the original covariance matrix and the transformed covariance matrix have
expectations equal to the identity matrix I.

In summary then, the process of transforming the factor-analytic solution by an orthogonal matrix
does not change its expectations, and as such, whether we use Λf + ε or ΛTT f + ε, we are able to
reproduce the same covariance matrix. Be sure you understand this result at least in concept because
it is extremely important and has wide implications for factor analysis and the kinds of conclusions one
draws from it. To summarize, the “big deal” is this: both the original loadings and the transformed
loadings generate the same covariance matrix, and hence, if one were to apply an orthogonal trans-
formation to loadings estimated in a factor analysis, one could still just as well reproduce the original
covariance matrix. The question then naturally arises:

Which loadings are the “correct” loadings, the ones originally derived, or the ones derived through an
orthogonal rotation?
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The answer to this question does not arise frommathematical analysis, derivation or deduction. And
hence, we have come to the primary critique charged against factor analysis. The answer must come
from the subjective consideration regarding which loadings make the most sense to the
researcher. It is the researcher who must select the solution he or she prefers. This is often the reason
cited for the disdain for factor analysis by some, since some perceive it as a statistical methodology one
can “adjust” until one arrives at a solution that agrees with one’s factor-analytic hypothesis. To these
critics, factor analysis is little more than the wishful projection of the scientist.

14.11 HAS YOUR FACTOR ANALYSIS BEEN SUCCESSFUL?

If a factor analysis does not provide a meaningful structure to your data, it may very well be because
there is no structure to your data. It does not necessarily mean something went “wrong” in your
factor analysis. It is the stream of consciousness of the self-absorbed narcissistic researcher who sub-
jects his data to factor analysis, not to find the common structure hypothesized to exist (even after rota-
tion after rotation), and concludes that something must have gone “amiss”with the statistical technique
or that “weird” data was obtained. What is much more likely is that there are no underlying factors that
theoretically gave rise to observed correlations. In other words, it did not work. Conservatism in sci-
entific discovery is unfortunately not publishable, but it makes one a better scientist.

Though significance tests for factor loadings do exist, one should usually not rely on such things to
establish whether a factor analysis has been successful. Oftentimes researchers adopt a sequential test-
ing strategy and test a number of hypothetical factors until a given solution “meets their expectations.”
It is reasonable to suspect that error probabilities will accumulate under this process. However, these
error probabilities are generally difficult to get a handle on (Anderson, 2003), which further compli-
cates the process. More recently, computationally intensive approaches have been proposed for factor
selection. For example, Chen, Huang, and Tu (2010) proposed a new approach based on unbiased risk
estimation, which has shown to recover factors better than some traditional approaches.

Even if an apparent structure does reveal itself from the analysis, the question of the size of loadings
on estimated factors remains. How large is “large enough” to consider a variable loading on a given
factor? Though there have been rough rules of thumb-type guidelines advanced on this issue, it is not a
hard science, and some flexibility in decision rules must be granted. Generally, if a loading is greater
than 0.3 or 0.4, it is probably worth looking at. However, one can also envision a situation where if
theoretically meaningful, a loading of 0.2 should also make its way into the determination of an overall
factor solution. The point is that there is no absolute cutoff, and efforts to establish such cutoffs from a
substantive point of view are, at best, imperfect.

Our advice for deciding whether a factor solution is meaningful or not parallels that of Johnson and
Wichern (2007), which they call the “WOW” criterion: “If, while scrutinizing the factor analysis, the
investigator can shout ‘Wow, I understand these factors,’ the application is deemed successful”
(p. 526). If you sit with your factor solution for weeks splitting hairs, it may be time to concede
the absence of a solution and move on. This can be said to be true of any statistical model that you
run. Too often researchers advance models that account for such small proportions of variance under
the presumption that because the model explains any variance, it must somehow be worthwhile. Ran-
dom data can also account for variance, which is something researchers should always keep in mind.
As is true of most statistical findings, factor-analytic results and solutions should be cross-validated if
possible to help confirm (or disconfirm) the existence of a solution. Jackknife or bootstrap validation
(see Lattin, Carroll, and Green (2003) for a brief discussion) may be used to help confirm results found
in one sample to another.
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14.12 ESTIMATION OF PARAMETERS IN EXPLORATORY FACTOR ANALYSIS

Recall that in any statistical model, one must estimate parameters. For instance, recall in the simple
linear regression model,

yi = α + βxi + ε

we estimated parameters α and β with estimators a and b, respectively. These parameters in regression
were usually obtained using ordinary least-squares regression or maximum likelihood (ML). In factor
analysis, we likewise need to estimate parameters, which consist of loadings and communalities.

There are numerous options available for estimating parameters in factor analysis. We survey only
two, that of principal factor (or principal axis factoring) andmaximum likelihood, since they are the
most widely used. For details on their differences, seeWinter and Dodou (2012). For literature on other
methods of estimation, the interested reader is encouraged to consult Mulaik (1972). For a comparison
of results based on different extraction methods, see Tabachnick and Fidell (2007, pp. 633–635).

After conducting a factor analysis, the researcher may wish to estimate factor scores based on the
extracted solution. Factor scores are in principal somewhat analogous (at least in concept) to predicted
values in regression analysis, only that factor scores must be estimated from unobservable variables
rather than observable ones as in regression. There are numerous methods for estimating factor scores.
The so-called regression method is among the more popular choices. For a discussion and numerical
example of the procedure, see Johnson and Wichern (2007, pp. 516–518). Factor scores are easily
estimated in R and SPSS.

14.13 PRINCIPAL FACTOR

A common method of estimating factors is that of principal factor, which as mentioned also goes by
the name of principal axis factoring. This is a least-squares estimation technique that makes few dis-
tributional assumptions (Gnanadesikan, 1997), and accomplishes its job byminimizing the unweighted
least squares (ULS) or ordinary least squares (OLS) of the residual matrix (Winter and Dodou, 2012).
In this method, initial communalities are estimated and inputted into the diagonal of the covariance or
correlation matrix. For example, consider the following correlation matrix on five observed variables.
An initial visual inspection reveals that variables 1 and 3 are highly correlated (0.96) along with vari-
ables 2 and 5 (0.85) as well as 4 and 5 (0.79). Other bivariate correlations are quite small, for instance
1 and 2 (0.02) as well as 1 and 5 (0.01).

1 00 0 02 0 96 0 42 0 01

0 02 1 00 0 13 0 71 0 85

0 96 0 13 1 00 0 50 0 11

0 42 0 71 0 50 1 00 0 79

0 01 0 85 0 11 0 79 1 00

Note that 1.00 appears in the diagonal of the correlation matrix, since these are essentially correla-
tions of variables with themselves. Recall that in principal components analysis, values of 1.00
appeared along the diagonal of the correlation matrix to indicate that each variable contributed an even
1 unit of variance to the problem. Since factor analysis is typically interested in analyzing common-
ality rather than total variance, these numbers along the main diagonal will be different in EFA than
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they were in PCA. Principal axis factoring replaces these 1’s with initial communality estimates before
estimating relevant parameters. A popular estimator for these diagonal elements in the correlation
matrix is

h
2
i = R2

i = 1−
1
rii

where h
2
i is the estimated communality for variable i, R2

i is the coefficient of determination for regres-
sing variable i on all other observed variables, and rii is the ith diagonal element of the inverse of the
correlation matrix R (Rencher and Christensen, 2012).

If you consider for a moment what the coefficient of determination is telling us, it makes good sense
to name it “communality.” The communality for a given variable is estimated using all other variables
in the data set to predict the variable under consideration. In this way, we are interested in learning how
much variance for the given variable is shared with other variables in the set. Be sure to note that in this
way of estimating communalities, a variable’s estimated communality will be a function ofwhat other
variables are under consideration in the factor analysis. Hence, as can be said for virtually all mul-
tivariate models, the results one obtains are contingent upon what other variables are simultaneously
considered in the model. This is why, for instance, we emphasized a careful interpretation of partial
regression coefficients in Chapter 8 as distinct from zero-order coefficients. All models are context-
dependent.

If the covariance matrix S is analyzed instead of the correlation matrix, an appropriate estimator is

h
2
i = ssiiR

2
i

where ssii is now the ith diagonal element of S (Rencher and Christensen, 2012).
Other ways of estimating communalities are also available. The key point to retain, however, is the

concept that these numbers are being estimated as a “starting point” to conducting the factor analysis.
The estimated communalities, in a sense, initiate the factor-analytic procedure.

14.14 MAXIMUM LIKELIHOOD

One of the most common methods of estimating parameters in the context of factor analysis is that of
maximum-likelihood estimation. The log-likelihood function for a multivariate normal distribution is
given by:

ln L μ,Σ = − np ln 2π −
1
2
n ln Σ −

1
2

n − 1 tr Σ − 1S −
1
2
n y −μ Σ− 1 y−μ

Substituting the maximum likelihood estimator y for μ, along with substituting the assumed structure
of ΛΛ +Ψ for the population covariance matrix Σ, the log-likelihood function reduces to the
following:

ln L Λ,Ψ = − np ln 2π −
1
2
n ln ΛΛ + Ψ −

1
2

n − 1 tr ΛΛ + Ψ − 1S
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Maximizing the log-likelihood is equivalent to minimizing the following fit function:

FML = ln θ + tr S
− 1 θ − ln S − p (14.5)

where p is the number of observed variables. As will be discussed in the following chapter, the fit func-
tion of (14.5) is very general in that it specifically does not define the exact nature of the covariance
matrix of model parameters in (θ). In the orthogonal factor model under consideration in this chap-
ter, we can rewrite FML to be:

FML = ln θ + tr S
− 1 θ − ln S − p

= ln ΛΛ + Ψ + tr S ΛΛ + Ψ − 1
− ln S − p

Notice that similar to how we did for the log-likelihood function, in place of (θ), we now have
inserted the nature of the covariance matrix for the estimation problem of the factor model under con-
sideration, that of ΛΛ +Ψ. In Chapter 15 on structural equation and latent variable models, we most
often use the general form (θ) in our notation, even though for any particular problem the covariance
matrix may be different. For instance, in some models, we will impose restrictions and constraints on
the covariance matrix that in other models are not present.

As will also be discussed more fully in Chapter 15, the fitting function will equal zero when
(θ) = S. To the extent that (θ) S, the value of the fitting function will be greater than zero

(i.e., FML > 0).
Both the minimizing of FML and the maximizing of the log-likelihood amount to the same thing

under the assumption of normality (Everitt, 2007, p. 69) and will yield identical parameter estimates.
The minimization or maximization is achieved through numerical iteration methods of which the study
is a field onto itself and is a rather specialized area in mathematical statistics and numerical algebra. For
a readable introduction to the field of numerical algebra, consult Trefethen and Bau (1997). The reader
interested further in the computational iterative details on maximum-likelihood estimation as it relates
to factor analysis is encouraged to consult Johnson and Wichern (2007, pp. 527–530) and Lawley and
Maxwell (1971). Historically significant papers can be found in Lawley (1958) and Jöreskog
(1967, 1969).

As mentioned, there are several other methods of estimation in factor analysis. These include image
analysis, alpha factoring, the centroid method, among others. Regarding which method to use, it is
probably best to heed the recommendation of Rencher (1998):

The various methods of estimating factor loadings will generally yield different solutions. However,
for samples from populations in which the basic factor analysis model is valid, most methods yield
similar loadings, at least after rotation. Thus if the researcher has data to which a factor analysis
model can be successfully fit with large communalities, the choice of technique is not important.
To a lesser extent, if the number of variables is large, the various methods will also yield similar
results, regardless of the adequacy of fit. (pp. 385–386)

14.15 THE CONCEPTS (AND CRITICISMS) OF FACTOR ROTATION

Oftentimes in factor analysis, interpretation of the extracted solution can prove difficult in terms of
whether or not it defines true factors. Factor rotation is a procedure used for the purpose of facilitating
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interpretation of derived factors and in an effort to achieve what Thurstone called simple structure,
best described by Mulaik (1972):

Thus if in a factor analysis of n variables r common factors were obtained, Thurstone deemed the factor
solution ideal when each variable required fewer than r factors to account for its common variance. By
the same token, when it came to interpreting the common factors by noting the observed variables associ-
ated with each respective factor, parsimony of interpretation could be obtained when each factor was asso-
ciated with only a few of the observed variables. A factor solution displaying these properties of parsimony
was designated a simple-structure factor solution. (pp. 218–219)

Rotation of factors is one way in which a factor analyst attempts to ameliorate the solution so as to
approximate simple structure as closely as possible. However, as with many decisions in the factor-
analytic process, choosing the correct rotation can likewise come down to a subjective choice. As
noted by Jöreskog (1967):

Though Λ∗ and Λ are equivalent from the mathematical point of view, they may not be so from the psy-
chological point of view. The problem of choosing one particular psychologically meaningful Λ out of the
infinite set {ΛT −1} has been called the problem of rotation, although the problem of transformation
would be a better term, since it includes also the transformation to oblique factors, in which case the trans-
formation matrix T is not orthogonal and hence does not represent only a rotation. (p. 166)

Rotations are generally divided into two broad categories, orthogonal rotations and oblique rota-
tions. Orthogonal rotations transform factors to new axes but keep them at a 90 angle. That is, orthog-
onal rotations do not allow factors to correlate. Two popular methods of orthogonal rotation include
varimax and quartimax, both of which will be discussed shortly. Oblique rotations allow factors to
correlate, and hence overlap will exist between factors. Examples of oblique rotations include promax,
oblimin, quartimin, and covarimin. We do not detail oblique methods in this chapter, though if one
has a general understanding of what rotation means for the orthogonal case, it is easy enough to gen-
eralize this understanding, at least conceptually, to nonorthogonal rotations.

Before surveying the idea of factor rotation, we must once more recall what is meant by an orthog-
onal transformation. We briefly discussed the concept earlier in our discussion of the nonuniqueness
of solutions. A square matrix T is orthogonal if the following condition holds:

TT = T T = I

Recall that the idea of orthogonality was one that allowed a variety of solutions (up to an orthogonal
matrix) to be found for a given covariance matrix when considering the fundamental equation for factor
analysis, = ΛΛ +ψ. When we introduced an orthogonal matrix into the original factor model, we
found we were still able to produce the same covariance matrix as before. This is why factor rotation in
factor analysis is allowable and mathematically “permissible,” because despite the rotation, the gen-
eration of does not change. We now detail to some extent how rotation works in factor analysis.
After estimating loadings in the factor-analytic routine, we wish to rotate the coordinate axes by an
angle that will typically maximize or minimize some quantity.

Consider now the rotation of the loading matrixΛ. In rotating the loading matrixΛ, we multiply this
matrix by O, which is an orthogonal matrix. Upon multiplying by this matrix, we obtain ΛR, which is
the rotated loadings matrix. As an example, consider a rotation for a simple (and arithmetically easy)
two-dimensional structure:

ΛR = ΛO

463THE CONCEPTS (AND CRITICISMS) OF FACTOR ROTATION



To rotate the matrix Λ clockwise, we multiply Λ by coordinates of rotation in O1:

O1 =
cosϕ sinϕ

− sinϕ cosϕ

To rotate the matrix Λ counterclockwise, we multiply Λ by O2:

O2 =
cosϕ − sinϕ

sinϕ cosϕ

It is of course very useful to depict a factor rotation geometrically, as done in Figure 14.1. As can be
seen from the figure, the rotation, in this case, is simply transforming the original axes of x1 and x2 to y1
and y2.

14.16 VARIMAX AND QUARTIMAX ROTATION

There have been numerous rotations for factor analysis proposed. We here only briefly survey two of
the most popular ones, varimax and quartimax. Both are orthogonal rotations. These are the ones
that the reader will likely perform when conducting a factor analysis. An understanding of these makes
it easier to then grasp other rotations one might encounter. We do not discuss nonorthogonal, so-called
oblique rotations in this book. For a relatively detailed and thorough account of rotational methods, see
Mulaik (1972, pp. 249–292).

The goal of the varimax rotation (Kaiser, 1958) is to maximize “within factor” variance of squared
loadings for extracted factors. What will make the variance of squared loadings large? All else equal,
they will be large when there is much dispersion among the loadings. In other words, loadings that are
either high (near |1.0|) or small (near 0.0) in a correlation matrix are preferred over “mediocre” loadings
since loadings approaching the upper and lower limits of |1.0| and 0.0 serve to maximize the variability
of loadings. The varimax rotation essentially drives large loadings to be even larger, and small load-
ings to be even smaller. This makes sense, since the minimum variance of factor loadings occurs when
all loadings are identical, in which case, the variability in loadings is equal to zero. Hence, maximizing

θ2,2

θ1,2

θ1,1

θ2,1

x1

x2
y2

y1

FIGURE 14.1 Orthogonal rotation in two dimensions where the new axes are indicated by dashed lines.
Source: Reproduced with permission from Abdi (2003).
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high loadings and minimizing smaller ones “disrupts” this “minimal variance” pattern. The disruption
of this homogeneity often helps in the interpretation of the factor-analytic solution.

The question then is: What kind of transformation matrix should the original solution be rotated
against so that the variance of factor loadings is maximized? Kaiser (1958) found that the transforma-
tion matrix should be chosen such that the following quantity is maximized:

V =
p

i = 1

l2ij − l
2
j

2

where l2ij are the squared loadings i to p for a given factor and l
2
j =

p

i = 1

l2ij
p is the average squared loading

across the p variables. The varimax technique works to emphasize within factor distribution of load-
ings to high versus low on each observed variable. V is usually maximized using iterative techniques
and hence its maximization is dependent upon a computing algorithm for computational ease and
efficiency.

Whereas the varimax rotation attempts to maximize the variance of squared loadings by focusing on
the columns of factor loadings (i.e., the columns representing each factor), the quartimax rotation
focuses on the rows of the loading matrix, seeking to maximize the variance of loadings across factors
instead of within factors. The quartimax criterion is given by:

Q =
m

j = 1

l2ij − l
2
j

2

where now the sum is across factors j = 1 throughm. Different, yet somewhat analogous to V in what it
accomplishes, Q drives loadings across factors toward either 0 or |1| in a correlation matrix instead of
within factors.

14.17 SHOULD FACTORS BE ROTATED? IS THAT NOT CHEATING?

The question of whether factors should be rotated has existed since the advent of factor analysis. Some-
times students, upon first learning of factor rotation, mistakenly believe that it “cheapens” the value of
one’s data, or at minimum, constitutes “dishonest” data analysis. However, this view is misguided. One
must realize that the original axes upon which the factor solution was derived are not, in themselves,
“special” in any way, at least not when it comes to the substantive interpretation of the factor solution.
Since factors are hypothetical structures which do not have “true” axes, the fact that we are rotating
axes simply represents a different way of interpreting these unknown structures.

Once we agree that rotation is acceptable for factor analysis, the next question that usually presents
itself is whether orthogonal rotations are more valid compared to oblique rotations. Recall that in an
oblique rotation, factors are allowed to covary, whereas in orthogonal rotations, they are not. There are
differing views on this topic, but in the end, it largely comes down to subjective opinion regarding the
nature of what the factors should be or how they are idealized by the analyst. Indeed, according to
Thurstone (1947), “It seems just as unnecessary to require that mental traits shall be uncorrelated in
the general population as to require that height and weight be uncorrelated in the general population.”
In our view then, allowing factors to correlate is acceptable so long as it coincides with one’s theory.
Indeed, in confirmatory factor analysis, the topic of the following chapter, researchers quite often
estimate correlations between factors, and hence it would seem acceptable to allow them to likewise
correlate in EFA models.
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14.18 SAMPLE SIZE FOR FACTOR ANALYSIS

Factor analysis is inherently a large sample technique, meaning that one usually requires a reasonably
strong sample size in order to have any “trust” in the findings of the analysis. How large is large
enough? How small is too small? Historically, writers on factor analysis have offered many “rules
of thumb” recommendations regarding adequate sample size. Recommendations are not consistent
across the board, and according to MacCallum et al. (1999), they are not equally applicable from study
to study:

Our theoretical framework and results show clearly that common rules of thumb regarding sample size in
factor analysis are not valid or useful. The minimum level of N, or the minimum N:p ratio, needed to assure
good recovery of population factors is not constant across studies but rather is dependent on some aspects of
the variables and design in a given study. Most importantly, level of communality plays a critical
role. (p. 96)

What MacCallum et al. (1999), generally found was that when communalities are high (e.g., greater
than 0.6), and factors are well determined (and the computational algorithm converges), samples even
smaller than 100 may be enough to conduct the analysis. However, as communalities get smaller, in
general, a greater sample size is required. For instance, with communalities ranging in the neighbor-
hood of 0.5, sample size in the general range of 100–200 is recommended. If communalities are quite
low for estimating a small number of factors with very few indicators for each factor (e.g., 3–4), sample
sizes in the neighborhood of 300 or more are preferred. For cases in which communalities are very low
and factors are poorly determined, sample sizes of 500 are generally required.

Overall, since factor analysis is a large-sample technique (t-tests, in comparison, are a small sample
technique), in general, the greater the sample size, the more confidence one can have in the stability of
the factor solution.When performing factor analysis then, more times than not researchers should
aim for large sample sizes.

14.19 PRINCIPAL COMPONENTS ANALYSIS VERSUS FACTOR ANALYSIS:
TWO KEY DIFFERENCES

As mentioned at the outset of this chapter, factor analysis is a method distinct from that of principal
components analysis. We summarize two primary distinctions we have already touched upon through-
out our discussion up to now.

14.19.1 Hypothesized Model and Underlying Theoretical Assumptions

This first distinction is perhaps the most important one when comparing EFA with PCA. In EFA, a
definitivemodel is subsumed, whereas in PCA, no such model is ever hypothesized. In PCA, the ana-
lyst is not so often seeking to usually “uncover” underlying latent structures to his or her data, even in
challenging pursuits as exhibited in the psychological sciences. Rather, she is simply wanting to know
if her data can be expressed in a simpler form while still accounting for most of its variance. In this way,
principal components analysis can be considered simply an empirical transformation of observed
data. We are not fitting a theoretical model to empirical observations, nor do we require model assump-
tions such as multivariate normality in the typical components analysis (Timm, 2002) especially if for-
mal inference is not the goal. For a discussion of large sample inferences where normality assumptions
are beneficial, consult Johnson andWichern (2007, p. 456). As is true of most statistical methods, how-
ever, PCA has been shown to be sensitive to outliers.
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Factor analysis, on the other hand, is by its very nature much more theory-driven, with the focus on
uncovering hypothesized lurking variables that subsume observed correlations or covariances. What
this technically translates into is an emphasis on different parts of the covariance or correlation matrix,
as summarized by Jolliffe (2002):

Both factor analysis and PCA can be thought of as trying to represent some aspect of the covariance matrixΣ
(or correlation matrix) as well as possible, but PCA concentrates on the diagonal elements, whereas in factor
analysis the interest is in the off-diagonal elements. (p. 158)

The above materializes, as Jolliffe notes, into the fact that an extracted principal component can
result from a single variable being independent of remaining variables in the sample. That is, if
one variable “does the job,” then it is possible in a PCA that it be designated as a component to account
for some of the variance in the sample. In a factor analysis (i.e., versions of which aren’t simply
glorified components analysis), since commonality between variables is the focus, the given factor
must be “determined” by at least two or more observed variables. This is an example of how the empha-
sis in factor analysis is on covariance whereas the emphasis in principal components is on variance.
This distinction is critical in understanding the difference between PCA and EFA and is one that clearly
distinguishes the two methodologies.

While it is also true that analysts will sometimes seek to name derived components in PCA, it is not a
typical assumption of the analysis. Factor analysis, or perhaps more appropriately the tradition of fac-
tor analysis, usually encourages the researcher to make at least some sense out of derived factors, to
assign them names or meaning, otherwise, the procedure is usually considered “unsuccessful” in the
sense that underlying latent variables were not discovered. Of course, the mechanics of EFA do not care
whether you name or not name linear combinations of factors. So in this sense, this characteristic has
nothing to do with the actual procedure, but rather more to do with the substantive use, application, and
tradition of the factor-analytic method. When a researcher is performing a factor analysis, it is usually
not simply for data reduction, otherwise, they would likely be performing a PCA instead.

14.19.2 Solutions Are Not Invariant in Factor Analysis

A second key and very important difference between EFA and PCA is the contingency issue of load-
ings on the number of derived components or factors. In a principal components analysis, whether the
analyst decides to derive or keep two or three components, for instance, will not have an effect on the
loadings for such components. In factor analysis, however, whether the analyst decides to extract two
or three factors will typically have an effect on the loadings. For those in opposition to the factor-
analytic method, this issue provides them with much ammunition. What it means is that the very
nature of a given factor usually depends on how many other factors were extracted along with
it. At a philosophical level, this is a real problem for factor analysis. “I found a two-factor solution” says
the analyst, is never the “full story.” As always with statistical models, context matters, and perhaps
nowhere is this more true than in factor analysis.

The situation is similar, though by no means identical, to the effect one predictor may have on the
estimated partial regression weight of a second predictor in a multiple regressionmodel in that themodel
is specified by the inclusion of all predictors, with the interpretation of each predictor contingent upon
other predictors in themodel. Likewise in EFA, the solution of one factor is contingent upon the solution
to others in the model. This leads some to look upon EFA with great suspicion. However, so long as
researchers are aware of this issue, and communicate it to the audiences to which they present their
results, it should not be regarded as an “obstacle” to factor analysis any more than the interpretation of
predictors in a wider multiple regression model should be considered an obstacle. In both cases, and as
emphasized throughout this book with regard to multivariate methods in general, estimated coefficients
are contingent upon the model tested and should never be interpreted independent of this context.
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As long as one is also aware of such limitations when interpreting solutions to factor analysis, the
“subjectivity” of solution-selection should not be a barrier to using EFA. So long as one has some under-
standing of the tool they are using, the tool may prove quite useful. Of course, if one is making non-
sensical conclusions about the existence of factors that make little substantive sense (e.g., all one-factor
solutions could be named “jello” and the fitted models would not object!), then this is reason for proper
critique, but that critique is more appropriately targeted toward the (mis)user than the technique. Factor
analysis itself is quite innocent. It is the users who usually have blood on their hands.

14.20 PRINCIPAL FACTOR IN SPSS: PRINCIPAL AXIS FACTORING

We now demonstrate exploratory factor analysis in SPSS. We later feature an example in R. Recall that
the method of principal axis factoring in SPSS, or “PAF,” is a method of common factor analysis that
uses the squared multiple correlation coefficient as its estimate of communality for each variable. For
our example, we factor analyze cormatrix, first featured in Chapter 13 on which we conducted
a PCA:

MATRIX DATA VARIABLES=ROWTYPE_ T1 T2 T3 T4 T5 T6 T7 T8.
BEGIN DATA
N 1000 1000 1000 1000 1000 1000 1000 1000
CORR 1.00000
CORR .343 1.00000
CORR .505 .203 1.00000
CORR .308 .400 .398 1.00000
CORR .693 .187 .303 .205 1.00000
CORR .208 .108 .277 .487 .200 1.00000
CORR .400 .386 .286 .385 .311 .432 1.00000
CORR .455 .385 .167 .465 .485 .310 .365 1.00000
END DATA.

Recall that the columns are designated by T1 through T8, and there are 1000 observations per
variable.

Just as we did for the PCA example of the previous chapter, we can have SPSS reproduce the
correlation matrix of observed variables by appending CORRELATION to the PRINT command:

/PRINT CORRELATION

Correlation Matrix

T1 T2 T3 T4 T5 T6 T7 T8

Correlation T1 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455
T2 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385
T3 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167
T4 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465
T5 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485
T6 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310
T7 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365
T8 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000
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The statistical significance of the above correlations can also be requested by /PRINT SIG. We
resist printing the statistical significance of these correlations, however, mostly for the reason that they
are not required for us to push on with the factor analysis. In EFA, we are not interested in making
inferential statements about any particular pairwise correlations. Recall as well that in the previous
chapter on PCA, we designated EXTRACTION = PC to request a components analysis on this data.
By specifying EXTRACTION = PAF now, we are requesting a principal axis factoring solution in
which we extract two factors (i.e., /CRITERIA FACTORS(2)):

FACTOR MATRIX=IN(CORR=*)
/PRINT= INITIAL EXTRACTION
/CRITERIA FACTORS(2)
/EXTRACTION=PAF
/METHOD=CORRELATION.

SPSS provides us with the following initial and extraction communalities:

Communalities

Initial Extraction

T1 0.619 0.916
T2 0.311 0.236
T3 0.361 0.256
T4 0.461 0.678
T5 0.535 0.551
T6 0.349 0.340
T7 0.355 0.382
T8 0.437 0.398

Extraction method: principal axis factoring.

How were the initial communalities obtained? The initial communality of 0.619 was computed by
regressing T1 (i.e., T1 is the response variable in this case) on variables T2 through T8. Likewise, the
initial communality of 0.311 for T2 was computed by regressing T2 on variables T1, T3, through to T8.
Recall what the extracted communalities represent. They are a measure of how much the given
observed variable has in common with the derived factors after the factor-analytic routine has done
its job. For instance, note that the communality for T1 rose from 0.619 to 0.916, which in turn suggests
that the given variable is, overall, relatively correlated with one or more of the derived factors. In other
words, T1 appears to be a key contributor to the derived factors. The balance of the communality of
0.916 is equal to 1−0.916 = 0.084, which is the unique variance associated with T1. That is, this is the
proportion of variance in the observed variable unaccounted for by the derived factors.

SPSS next provides us with a breakdown of the eigenvalues extracted by the factor analysis. We
note that these are identical to the eigenvalues extracted by the PCA of Chapter 13, and which also
sum to a total of 8 corresponding to the number of variables in the EFA. They are named “initial”
eigenvalues because they are the eigenvalues extracted under a principal components model (i.e.,
with 1.0’s in the main diagonal) rather than a common factor analysis model in which communalities
have been estimated. We see that the first factor (component) accounts for 43.09% of the variance.
This number was obtained by the ratio 3.447/8. Additional initial eigenvalues are reported in
decreasing value.
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Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings

Factor Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.447 43.088 43.088 2.974 37.171 37.171
2 1.157 14.465 57.554 0.784 9.799 46.970
3 0.944 11.796 69.349
4 0.819 10.237 79.587
5 0.658 8.226 87.813
6 0.390 4.873 92.686
7 0.336 4.201 96.887
8 0.249 3.113 100.000

Extraction method: principal axis factoring.

The right-hand side of the above table contains the extraction sums of squared loadings, and
reports figures based on common variance rather than total variance. SPSS also only reports the
extraction sums of squared loadings for a two-factor solution, since this is what we requested. These
then are the values of interest to us, since they are based on the estimated communalities inserted in the
main diagonal of the correlation matrix. Formally speaking, these are not actual “true” eigenvalues, but
it does not hurt to see them as such in comparison to the eigenvalues extracted in the PCA, so long as
one realizes they are different things. One can informally and crudely think of them as the eigenvalues
based on the EFA solution in contrast to those based on the PCA solution. We see that the first factor,
yielding an “eigenvalue” of 2.974, accounts for 37.17% of the variance, while the second factor, with a
corresponding “eigenvalue” of 0.784, accounts for 9.80% of the variance. As discussed in this chapter,
the choice of how many factors to retain must wholly be a decision made by the researcher given req-
uisite substantive interpretation of the factor solution. Both the PCA and EFA results suggest keeping
one or two factors. The first two factors, considered together, account for a total percentage of the var-
iance of 46.97% of the original variance in the set of variables.

Next in SPSS’s output is the factor matrix, also known as the loading matrix. These weights cor-
respond to how much an observed variable loads on, or correlates with, a given factor. These weights are
thought to reveal the “structure” of the given factor. From this matrix, we can also compute the extraction
communalities previously discussed. For “T1,” the extraction communality of 0.916 is obtained as
(0.819)2 + (−0.496)2, and asmentioned, represents the proportion of variance contributed by the observed
variable across estimated factors or, equally, howwell the factor structure explains the observed variable.

Factor Matrixa

Factor

1 2

T1 0.819 −0.496
T2 0.472 0.115
T3 0.506 −0.013
T4 0.666 0.485
T5 0.633 −0.389
T6 0.480 0.331
T7 0.596 0.163
T8 0.629 0.040

Extraction method: principal axis factoring.
aTwo factors extracted. Thirty iterations required.
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As an aid in defining the substantive existence and nature of a factor, we generally look for observed
variables having relatively high-magnitude correlations with the given factor. We can see that for our
data, most variables load at least moderately well on the first factor. Based on the factor matrix in con-
junction with the aforementioned eigenvalues, the EFA seems to be dominated by a one-factor solu-
tion. Indeed, a scree plot appears to confirm this, though depending on the substantive context, an
argument can be made for a two-factor solution as well. It should be noted that the eigenvalues that
follow are based on the PCA solution, not the EFA sums of squared loadings. Nonetheless, they usually
help the investigator in determining or estimating the number of factors to extract, at least in a prelim-
inary sense:
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We now rotate the solution via both varimax and quartimax:

/PRINT = ROTATION
/ROTATION VARIMAX (/ROTATION QUARTIMAX)

SPSS first provides us with a brief summary and overview of how the variance was redistributed
(shown here for varimax rotation only):

Total Variance Explained

Rotation Sums of Squared Loadings

Factor Total % of Variance Cumulative %

1 1.891 23.638 23.638
2 1.867 23.332 46.970

Extraction method: principal axis factoring.

We note that the proportion of variance explained by the two factors is still the same as in the unro-
tated solution (i.e., 46.97%); however, the sums of squared loadings have been recomputed to reflect a
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change of axes. Whereas in the unrotated solution they were 2.974 and 0.784 for factors 1 and 2,
respectively, they are now 1.891 and 1.867. Notice that the sum of these eigenvalues has not changed,
in that they still sum to 3.758 in each case. Only the distribution of variance has changed among the two
factors.

In Table 14.1, factor matrices for varimax and quartimax rotations are given. Recall that there is no
magic formula regarding which rotation should be interpreted. Rotations that make most substantive
sense are those typically adopted by the researcher.

SPSS also provides us with the transformation matrices for each rotation:

Factor Transformation Matrix

Factor 1 2

1 0.711 0.704
2 −0.704 0.711

Extraction method: principal axis factoring.
Rotation method: varimax with Kaiser normalization.

Factor Transformation Matrix

Factor 1 2

1 0.942 0.335
2 0.335 −0.942

Extraction method: principal axis factoring.
Rotation method: quartimax with Kaiser normalization.

Using these transformation matrices, we can demonstrate, for instance, the computation of the var-
imax rotation in R. We first generate the column vectors of the original, unrotated factor matrix:

> f1 <- c(.819, .472, .506, .666, .633, .480, .596, .629)
> f2 <- c(-.496, .115, -.013, .485, -.389, .331, .163, .040)
> f.sol <- cbind(f1, f2)
> f.sol

TABLE 14.1 Estimated Loadings for Varimax and Quartimax Rotations of Cormatrix

Varimax Rotated Factor Matrix Quartimax Rotated Factor Matrix

Factor Factor

1 2 1 2

T1 0.931 0.223 T1 0.604 0.742
T2 0.255 0.413 T2 0.483 0.051
T3 0.369 0.346 T3 0.472 0.182
T4 0.132 0.813 T4 0.790 −0.233
T5 0.723 0.168 T5 0.465 0.579
T6 0.108 0.573 T6 0.564 −0.151
T7 0.309 0.535 T7 0.616 0.046
T8 0.419 0.471 T8 0.606 0.174
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f1 f2
[1,] 0.817 -0.493
[2,] 0.472 0.114
[3,] 0.506 -0.013
[4,] 0.666 0.485
[5,] 0.633 -0.392
[6,] 0.480 0.331
[7,] 0.596 0.163
[8,] 0.630 0.039

The vectors f1 and f2 are the respective loadings for the two extracted unrotated factors. We
named the object f.sol simply to bind f1 and f2 into columns. We now generate the varimax trans-
formation matrix:

> tm.1 <- c(.711, -.704)
> tm.2 <- c(.704, .711)
> t.matrix <- cbind(tm.1, tm.2)
> t.matrix

tm1 tm2
[1,] 0.711 0.704
[2,] -0.704 0.711

Finally, we post-multiply the two-factor solution by the varimax transformation matrix:

> varimax <- f.sol%*%t.matrix
> varimax

tm1 tm2
[1,] 0.931493 0.223920
[2,] 0.254632 0.414053
[3,] 0.368918 0.346981
[4,] 0.132086 0.813699
[5,] 0.723919 0.169053
[6,] 0.108256 0.573261
[7,] 0.309004 0.535477
[8,] 0.419059 0.471256

Note that the above “manually” computed transformed factor loadings are equal to those generated
by SPSS for the varimax solution. The quartimax rotation can likewise be demonstrated. Demonstrat-
ing quantities numerically like this goes a ways to “de-mystifying” what they represent computation-
ally and is a great way of practicing computations in R or other software.

Finally, we can request the reproduced matrix of correlations. These are the correlations implied by
the specification of the factor-analytic model. Recall that from a technical vantage point, the goal of
EFA is to regenerate the observed correlation matrix by way of the factor solution. SPSS also provides
us with the residuals of the reproduced correlations, which are merely the differences between the
empirical correlations observed in our data and the correlations implied by the model. A perfectly fit-
ting model would have a residual matrix filled with zeros. Inspection of the matrix can help us identify
on a substantive level correlations for which the model did well at regenerating. For instance, the two-
factor model in this case did a nice job at reproducing the correlation of T1 and T4, since it yields a quite
small residual of only 0.004.

/PRINT REPR
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Reproduced Correlations

T1 T2 T3 T4 T5 T6 T7 T8

Reproduced T1 0.916a 0.330 0.420 0.304 0.711 0.229 0.407 0.495
correlation T2 0.330 0.236a 0.237 0.370 0.254 0.265 0.300 0.302

T3 0.420 0.237 0.256a 0.330 0.325 0.239 0.299 0.318
T4 0.304 0.370 0.330 0.678a 0.232 0.480 0.476 0.438
T5 0.711 0.254 0.325 0.232 0.551a 0.175 0.313 0.383
T6 0.229 0.265 0.239 0.480 0.175 0.340a 0.340 0.316
T7 0.407 0.300 0.299 0.476 0.313 0.340 0.382a 0.382
T8 0.495 0.302 0.318 0.438 0.383 0.316 0.382 0.398a

Residualb T1 0.013 0.085 0.004 −0.018 −0.021 −0.007 −0.040
T2 0.013 −0.034 0.030 −0.067 −0.157 0.086 0.083
T3 0.085 −0.034 0.068 −0.022 0.038 −0.013 −0.151
T4 0.004 0.030 0.068 −0.027 0.007 −0.091 0.027
T5 −0.018 −0.067 −0.022 −0.027 0.025 −0.002 0.102
T6 −0.021 −0.157 0.038 0.007 0.025 0.092 −0.006
T7 −0.007 0.086 −0.013 −0.091 −0.002 0.092 −0.017
T8 −0.040 0.083 −0.151 0.027 0.102 −0.006 −0.017

Extraction method: principal axis factoring.
aReproduced communalities.
bResiduals are computed between observed and reproduced correlations. There are 10 (35.0%) nonredundant residuals with abso-
lute values greater than 0.05.

14.21 BARTLETT TESTOF SPHERICITYANDKAISER–MEYER–OLKINMEASURE
OF SAMPLING ADEQUACY (MSA)

As you might imagine, one must have at least some initial correlation among observed variables for
factor analysis to have any hope of providing a sensible solution. But howmuch correlation is enough?
Ordinarily, a visual inspection of the correlation matrix provides us with enough detail on the sizes of
correlations to make an informal decision as to whether or not it is worth proceeding. If correlations are
quite small (e.g., if most of them are less than 0.10 to 0.20, for instance), then conducting the analysis
may not be worthwhile (though there is certainly no reason to not try the procedure and see what
happens, you definitely will not “break” the software). Typically, we would prefer relatively sizeable
correlations to justify pushing forward with the analysis.

The Bartlett test of sphericity (Bartlett, 1950, 1954) evaluates the null hypothesis that the corre-
lation matrix is an identity matrix, which recall implies there to be values of “1” along the main diag-
onal and zeros everywhere else. Bartlett’s test is given by

χ2 = − n− 1 −
2p + 5

6
ln R

where p is the number of variables, n is the number of observations, and ln R is the natural logarithm
(i.e., loge) of the determinant of the correlation matrix. The most relevant component of the test is

ln R . For a constant value of − n − 1 −
2p + 5

6
, we note that what will make the value for Bartlett

increase or decrease is entirely a function of R , which can be regarded as a measure of generalized
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variance. A rejection of the null hypothesis suggests that overall and across the board, pairwise cor-
relations are not equal to zero. The test, however, is very much a function of sample size, and therefore
a rejection of the null hypothesis should not be taken too seriously under most circumstances. Accord-
ing to Tabachnick and Fidell (2007), the test should ordinarily only be interpreted if there are relatively
few cases per variable (e.g., 5–10).

For the analysis of cormatrix, we obtain:

/PRINT= INITIAL EXTRACTION KMO

KMO and Bartlett’s Test
Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.741
Bartlett’s test of sphericity Approx. Chi-square 2702.770

df 28
Sig. 0.000

SPSS first reports theKaiser–Meyer–Olkin test, which is a ratio of the sum of squared correlations
to that of the sum of squared correlations and squared partial correlations (Tabachnick and Fidell,
2007). Values generally exceeding 0.7–0.8 are preferred, although so long as values are not too
low (e.g., 0.6 or lower), it is typically not cause for concern. Bartlett’s test of sphericity is statistically
significant, suggesting that the correlation matrix is not an identity matrix, though as just discussed, this
is hardly surprising in this case since sample size is that of 1000 for cormatrix. To demonstrate the
influence of sample size on this test, we rerun the analysis with the exact same correlation matrix but
with sample size equal to 10 for each variable. We obtain:

KMO and Bartlett’s Test
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. 0.741
Bartlett’s test of sphericity Approx. Chi-square 14.932

df 28
Sig. 0.979

We note that with a sample size of n = 10, KMO remained the same, although Bartlett’s test of
sphericity is no longer statistically significant due to using such a small sample size. Hence, as with
all significance tests, one must be cautious when drawing conclusions as a function of Bartlett’s
p-value.

We can also request the determinant of the correlation matrix in SPSS:

/PRINT= DET

Correlation Matrixa

aDeterminant = 0.066

A determinant unequal to zero indicates the matrix is not singular. Had the correlation matrix been
singular, SPSS would have provided an error message and halted the factor analysis. Singularity can
occur when two vectors of a matrix (variables, in this case) are perfect linear combinations of one
another. See the Appendix for further details.
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14.22 FACTOR ANALYSIS IN R: HOLZINGER AND SWINEFORD (1939)

We demonstrate a factor analysis in R using the Holzinger and Swineford data. Recall that we featured
the output to this analysis at the very outset of this chapter. We now come full circle and perform the
factor analysis to obtain those results. Recall that this classic data set consists of mental ability tests of
seventh- and eighth-grade children from two different schools. The data here is a subset of the original
Holzinger and Swineford data featuring 15 variables:

• id is an identifier

• sex

• ageyr (age in years)

• agemo (age in months)

• school (school attended by the child)

• grade

• x1–x9 (nine tests of mental ability; x1 = visual perception, x2 = cubes, x3 = lozenges, x4 = par-
agraph comprehension, x5 = sentence completion, x6 = word meaning, x7 = addition, x8 = count-
ing dots, x9 = straight-curved capitals.)

We use the factanal function in R to perform maximum-likelihood factor analysis on psycho-
logical tests x1–x9. These tests are stored in the form of a correlation matrix based on a total of 145
observations in the object Holzinger.9:

> library(psych)
> Holzinger.9

vis_perc cubes lozenges par_comp sen_comp wordmean addition
vis_perc 1.00000 0.325800 0.448640 0.34163 0.30910 0.31713 0.104190
cubes 0.32580 1.000000 0.417010 0.22800 0.15948 0.19465 0.066362
lozenges 0.44864 0.417010 1.000000 0.32795 0.28685 0.34727 0.074638
par_comp 0.34163 0.228000 0.327950 1.00000 0.71861 0.71447 0.208850
sen_comp 0.30910 0.159480 0.286850 0.71861 1.00000 0.68528 0.253860
wordmean 0.31713 0.194650 0.347270 0.71447 0.68528 1.00000 0.178660
addition 0.10419 0.066362 0.074638 0.20885 0.25386 0.17866 1.000000
count_dot 0.30760 0.167960 0.238570 0.10381 0.19784 0.12114 0.587060
s_c_caps 0.48683 0.247860 0.372580 0.31444 0.35560 0.27177 0.418310

count_dot s_c_caps
vis_perc 0.30760 0.48683
cubes 0.16796 0.24786
lozenges 0.23857 0.37258
par_comp 0.10381 0.31444
sen_comp 0.19784 0.35560
wordmean 0.12114 0.27177
addition 0.58706 0.41831
count_dot 1.00000 0.52835
s_c_caps 0.52835 1.00000

We request a two-factor solution on these data:

> fa <- factanal(covmat = Holzinger.9, factors = 2, n.obs = 145, rotation =
“varimax”)
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Call:
factanal(factors = 2, covmat = Holzinger.9, n.obs = 145)

Uniquenesses:
vis_perc cubes lozenges par_comp sen_comp wordmean addition count_dot

0.733 0.899 0.781 0.237 0.327 0.323 0.595 0.253
s_c_caps

0.514

Loadings:
Factor1 Factor2

vis_perc 0.354 0.376
cubes 0.232 0.219
lozenges 0.364 0.293
par_comp 0.866 0.112
sen_comp 0.794 0.205
wordmean 0.815 0.114
addition 0.126 0.624
count_dot 0.864
s_c_caps 0.288 0.635

Factor1 Factor2
SS loadings 2.455 1.882
Proportion Var 0.273 0.209
Cumulative Var 0.273 0.482

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 61.7 on 19 degrees of freedom.
The p-value is 2.08e-06

The “Uniquenesses” that begin the output are the specific variances corresponding to each variable
across both factors. For instance, for visual perception (vis_perc), the sum of squared estimated
factor loadings is equal to (0.354)2 + (0.376)2 = 0.267, which when we subtract from 1, we obtain
the specific variance of 0.733. Other values for “Uniqueness” are computed in an analogous manner.

Regarding the actual factor solution, based on the loadings for each factor, it would appear that the
first factor is composed of variables paragraph comprehension, sentence completion, and word
meaning, which are all verbal tasks. Hence, we might name the first factor by verbal ability or some-
such. The second factor appears to be “made up of” addition, counting dots, and straight-curved capi-
tals, which are all quantitative-like or analytic-related tasks. Hence, we might name the second factor
by quantitative ability or similar. The loading for counting dots under the first factor is suppressed
because it is very small and thus negligible.

14.23 CLUSTER ANALYSIS

We conclude this chapter with a brief and rather cursory survey of the statistical method of cluster
analysis. Cluster analysis is a method with the aim of grouping cases or individuals that are in some
sense, similar. Using a measure of similarity, cluster analysis groups cases into mutually exclusive
sets. Once this partitioning of cases into sets is complete, identifying or otherwise naming these clusters
often is a priority for the cluster analyst.

Why conclude this chapter with a discussion of cluster analysis? While cluster analysis is a tech-
nique distinct from that of factor analysis, it does share with it some parallels. At their core, both
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methods are concerned with generating groups based on an index of similarity. In traditional EFA, as
we have seen, it is customarily the case where variables are grouped into factors. The index of similarity
in EFA is that of covariance or correlation. In cluster analysis, cases are the typical objects of clas-
sification on which similarity may be defined and conceptualized in many different ways. Havingmade
this distinction, we could, in theory, also “cluster analyze” variables in addition to cases. For our pur-
poses, however, we assume clustering procedures to operate on cases rather than variables. Indeed,
most applications of cluster analysis are concerned with the clustering of cases. In all that follows,
we assume to be working with continuous data. For a discussion of cluster analysis applied to dichot-
omous data, see Finch (2005).

Generating groupings is rather easy. Generating good groupings is much more difficult. It is how
these groupings should bemade that is the topic of research in the cluster analysis field. As a problem of
combinatorics, it is well known (by those who specialize in this area) that the number of ways of par-
titioning n cases into g clusters is given by:

N n, g =
1
g

g

k = 1

g

k
− 1 g− kkn

where n is the number of cases and g is the number of clusters (Anderberg, 1973; Hastie, Tibshirani,
and Friedman, 2009). The number can also be approximated by gn

g . This number can get unreasonably

large very fast, and hence the challenge of cluster analysis algorithms is to be able to shrink the problem
to a manageable size. As Johnson and Wichern (2007) note, “Even fast computers are easily over-
whelmed by the typically large number of cases, so one must settle for algorithms that search for good,
but not necessarily the best, groupings” (p. 672). Ward (1963) summarized this idea perfectly:

Situations often arise in which it is desirable to cluster large numbers of objects, symbols, or persons into
smaller numbers of mutually exclusive groups, each having members that are as much alike as possible.
Grouping in this manner makes it easier to consider and understand relations in large collections; hence
it often increases efficiency of management. Grouping, however, ordinarily results in some loss of infor-
mation that may be quantified in a “value-reflecting” number. (Ward, 1963, p. 236)

14.24 WHAT IS CLUSTER ANALYSIS? THE BIG PICTURE

A simple way to conceptualize cluster analysis, even if somewhat crudely, is to consider the following
swarm of data points:
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Suppose these points represent that of 1000 human beings. Theoretically, on each observation is
associated an infinite number of characteristics, some measured, some unmeasured. For instance, some
of the possible characteristics on these individuals include height, age, gender, temperament, person-
ality, motivation, brain chemistry, etc. We could indeed go on to list an infinite number of character-
istics. The question cluster analysis asks about this undefined, messy swarm, is the following:

Can any of the measured characteristics in this swarm be useful in establishing a group (or “cluster”)
structure of any kind?

For instance, if we considered individuals’ heights in the swarm, do any patterns of cases emerge?
Perhaps we might find a pattern of shorter people versus taller people. Likewise, if we considered gen-
der, perhaps we might discover a pattern emerge of males versus females. As an example, consider the
hypothetical data of Table 14.2 of heights and weights across four persons.

What cluster analysis will generally try to do with the data in Table 14.2 is use variables height and
weight and search for similarity among cases. For example, consider a plot of height and weight in
Figure 14.2.

What do we notice? Even in such a simple plot of four individuals, already a group structure seems
to be emerging, as evidenced in Figure 14.2b. Cluster analysis essentially looks at the data in Table 14.2
(and corresponding plot in Figure 14.2) and asks the question: Which points are closest to one
another, and can this closeness be used to potentially define different “groups” or “clusters”
of observations? Notice that even if cluster analysis is able to identify groups, it does not purport
in any way to be able to identifywhat those groups are, apart from actually fitting nicely into the given
cluster structure. We thus ask the question: Why are Mark and Mary similar, yet both different
from Bob and Julie, who are themselves similar to each other?

TABLE 14.2 Fictional Data for Simple Cluster Analysis

Person Height Weight (lb)

Mary 4 ft 2 in. 120
Bob 5 ft 2 in. 190
Julie 5 ft 8 in. 180
Mark 4 ft 3 in. 130

Weight by Height
Weight by Height
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FIGURE 14.2 Plot of height and weight (a). Identifying similarity (b).
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Of course, there are literally an infinite number of reasons why the data in Figure 14.2 might group
the way it does. Individuals are complex and havemany characteristics. However, can we theorize on at
least one of those reasons? It may very well be that Mark and Mary are in the group called “children”
and Bob and Julie belong to a cluster called “adults.” Indeed, if we happened to have these individuals’
ages at our disposal, it would not take long to identify this as a covariate to the group separation. At its
core, this is how cluster analysis generally works. In the machine learning field, cluster analysis is often
referred to as one of the “unsupervised” learning techniques, since we are not supplying the problem
with a predefined grouping structure as we do in ANOVA or discriminant analysis, for instance. And
though cluster analysis is often spoken of as discovering natural groupings, it must be emphasized
that groupings are only as “natural” as we designate them to be. For instance, it is also quite possible
that Mary and Mark eat more candy than do Bob and Julie, but since age is a more “natural” distin-
guisher, we would hardly be interested in a cluster solution separating those who eat a lot of candy
versus those who eat less. In other situations, as with the iris data which we will cluster analyze later,
cluster groupings are indeed more naturally defined (e.g., by species).

Just as the factor analyst must guard against the possibility of seeing structure where none is appar-
ent, the cluster analyst must also be wary of finding clusters simply because mathematical optimization
has been successful. As eloquently put by Everitt, Landau, and Leese (2001):

The problem is, of course, that since in most cases the investigator does not know a priori the structure of
the data (cluster analysis is, after all, intended to help to uncover any structure), there is a danger of inter-
preting all clustering solutions in terms of the existence of distinct (natural) clusters. The investigator may
then conveniently ‘ignore’ the possibility that the classification produced by a cluster analysis is an artefact
of the method and that actually she is imposing a structure on her data rather than discovering something
about the actual structure. (pp. 7–8)

Hence, cluster analysis will, under most circumstances, generate corresponding clusters. As is true
in factor analysis, however, whether or not the solution means anything is usually left up to the judg-
ment of the researcher. As R.A. Fisher once said about ANOVA, cluster analysis, as is true of virtually
all statistical methods, is simply an exercise in arranging the arithmetic. Cluster analysis, or any other
method, cannot purport by itself to make scientific discoveries. It may be “unsupervised” learning, but
a scientist is still required to interpret the solution.

14.25 MEASURING PROXIMITY

We have said that cluster analysis is based on identifying similarity among cases. But how should we
define such proximity, or its opposite, that of distance? The choice of a good proximity measure is by
no means obvious in all cases and is often quite discretionary and subjective. As was true for factor
analysis, this subjective component can generate some skepticism. Indeed, if what you see is depend-
ent on the microscope you use to see it, then it becomes difficult to define what you are looking at
as distinct from the tool you are using to do the viewing. Which objects in a data set are more similar
or distant than others? The answer depends on what definition of similarity or distance we use. We
survey some of the more popular distance measures.

Euclidean distance is that which we think of when we want to compute the distance between two
points on a straight line. It is by far the most easily recognizable and historically relevant distance meas-
ure. The Euclidean distance between two p-dimensional objects, x = [x1, x2,…, xp] and y = [y1, y2,…,
yp] is defined as:

d x, y = x1 − y1
2 + x2 − y2

2 + + xp − yp
2

= x − y x − y
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where d(x, y) is the distance between vectors, with differences between observations denoted by (x1 −
y1)

2, (x2 − y2)
2, …, (xp − yp)

2. As remarked by some (e.g., Johnson and Wichern, 2007; Rencher and
Christensen, 2012), one might be tempted to use the statistical distance:

d x, y = x− y S − 1 x − y

where S−1 is the inverse of the variance-covariance matrix. However, the argument against this is that if
so-called “natural groupings” do end up emerging from the data, then computing S on the entire sample
might be misleading and not provide accurate estimates of variances and covariances. This is because
presumably, in computing S, we would be pooling across the data without any attention to the potential
existence of groups. For this reason, Euclidean distance is usually preferred over a measure of statistical
distance.

To illustrate a simple example of Euclidian distance, consider the two vectors x and y:

x = 2, 4

y = 4, 7

We compute the Euclidean distance between the two vectors to be 13:

d x, y = x1 − y1
2 + x2 − y2

2 + … + xp − yp
2

= 2 − 4 2 + 4− 7 2

= 3 61

We can visualize the vectors in R by computing

> plot(c(2,4), c(4,7))
> arrows(2, 4, 4, 7)

7.0

6.5

6.0

5.5

c
(4

, 
7
)

5.0

4.5

4.0

2.0 2.5 3.0

c(2, 4)

3.5 4.0
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Note that the vector begins at the point (2,4) and ends at the point (4,7). We can easily compute
Euclidean distances in R. For instance, consider data for two variables on five cases in Table 14.3.

We first generate a matrix for these two variables:

> v1 <- c(5, 6, 8, 2, 3)
> v2 <- c(4, 6, 7, 2, 1)
> M <- cbind(v1, v2)
> M

v1 v2
[1,] 5 4
[2,] 6 6
[3,] 8 7
[4,] 2 2
[5,] 3 1

We compute the distances using the dist function by requesting “euclidean”:

> dist(M, method = "euclidean")
1 2 3 4

2 2.236068
3 4.242641 2.236068
4 3.605551 5.656854 7.810250
5 3.605551 5.830952 7.810250 1.414214

Note that the matrix is a symmetric matrix, since the upper part, above the main diagonal, is a mirror
image of the lower part. By inspecting the distance matrix, we can informally survey which objects are
similar to other objects. For example, objects 4 and 5 appear to be rather similar, with a distance of only
1.41, while objects 3 and 4 and 3 and 5 appear to be quite dissimilar, with distances of 7.81. This proc-
ess of inspecting a distance matrix and attempting to spot similarities parallels that of initially inspect-
ing another distance matrix, that of the correlation matrix in factor analysis where we got a first glance
at which variables might “go together” in the sense of potentially indicating underlying constructs.

The Minkowski metric is given by:

d x, y =
p

i = 1

xi − yi
m

1 m

TABLE 14.3 Hypothetical Data for Cluster Analysis
on Two Variables Using Euclidean Distance

Object Variable 1 Variable 2

1 5 4
2 6 6
3 8 7
4 2 2
5 3 1
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where when m = 2, the distance reduces to Euclidean distance:

d x, y =
p

i = 1

xi − yi
m

1 m

=
p

i = 1

xi − yi
2

1 2

= x1 − y1
2 + x2 − y2

2 + … + xp − yp
2

That is, the only difference between the Minkowski distance and that of Euclidean is that m in Min-
kowski is not fixed at m = 2 as it is in Euclidean. A third and similar distance measure, city-block (or
Manhattan) is given by:

d x, y =
p

i = 1

xi − yi

where xi − yi is now simply the absolute difference. The choice of which distance measure to use for
which type of problem has been investigated (e.g., see Gower, 1988). It was found, in general, that the
choice of measure can lead to somewhat different findings. According to Everitt, Landau, and Leese
(2001), more research is required before a conclusion regarding which measure is most optimal (in
some sense) is reached, and the conditions for such optimality. For instance, if multicollinearity is
inherent between variables, using a distance measure that compensates for this, such as Mahalanobis,
is usually advised. Mahalanobis distances (1936) are given by:

D2 = y1 − y2 S− 1 y1 − y2

where y1 and y2 are sample vectors and S−1 is the pooled sample variance-covariance matrix of S1 and
S2, respectively. Mahalanobis distances can be considered a generalized Euclidean measure since it
adjusts for the covariance among variables through S−1. Relatively large values of D2 can also be used
in spotting outliers in multivariate analysis in general.

In other cases, and as a working rule, researchers might do well to run a data set under a variety of
proximity options, and if substantively meaningful clusters emerge under each choice, this may then
lend credibility to the given cluster solution.

It must be emphasized that regardless of the distance measure chosen, magnitudes in data can at
times simply be reflective of the scales used in the analysis. A solution to this problem is to standardize
the data to z-scores when working with continuous measures. Standardization is not a panacea for all
problems in cluster analysis, but it does help guard against the possibility of one or two variables con-
tributing most heavily toward the final solution relative to other variables. Hence, standardizing data
prior to performing cluster analysis is sometimes advised.

14.26 HIERARCHICAL CLUSTERING APPROACHES

Generally, there are two ways in which one can cluster observations. On the one hand, we can begin
with single observations considered uniquely then proceed to join “alike” observations on the road to
building clusters. This is generally known as the agglomerative or hierarchical approach. Alterna-
tively, one can start with a single cluster containing all cases then partition these cases into respective
clusters in a stepwise fashion. This latter form of clustering is generally known as the divisive approach.
Regardless of adopted approach, generally, once two cases are “fused,” they cannot be unfused.
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The consequence of such a constraint to cluster formation was highlighted inWard’s depiction of cluster
analysis featured earlier, in which recall he noted, “Grouping, however, ordinarily results in some loss of
information” (Ward, 1963, p. 236).Akin to developing a circle of friends, not everyone can be included in
the group, and the fact that you are friends with one personmight exclude you being friends with another.
At some point, some degree of simplification has to occur. Decisions, to some extent, “burn bridges,” but
to some degree, this is required if progress is to be made. Hence, no cluster algorithm will ever provide a
“perfect” solution. Some will be simply more preferable than others for a particular context.

The linking of objects by their similarity or dissimilarity can be pictorially represented using what is
known as a dendrogram (Figure 14.3). A dendrogram reveals the chain of linkage of objects deemed
similar enough to be fused. The dendrogram can be conceived as a kind of historical record of the
clustering process. Icicle plots can also be used to visualize results from hierarchical cluster analysis,
though we do not feature their use here. See Kruskal and Landwehr (1983) for details.

In Figure 14.3a, (using a technique called Ward’s method) we can see that objects 4 and 5 were
fused together into one cluster, while objects 1 and 2 were fused into another cluster. Next, the cluster
of 1 and 2 was fused with object 3. We can see then that by the top of the dendrogram, the hierarchical
cluster routine for Figure 14.3b appears to have generated two groups. Of course, if one’s substantive
theory suggests that object 3 should be kept distinct from merging with objects 1 and 2, then one could
conclude that 3, not 2 groups were generated by the cluster solution, that is, (4,5) versus (3) versus
(1,2). Note carefully then that without knowing what objects 1 through 5 actually are, one cannot, other
than possibly in an algorithmic sense, make a determination about the final cluster solution. Hence, so-
called stopping rules in cluster analysis can be quite subjective. Just as in factor analysis, one requires
an understanding of the substantive nature of the variables one is working with in order to draw mean-
ingful conclusions from the procedure.

Within the hierarchical clustering paradigm, several different methods exist for fusing objects.
These include single linkage, complete linkage, and average linkage. In single linkage, also known
as minimum distance or nearest neighbor, cases having the smallest distance between them are
merged at each successive step. After each merger, the smallest distance between clusters is once more
computed, and those clusters having the smallest distance are then likewise merged together. As an
example of single linkage, recall the Euclidean distance matrix featured earlier:

1 2 3 4
2 2.236068
3 4.242641 2.236068
4 3.605551 5.656854 7.810250
5 3.605551 5.830952 7.810250 1.414214

The first step in the cluster process via single linkage is to merge the two closest objects, which for
this matrix are objects 4 and 5 (distance of 1.41). These two objects constitute the “nearest neighbors”
in the given matrix of distances. The merger of objects 4 and 5 is what gave us our first “cluster” in the
dendrogram of Figure 14.3 (though using Ward's method in this case). Next, the algorithm evaluates
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FIGURE 14.3 Dendrogram of clustering (a). Possible final solution (b).
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distances between our newly formed cluster (4,5) and remaining objects. It continues in this fashion
until it arrives at the final cluster solution.

Complete linkage, also known as maximum distance or farthest neighbor, is opposite to that of
single linkage. Unlike single linkage in which proximity was preferred, in complete linkage, we are
interested in observations between clusters that are most distant, the smallest of which distances
are merged. Finally, for average linkage, distance between clusters is defined as the average between
all pairs of objects where one member of a pair belongs to each cluster (Johnson and Wichern, 2007).

We note then that as a result of different ways of defining distance, mergers between clusters will
likewise be different depending on one’s choice of linkage. The decision of which linkage to use is
often made on subjective grounds and hence the extent to which one “finds” something in the data
is at least somewhat dependent on one’s choice of linkage. These are by no means the only methods
for linking or joining clusters. Another quite common method is that of centroid linkage, where dis-
tance between cluster centroids (i.e., means) is employed as the metric. Minimax linkage (Bien and
Tibshirani, 2011) has also been evaluated as an alternative, boasting some favorable properties. This
method defines what is called the minimax radius between clusters, and bases its assessment of dis-
tance on this radius. We do not discuss this nor other additional methods of linkage in this chapter. The
take-home point for the reader is simply to realize that there exists a whole literature on methods of
hierarchical linkage, and hence those typically offered by mainstream software are by no means the
only ones available. A further point is to understand that when you perform a cluster analysis, to never
assume the cluster analysis procedure is an “objective” process. To the contrary, given so many ways of
cluster-analyzing, the inputs and decisions regarding metrics and such are often just as important as
whether the data actually reveal clusters.

14.27 NONHIERARCHICAL CLUSTERING APPROACHES

Thus far we have surveyed some of the more common hierarchical methods for clustering objects as a
function of distance matrices. Nonhierarchical approaches, on the other hand, do not operate on dis-
tance matrices and hence are typically less computationally demanding than hierarchical approaches.
As was the case for the hierarchical case, numerous nonhierarchical methods have been proposed. Of
these, the K-means approach, or variants thereof, is typically the most popular. MacQueen (1967):

The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k
sets on the basis of a sample. The process, which is called ‘k-means,’ appears to give partitions which are
reasonably efficient in the sense of within-class variance… Stated informally, the k-means procedure con-
sists of simply starting with k groups each of which consists of a single random point, and thereafter adding
each new point to the group whose mean the new point is nearest. After a point is added to a group, the mean
of that group is adjusted in order to take account of the new point. Thus at each stage the k-means are, in fact,
the means of the groups they represent (hence the term k-means). (pp. 281, 283)

As summarized byMacQueen, the general algorithm forK-means begins by partitioning cases into k
initial clusters. This can be accomplished through a random process or by specifying seeds to initiate
the clustering algorithm. Once these seeds are chosen, remaining cases in the data are assigned to the
cluster having the nearest seed, usually based on a measure of Euclidean distance. That is, once a clus-
ter has more than a single case, the initial starting seed is replaced with that of the centroid, which is the
mean of the given cluster. Each time a new case is added to the cluster, the centroid is recalculated. The
process is repeated until no new assignments are made.

Arguably, the most challenging part of K-means, as was the case for hierarchical methods, is still in
identifying or naming the clusters generated. Again, be sure to note that K-means will typically gen-
erate clusters. Whether such clusters have any inherent meaning is to a large extent a substantive
decision, not a statistical one. Analogous to factor analysis, when one performs a cluster analysis,
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one should generally be prepared to experience an “aha!” moment upon looking at the output. If you
need to spend hours and hours contemplating the “nature” of the solution, it becomes more and more
difficult to argue that so-called natural groups were produced.4

14.28 K-MEANS CLUSTER ANALYSIS IN R

We demonstrate aK-means cluster analysis in R on the iris data. For pedagogical purposes, this data set
is ideal for demonstrating cluster analysis since we already know in advance of a suitable cluster solu-
tion, that of species. We begin by first identifying the variables on which we wish to cluster the cases:

> attach(iris)
> iris.data <- cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.
Width)
> library(car)
> some(iris.data)

Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 4.7 3.2 1.3 0.2
[2,] 5.0 3.4 1.5 0.2
[3,] 5.0 3.0 1.6 0.2

We could have also used data.frame (Sepal.Length, Sepal.Width, Petal.
Length, Petal.Width) to generate the data set. Obtaining a scatterplot matrix is helpful in being
able to visualize initial degrees of separation:

> pairs(iris.data)
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4Of course, perhaps the cluster analysis did generate natural groupings but that as of yet, you are unaware of what those groups
could be. I am not meaning to discount the use of exploring possibilities about why cluster analysis solutions come out the way
they do. Indeed, a huge part of scientific discovery is the pondering of data in hopes that eventually insight into the structure of
such data is achieved. This practice is fine, so long as one is aware that numerous theories can be fit to the same data and that the
theory of one’s preference is not necessarily the right one.
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Though scatterplots will not tell us what the final solution will look like, initial insights into poten-
tial clusters can nevertheless be gleamed by a cursory exploration of such plots. For instance, we can
see that the scatterplot of sepal width and petal length seems to suggest the presence of two groups or
clusters (i.e., the groups circled in ovals in row 2, column 3). By performing a cluster analysis, we wish
to “discover” a variable on which such separation might be based. Note that if we were already aware of
the species grouping structure, then the task might be to learn how well a linear combination of iris
features predicts type of species. Such would call for the linear discriminant function analysis of
Chapter 12 or the logistic regression of Chapter 10. Of course, a MANOVA or a dummy-coded mul-
tivariate multiple regression could also be performed to test a multivariate hypothesis of equality
among mean vectors across species. In this sense, in the machine learning domain, these techniques
would be considered “supervised” learning methods, because we already have knowledge of the group-
ing structure (i.e., the classes that we wish the statistical method to “learn”). In the case of cluster anal-
ysis, however, we do not yet know the groups. It is in this sense that cluster analysis is usually
considered more exploratory than these other more “confirmatory” approaches.

We proceed to now fit the K-means cluster solution:

> set.seed(20)
> k.means.fit <- kmeans(iris.data, 3, nstart = 20)
> k.means.fit

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053

Clustering vector:
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[75] 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3

[112] 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3
[149] 3 2

Within cluster sum of squares by cluster:
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size"

Provided in the output are the cluster means for each of the input variables. The clustering vector
tells us which observation each cluster has been assigned. For instance, the first observation is in cluster
1, the second observation is in cluster 1, the 75th observation is in cluster 2, etc. R also provides us with
within cluster sum of squares for each cluster as an overall indicator of the degree of homogeneity
within each cluster grouping, along with a ratio of SS between to SS total for an estimate of howmuch
variance is accounted for by cluster membership.
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As mentioned, since we are in the rather unique position of actually knowing a priori clusters for
these data, we can request classification results similar to howwe did so for the discriminant analysis of
Chapter 12, only that now the numbers 1, 2, 3 across the first row represent cluster membership and
not species:

> table(Species, k.means.fit$cluster)

Species 1 2 3
setosa 50 0 0
versicolor 0 48 2
virginica 0 14 36

Cluster 1 (50 cases) is made up of the species setosa, with no cases from versicolor or virginica.
Cluster 2 is made up of 48 cases of versicolor and 14 cases of virginica. Cluster 3 is made up of 2 cases
from versicolor and 36 cases from virginica, with no cases from setosa. Ideally, for perfect classifi-
cation, the two cases going into cluster 3 should have gone into cluster 2, and the 14 cases that went
into cluster 2 should have gone into cluster 3.

We next obtain plots of petal width against petal length and sepal width against sepal length to
reveal the three clusters:
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Cluster membership in both plots is evident. Clearly, and in agreement with the classification table,
species setosa (i.e., “∗”) distinguishes itself from species versicolor and virginica.

To perform a hierarchical cluster analysis in R, we first define the distance matrix, and follow this up
with a contrast of single versus complete linkage cluster solutions (Figure 14.4).
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FIGURE 14.4 Dendrograms for single linkage (a) and complete linkage (b) cluster analysis of iris data.
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> d <- dist(iris.data)
> clust.single <- hclust(d, method = "single")
> clust.complete <- hclust(d, method = "complete")
> plot(clust.single)
> plot(clust.complete)

Though the dendrograms generated from these respective solutions are of little practical “visual”
use due to the number of objects being fused (they require a much larger screen for deciphering object
numbers), for pedagogical purposes, one can nonetheless appreciate a comparison of single versus
complete linkage dendrograms. One can see how the final cluster solution differs depending on which
approach is adopted. Which, then, is the “true” cluster solution? That is up to the analyst to decide,
presumably informed by scientific experience and insights.

14.29 GUIDELINES AND WARNINGS ABOUT CLUSTER ANALYSIS

Cluster analysis is generally considered a rather crude exploratory technique. As discussed, performing
a cluster analysis is relatively straightforward using high-powered computers. The more difficult part
is, of course, making sense of the clusters that do emerge. In concluding our brief discussion of cluster
analysis, we issue some general guidelines and warnings about its use:

• Cluster algorithms will usually be quite sensitive to outliers. Before running a cluster analysis, be
sure that you have properly recorded data and that no observations are extremely distant from all
other observations. Using criteria such as Mahalanobis distances can be useful in identifying
multivariate outliers.

• Always consider the final clustering solution to see if it is sensible. If it is not, one possible “ver-
dict” of a given cluster analysis must be that there does not appear to be any “natural” groups
in this data. That is, the possibility of there being no substantive solution must exist as a poten-
tial outcome to the analysis.

• For any given data, it is advisable to try several clustering methods and calculate distances in var-
ious ways for each method. If the outcomes from the several methods are roughly consistent with
one another, this might help in “triangulating” an argument for “natural” groupings. As warned by
Venables and Ripley (2002), “Do not assume that ‘clustering’ methods are the best way to dis-
cover interesting groupings in the data; in our experience, the visualization methods are often far
more effective. There are many different clustering methods, often giving different answers, and
so the danger of over-interpretation is high” (p. 316).

• Statistical significance testing in cluster analysis is generally inappropriate. Since the goal of clus-
ter analysis is to maximize group differences, the probability of the data given the null, if low (e.g.,
p < 0.05) is hardly surprising, since you actually put to work an algorithm to accomplish just this!
Hence, resist the temptation to run inferential tests on your cluster solution to “support” a claim of
naturally-occurring clusters.

14.30 A BRIEF LOOK AT MULTIDIMENSIONAL SCALING

Having surveyed the methods of exploratory factor analysis and cluster analysis, we close this chapter
with a brief look at the technique of multidimensional scaling (MDS), which, similar to factor anal-
ysis, can be regarded as a dimension-reduction technique. It is also considered a data visualization
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technique, where, somewhat analogous to cluster analysis, seeks to identify clusters of points
(Izenman, 2008). Given an understanding of factor analysis and the concepts of distance and proximity
surveyed in cluster analysis, comprehending the principles behind MSD is relatively easy. This is not
meant to suggest the theory and details behindMDS are elementary, but only to suggest that one can get
a cursory understanding of the technique by relating it to previously learned methods. In a strong sense,
MDS cannot be that much different from these, as, in the end, there is only so much one can do with a
set of data. Indeed, one of the goals of the current book has been to convey just as much what sta-
tistical techniques cannot do, as much as what they can do.

MDS is typically more flexible than EFA, however, as it is not restricted to analyzing covariance or
correlation matrices as in factor analysis, but rather can handle a wider array of dissimilarity matrices.
Whereas in factor analysis the dissimilarity matrix was that of the covariance or correlation matrix,
multidimensional scaling allows for increased flexibility on the nature of the dissimilarity matrix.
And, just as in factor analysis, MDS seeks to explain or account for corresponding distances (i.e., cov-
ariances or correlations in EFA) between objects. In this sense, MDS will try to “uncover” that which
“gave rise” (in some sense) to the observations we are seeing in a data matrix. Hence, like factor anal-
ysis, it seeks to reduce or “recover” dimensionality. As summarized by Hastie, Tibshirani, and Fried-
man (2009), “The idea is to find a lower-dimensional representation of the data that preserves the
pairwise distances as well as possible” (p. 570). This idea, then, is definitely not new to us.

To demonstrateMDS, we consider airline distance data between 10major cities in the United States,
where distances between cities is recorded in miles, adapted from Kruskal and Wish (1978):

Flying Mileage between 10 US Cities (Kruskal and Wish, 1978)

Atl Chi Den Hou LA Mia NY SF Sea DC

Atlanta 0 587 1212 701 1936 604 748 2139 2182 543
Chicago 587 0 920 940 1745 1188 713 1858 1737 597
Denver 1212 920 0 879 831 1726 1631 949 1021 1494
Houston 701 940 879 0 1374 968 1420 1645 1891 1220
Los Angeles 1936 1745 831 1374 0 2339 2451 347 959 2300
Miami 604 1188 1726 968 2339 0 1092 2594 2734 923
New York 748 713 1631 1420 2451 1092 0 2571 2408 205
San Franc. 2139 1858 949 1645 347 2594 2571 0 678 2442
Seattle 2182 1737 1021 1891 959 2734 2408 678 0 2329
Wash. DC 543 597 1494 1220 2300 923 205 2442 2329 0

As we can see from the matrix, the distance between Atlanta and Chicago, for instance, is 587 miles,
while the distance between Atlanta and Denver is 1212 miles, and so on for other cities. Note as well
that the distance matrix has a series of zeros along the main diagonal, indicating that the distance
between a city and itself, as would be expected, is zero miles.

Using this data matrix as an input, multidimensional scaling, as was true for factor analysis, will
essentially attempt to extract underlying dimensions that best account for the pairwise distances
between objects, which in this case, are the corresponding city distances. The technique does this by,
not surprisingly by now,minimizing a function. For classical MDS, the function that is minimized is
referred to as the stress function (see Hastie, Tibshirani, and Friedman, 2009, for details).

But what does all this mean, exactly? We already know what it means because it is a somewhat
analogous concept to what is done in principal components analysis and factor analysis (and discrim-
inant analysis to some extent), and that is to account for observed data (in this case, distances, often
Euclidean) by uncovering so-called “latent” dimensions. Not surprisingly, classic or metric multidi-
mensional scaling (Izenman, 2008; Rencher and Christensen, 2012) works by extracting eigenvalues
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and eigenvectors and resulting in a plot of this dimensionality similar in spirit to what we obtained with
these prior procedures. “Nonmetric” MDS, which features the use of ranks instead of distances, is
another alternative strategy. See Hastie, Tibshirani, and Friedman (2009) for details.

When we apply MDS to the above airline data, we obtain the following two-dimensional plot:
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What are we seeing in the plot? Something remarkably similar to what we saw in PCA and discrim-
inant analysis, where each axis represents a new “dimension” on which the data are now plotted. The
way to read the plot is likewise already familiar. Look at the x-axis, and observe the location of the city
data points as you would a scatterplot. Do we notice any separation between cities? Absolutely, but the
nature of the separation wewill need to surmise from how the cities group themselves along that dimen-
sion. Notice to the left of the plot are cities Seattle, San Francisco, Los Angeles, Denver, whereas on the
rightmost area of the plot are cities New York, Washington DC, Miami, etc. What dimension might the
x-axis therefore represent? It would seem that our newly derived dimension along the x-axis corre-
sponds to an “East versusWest” underlying latent variable, whereas the newly created dimension along
the y-axis may correspond to a “North versus South” latent variable. To see this, simply spin the plot
around or draw a horizontal line at approximately y = 0 on the y-axis, and notice that northern versus
southern cities appear to form groupings on this axis or dimension.

Hence, we can say that via multidimensional scaling, we have extracted two dimensions that under-
lie the distances between cities, just as we drew similar conclusions when conducting techniques such
as PCA and discriminant analysis earlier. And, as we did in cluster analysis and EFA, we used a dis-
tance metric as the source of input to the analysis. Multidimensional scaling is a prime example of how
understanding the fundamentals of other techniques makes MDS (and many other multivariate tech-
niques) much easier to comprehend. The technical details underlying the procedures are not equivalent
of course (hence, the reason statisticians spend their careers studying these things), however the
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conceptual base (i.e., the “ideas” that give them life) are quite similar. This is the overriding point to
take away from our discussion here.

Though we have only scratched the surface, as mentioned, the technique is quite rich theoretically.
Izenman (2008) provides a thorough and technical introduction, and Hastie, Tibshirani, and Friedman
(2009) provide a good discussion of the method in the context of unsupervised learning techniques in
general. These sources should be consulted for a more in-depth understanding, as well as to appreciate
howMSD distinguishes itself from techniques such as factor analysis, PCA, and cluster analysis. Con-
ceptual similarity is one thing, but technical similarity is quite another.

14.31 CHAPTER SUMMARY AND HIGHLIGHTS

• Factor analysis is a statistical method useful for uncovering latent structures that are thought to
underlay covariance or correlation among observed variables. It may also be conceived as a data
reduction technique similar to though still quite different from that of principal components
analysis.

• While the priority in PCA can be said to account for as much total variance among variables as
possible, the priority of factor analysis can be said to explain as much commonality among vari-
ables as possible.

• Exploratory factor analysis, or EFA, originating with Charles Spearman in 1904, has had a tur-
bulent history. Due to its nonuniqueness of estimated loadings, along with its misuse by research-
ers, it has been a favorite target of criticism.

• Whereas principal components are linear functions of observed variables, outcomes in EFA are
linear combinations of factors.

• Comparing and contrasting the common factor model of x − μ = Λf + ε to the multiple regression
model y = xβ + ε is pedagogically useful. In the regression model, x is a vector of observedman-
ifest variables, whereas in the factor model, f is a vector of unobserved latent variables.

• The EFA model implies that the structure of the observed covariance matrix is a function of
loadings and specific variances. That is, = ΛΛ +ψ.

• In EFA, the factor solution is only unique up to an orthogonal matrix. What this means substan-
tively is that deciding on the correct rotation usually reduces to a substantive concern, not a sta-
tistical one.

• Common methods of estimation in EFA include principal axis factoring (PAF) and maximum
likelihood (ML).

• Varimax is an orthogonal rotation in which the variance of within factor loadings is maximized.
Quartimax, also an orthogonal rotation, maximizes the variance of loadings across factors.

• Factor analysis is generally a large-sample technique, though research suggests that required
sample size can be in part a function of the magnitude of communalities.

• Bartlett’s test of sphericity and theKaiser–Meyer–Olkinmeasure of sampling adequacy can be
used to help determine whether sufficient correlation exists among a set of variables for it to be
suitable for factor analysis.

• Cluster analysis is a statistical method based on the idea of grouping cases or individuals that are
in some sense, similar.

• Cluster analysis, although distinct from factor analysis, can nonetheless be likened to it in that
both methods seek to exploit similarities in data. Both can be said to use distance measures
for this purpose.
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• The number of ways in which n cases can be partitioned in g clusters is usually exceedingly large;
hence, one goal of cluster analysis algorithms is to shrink this large number into a partitioning
that is more manageable, while not losing too much information in the process.

• Cluster analysis does not “discover” groupings any more than factor analysis “discovers” under-
lying factors. In both cases, similarity is simply exploited to reveal potential structures in data.
These structures are only as meaningful as they represent something of interest to the researcher.

• Euclidean distance is the most common approach to defining distance and is usually preferred
over any type of statistical distance that incorporates the covariance matrix.

• Other ways of defining distance in cluster analysis include theMinkowski metric and city-block
(or “Manhattan”) distance, among others.

• When variables are measured on different units, distance measures may reflect magnitude simply
because of the inflated variance of particular variables. Standardization of data is sometimes
advised to solve this problem.

• Approaches to clustering include agglomerative or hierarchical clustering, which begin by consid-
ering each observation separately before building up clusters, and divisive, which begins with all
objects in a single cluster then proceeds to partition these into separate clusters at each step of the
procedure.

• A dendrogram is a convenient picture that displays the linkage history in a hierarchical cluster
analysis.

• Nonhierarchical clusteringmethods, such as theK-means approach, typically do not require the
computation of a matrix of distances or similarities. Consequently, these methods are usually less
demanding computationally when compared to competing hierarchical methods.

• Multidimensional scaling is a technique similar in spirit to other dimension-reduction techniques
such as principal components analysis and factor analysis, though more general, as it allows
greater flexibility in the types of distance matrices that can be used.

REVIEW EXERCISES

14.1. Discuss two goals of factor analysis. Though they mechanically amount to the same thing (i.e.,
factor solutions), are these goals substantively equivalent? Why or why not?

14.2. Discuss one important way in which factor analysis is different from principal components
analysis.

14.3. What does it mean to say that principal components analysis seeks to explain mostly variance
but that factor analysis seeks to explain mostly covariance? How does this difference distin-
guish the two procedures, both mathematically and substantively?

14.4. Do you agree that factor analysis uncovers latent variables?Why or why not?What are some of
the philosophical issues inherent in such a statement?

14.5. Distinguish between exploratory versus confirmatory factor analysis. How are they differ-
ent? Is the distinction always evident in a practical setting? How so?

14.6. Describe the components of the common factor-analytic model x = μ +Λf + ε.

14.7. Compare the factor analysis model x = μ +Λf + ε to the regression model of previous chap-
ters y = xβ + ε, noting their similarities and differences.
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14.8. “Amodel is defined by the assumptions it makes.”Discuss this statement, and explain what
it means.

14.9. State and summarize the assumptions for the orthogonal factor-analytic model.

14.10. What does it mean to say that the factor model implies a structure to the covariance matrix?
How might this idea help you understand statistical modeling in general?

14.11. State precisely how EFA is parameterized to imply a covariance or correlation matrix.

14.12. What is the major critique targeted against factor analysis? Do you believe it is justified?Why
or why not?

14.13. What does it mean to say that factor analysis suffers from the problem of indeterminacy and
nonuniqueness of solutions?

14.14. How can you tell whether your factor analysis has been successful? Do you agree with the
“WOW” criterion recommended by Johnson and Wichern? Why or why not?

14.15. Briefly describe the principal axis factoring method of factor analysis, then briefly compare
it to the maximum-likelihood method of estimating factors.

14.16. Interpret Jöreskog’s quote:

ThoughΛ∗ andΛ are equivalent from the mathematical point of view, they may not be so from the
psychological point of view. The problem of choosing one particular psychologically meaningful Λ
out of the infinite set {ΛT−1} has been called the problem of rotation, although the problem of
transformation would be a better term, since it includes also the transformation to oblique factors,
in which case the transformation matrix T is not orthogonal and hence does not represent only a
rotation. (p. 166)

In your interpretation, be sure to comment on the “mathematical point of view” versus “psycho-
logical point of view” distinction Jöreskog highlights. What do you think he means by this?

14.17. Distinguish between varimax and quartimax rotations.

14.18. Do you believe factors should be rotated? Or, do you believe that rotating factors is “fudging
the data” so to speak? Why or why not?

14.19. In this chapter, we conducted a two-factor solution on the Holzinger data. Request a three-
factor solution and compare your findings to that of the two-factor solution.

14.20. Consider the following correlation matrix depicting the correlations between disciplines on
the GRE.

Intercorrelations Among The G.R.E. Tests Of General Education

Math P.S. B.S. Soc. Lit. Arts Exp. Voc.
Mathematics .55 .44 .51 .36 .35 .52 .38
Physical Science .55 .49 .43 .20 .40 .32 .29
Biological Science .44 .49 .57 .42 .42 .46 .50
Social Studies .51 .43 .57 .54 .40 .61 .59
Literature .36 .20 .42 .54 .39 .53 .54
Arts .35 .40 .42 .40 .39 .42 .52
Effecive Expression .52 .32 .46 .61 .53 .42 .66
Vocabulary .38 .29 .50 .59 .54 .52 .66
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Conduct an exploratory factor analysis on this data, requesting a two-factor and then a
three-factor solution. Rotate the factors in each case, and summarize the main findings.
Can you name the factors?

14.21. Describe the goal(s) of cluster analysis.

14.22. Interpret Joe H.Ward’s statement made in 1963 that “Grouping, however, ordinarily results
in some loss of information that may be quantified in a ‘value-reflecting’ number.”More
specifically, how does clustering result in a loss of information?

14.23. How is cluster analysis similar to and different from factor analysis? How do they both utilize
measures of distance?

14.24. In howmany ways can 20 cases be partitioned into five clusters? Provide both the exact num-
ber of ways, as well as an approximation to this number.

14.25. Consider the statement “In discriminant analysis, we know the grouping structure. In
cluster analysis, we do not yet know it.” Interpret the statement, emphasizing how cluster
analysis can be seen as a more “primitive” technique when compared to discriminant analysis
or ANOVA.

14.26. Comment on whether or not cluster analysis discovers natural groupings. What might this
statement mean, and do you agree with it?

14.27. Provide a verbal interpretation or definition of Euclidean distance.

14.28. Distinguish between hierarchical versus divisive methods of clustering.

14.29. Distinguish between single linkage and complete linkage as methods of hierarchical cluster-
ing. How are these two different from average linkage?

14.30. Discuss how K-means clustering goes about generating clusters, and how this process gen-
erally differs from hierarchical methods.

14.31. Using SPSS, perform and interpret a K-means cluster analysis on the iris data originally ana-
lyzed using R in this chapter. Use the following syntax to generate the cluster analysis. You
will have to first build the data set in SPSS (you can obtain the data from > iris in R).

QUICK CLUSTER sepal_length sepal_width petal_length petal_width
/MISSING=LISTWISE
/CRITERIA=CLUSTER(3) MXITER(25) CONVERGE(0)
/METHOD=KMEANS(NOUPDATE)
/SAVE CLUSTER DISTANCE
/PRINT ID(species) INITIAL ANOVA.

14.32. Visualize your cluster solution in 14.31 using:

GRAPH
/SCATTERPLOT(BIVAR)=petal_width WITH petal_length BY QCL_1
/MISSING=LISTWISE.

14.33. Briefly describe how multidimensional scaling is similar (in concept at least) to principal
components and factor analysis.
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Further Discussion and Activities

14.34. It was mentioned in this chapter that the user of factor analysis, in addition to acquainting
oneself with its technical limitations, should also be somewhat familiar with its philosophical
foundations. Refer to Mulaik (1987) and summarize some of the more salient philosophical
issues surrounding the interpretation of solutions in factor analysis.
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15
PATH ANALYSIS AND STRUCTURAL
EQUATION MODELING

The path coefficient, measuring the importance of a given path of influence from cause to effect, is defined
as the ratio of the variability of the effect to be found when all causes are constant except the one in question,
the variability of which is kept unchanged, to the total variability.

(Wright, 1920, p. 329)

Any correlation between variables in a network of sequential relations can be analyzed into contributions
from all of the paths (direct or through common factors) by which the two variables are connected, such that
the value of each contribution is the product of the coefficients pertaining to the elementary paths.

(Wright, 1934, p. 163)

This terminology is unfortunate, since most models do not establish causality, but only establish an
empirical linear association among the latent and manifest variables under study.

(Timm, 2002, p. 557)

Path analysis is a statistical technique useful for modeling simple to complex networks of relationships
among observed variables. Observed variables in path analysis are often referred to asmanifest vari-
ables, because it is assumed they are, in general, readily measurable. The models considered in this
chapter generally assume all variables are more or less continuous in nature.

In many respects, path analysis is similar to multiple regression, though unlike multiple regression,
path analysis allows the user more freedom in specifying and hypothesizing models that may more
closely mimic correlational reality than is possible with multiple regression. For instance, in regression,
the model typically “ends”with the prediction of a response variable. In path analysis, one can use that
very response as a predictor of further responses. Path analysis allows for the specification of networks

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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of observed variables and hence widens the multiple regression landscape. As some would argue, this
“widening” better represents social reality.1

Structural equation modeling (or “SEM”) is a rather sophisticated statistical methodology that
incorporates elements of both factor analysis and regression or path analysis to test hypotheses about
relationships among manifest and unobserved variables alike. These unobservable variables often go
by the name of latent variables. Such variables are generally assumed to not be easily or readily meas-
urable, and hence their existence is usually inferred by manifest variables.

In this chapter, we provide but a cursory overview and introduction to path and structural equation
models. Authoritative sources on the subject include Bollen (1989) and Mulaik (2009) and should be
consulted for more thorough introductions. For a very readable introduction to path models with appli-
cations to biology, consult Shipley (2002). Byrne (2009) provides applications of SEM models using
AMOS, while a useful introduction to such models using LISREL is that by Schumacker and Lomax
(2010). Structural equation modeling is a book-length topic even when considering special cases of
such models. To say that their scope of application is vast is an understatement. With SEM, researchers
gain virtual unlimited flexibility in generating models tailored to their research hypotheses. Among the
possibilities include the modeling of longitudinal data (see Timm, 2002, pp. 600–604) and latent curve
models (Bollen and Curran, 2006), as well as multilevel or mixed models (Bauer, 2003). They have
also proved useful in the fitting of nonlinear polynomial structures (Wall and Amemiya, 2000).
Because path and SEM models are sometimes referred to as “causal models,” it is imperative that
we survey some of the historical roots of these models as to gain an appreciation of how these models
came to be labeled as such. As we will see, in most cases, inferring causal forces in an SEM model is
usually unjustified based on the statistics alone. If one is working in a causal context, or can be assured
in some sense that the entire network of variables has been considered in the given model, then infer-
ring causality from a correlational network becomes slightly more plausible, if not still in most cases,
philosophically unlikely.

15.1 PATH ANALYSIS: A MOTIVATING EXAMPLE—PREDICTING
IQ ACROSS GENERATIONS

It is easiest to introduce path analysis through a simple substantive example that will help highlight
some of its features and point out how it builds on, but ultimately differs from, multiple regression
models.

A classic question in the late nineteenth and early twentieth century was that of determining the
mechanism by which genetic characteristics were transmitted from one generation to subsequent gen-
erations. General cognitive ability was among the mental characteristics thought to be inherited by chil-
dren based on their parentage and familial history. The path diagram, or directed graph (Mulaik,
2009), in Figure 15.1 shows a simple model in which parental IQ is hypothesized to predict offspring
IQ, which in turn is hypothesized to predict the next generation’s IQ (i.e., IQ 2).

The goal of path analysis for this example is to estimate respective coefficients along each arrow
from parental IQ to offspring IQ to offspring IQ 2. As we will see, these weights are analogous to
regression coefficients and as such are interpreted in similar fashion to those featured in our study
of multiple regression (Chapter 8). The coefficients are often standardized, but need not be so
(Bollen, 1989). Variables d1 and d2, both assumed to be latent and unobservable, are referred to as
disturbances, and in addition to measurement error, comprise the sum of all other influences extra-
neous to the model but unaccounted for by exogenous or otherwise directed variables in the system of

1An equally plausible argument is that social reality is not complex at all, and that we should commit to representing it in as
simple a manner as possible.
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equations. For example, d1 pointing to offspring IQ would denote the sum of all variables other than
parental IQ that play a role in predicting offspring IQ. Likewise, d2 pointing to offspring IQ 2 denotes
the sum of all influences other than offspring IQ that can be assumed to predict or determine (in this
case) offspring IQ 2. Such sources can usually be assumed to be infinite in number but are not currently
observed in the givenmodel. InWright’s original manuscript, as we will see, he defined these “d” terms
in path models as representing other factors, “largely ontogenetic irregularity” (Wright, 1920, p. 328)
since he was working in the area of genetic transmission of traits. Variables offspring IQ and offspring
IQ 2 are named endogenous in path models, a term commonly used in econometric models, and
indicating that they have at least one predictor pointing to them. That is, endogenous variables are
determined by variables within the model (Bollen, 1989). Exogenous variables are those variables
featured as predictors of endogenous variables and have no arrows pointing toward them, making them
“external” (i.e.,“exogenous”) to the system of variables. Its presumed “causes” lie outside of the system
(Bollen, 1989).

We summarize a couple of the key differences between path analysis and multiple regression:

• Path analysis allows one to model a dependent (endogenous) variable as a predictor variable of
one or more other dependent variables. Multiple regression models typically do not allow this.

• Path analysis allows one to specify models more precisely than one could ever do in a multiple
regression framework. For example, one can estimate relationships among disturbance terms, or
model reciprocal prediction among variables where two (or more) variables are predictive of
each other. For example, it is theoretically possible to adjust the model in Figure 15.1 and test
the following path model:

Parental IQ Offspring IQ Offspring IQ 2

d2d1

1 1

The two-headed arrow joining d1 and d2 specifies a covariance among disturbance terms. Substan-
tively, what this modeling of the covariance would suggest is that all that predicts offspring IQ that is
unaccounted for by parental IQ is related to all that predicts the next generation of offspring IQ that is
unaccounted for by the previous generation’s IQ. In such a context, the modeling of the disturbance

Parental IQ Offspring IQ

d1 d2

1 1

Offspring IQ 2

FIGURE 15.1 Path diagram modeling predictability of IQ across generations.
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terms in this way makes good sense. Drawing on the nature–nurture debate for instance, one may
hypothesize that both d1 and d2 contain the influence of nurturing factors, and hence may help in
accounting for both IQs. Path analysis allows one to easily model such relationships, and it is in this
sense that path analysis allows a greater sense of model specificity than could ever be possible in the
typical multiple regression.

15.2 PATH ANALYSIS AND “CAUSAL MODELING”

Perhaps more than any other statistical method discussed in this book, understanding the history of path
analysis and structural equation modeling is crucial to gaining an appreciation of its strengths, andmore
importantly, its limitations. Path analysis owes its origins to the geneticist Sewall Wright
(1889–1988), who developed the technique roughly between 1918 and 1921. The history of the devel-
opment of path analysis is well documented elsewhere (e.g., see Denis and Legerski (2006)) and we do
not survey its history in any depth here. For our purposes, it is enough to know that path analysis ori-
ginated with Wright’s studies of heredity in which he wished to learn of the genetic transmission of
biological traits. One of Wright’s first publications introducing the technique was The Relative
Importance of Heredity and Environment in Determining the Piebald Pattern of Guinea-Pigs
(Wright, 1920). In this publication, he included the historically significant path diagram in his discus-
sion (Figure 15.2).

Without detailing every aspect of Wright’s diagram, one can nonetheless achieve a basic
understanding of how path analysis fit into Wright’s goals in his study of these animals. Each
one-headed arrow in the figure represents a directional influence of one characteristic onto another.
For instance, consider a subset of his diagram, the lower right quadrant where lay one of the offspring
guinea pigs:
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FIGURE 15.2 Sewall Wright’s guinea pig path diagram of 1920. Source: Wright (1920). © 1920 Proceedings
of the National Academy of Sciences.
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LettingH represent influences of heredity,E environmental influences, andD a disturbance term, it
becomes clear that Wright was hypothesizing the overall “makeup” of the baby guinea pig. Wright
asked such questions as “To what extent did heredity vs. environment contribute to the color
of the offspring?”What made path analysis so useful to him is that he was able to model a dependent
variable both as a response and as a predictor to another variable. Notice that in Figure 15.2,G has an
arrow pointing toH , which then has an arrow pointing to the guinea pig. Allowing dependent variables
to serve simultaneously as predictors of other dependent variables was at the time an advancement over
multiple regression. Wright named these coefficients path coefficients. And though these paths a, h, e,
and d were fundamentally analogous to regression coefficients, in part since it also made sense that
heredity and environment caused color in the offspring, Wright referred to these coefficients simul-
taneously by the name of causal coefficients. Such coefficients could be used to estimate presumed
causal pathways.

Because this chapter is in no way intended as a historical analysis of Wright’s contributions, we cut
to the chase rather quickly and give you the bottom line:Wright developed path analysis in a context
in which “cause and effect” was an assumption that was quite reasonable, if not obvious. That
heredity and environment contributed to characteristics in guinea pig offspring was very much biolog-
ically apparent, and hence referring to cause and effect when defining a path coefficient made at least
reasonable sense in the context in whichWright was working. The system of variables he was working
with was more or less “complete.” Beyond that, however, there was nothing at all “causal” about his
coefficients, andWright himself acknowledged this in a contentious debate about causation with Henry
Niles of John Hopkins University beginning in 1922 (see Denis and Legerski (2006) for details). For
Wright, it made good sense that he had a system in which causality could be deduced. But this was in
genetics. When we takeWright’s idea about a complete system and inferred causality on coefficients to
other models where the system is much weaker, incomplete, or simply implausible, assigning causa-
tion to these coefficients is simply unreasonable. If the system is relatively narrow and strong, how-
ever, then causality may be “do-able” even if still philosophically quite challenging.

Regardless of Wright’s attempt to clear the record, path analysis has since become linked to the
misnomer “causal modeling,” and has unfortunately been misused and misinterpreted in a wealth
of substantive areas where causal “intuition” could never be considered obvious. This is unlike the
study of the genetic transmission of color in guinea pigs, or the mechanism of heredity by which par-
ents are hypothesized to transmit intellectual capacities to their children. The statistical technique,
whether that of path analysis or structural equation modeling, has no more claim to causality
than any other statistical method. Both methods are best considered simply as extensions to regres-
sion and factor analysis where causality enters the discussion only if it is warranted by factors extrinsic
to the model (e.g., experimental design). For a discussion of causation in the context of structural equa-
tion modeling, see Mulaik (2009, pp. 63–110).
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15.3 EARLY POST-WRIGHT PATH ANALYSIS: PREDICTING CHILD’S IQ
(BURKS, 1928)

One of the earliest uses of path analysis following Wright was in modeling children’s IQ as a function
of both parental intelligence and environment (i.e., the classic nature–nurture debate mentioned pre-
viously). The work appeared in Burks (1928). The path diagram in Figure 15.3 was featured in
Burks’ work.

We note the following from Burks’ path diagram:

• A one-headed arrow from parental intelligence to child’s IQ is indicated, representing the hypoth-
esis that parental intelligence is a partial predictor (or even “cause,” in such a context) of child’s
IQ. The arrow is pointing to child’s IQ to indicate the direction of the hypothesized relationship.
The coefficient of r = 0.6036 is the Pearson correlation between parental intelligence and child’s
IQ. The coefficient “a” is called a path coefficient, and as such is equivalent to a partial regression
coefficient (typically, standardized).

• A one-headed arrow from environment to child’s IQ is indicated, representing the hypothesis that
environment is a partial predictor (again, perhaps even cause) of child’s IQ. The coefficient of r =
0.4771 is also the Pearson correlation coefficient, and the coefficient “c” another path coefficient,
also equivalent to a partial regression coefficient (again, typically standardized).

• A two-headed arrow is indicated between parental intelligence and environment, representing the
hypothesis that these two variables are linearly related. The coefficient of r = 0.7653 is the cor-
relation between parental intelligence and environment, corresponding to the modeled path “b”.

Burks’ analysis is significant for a few reasons. First, it was one of the first applications of path
analysis to a problem in social science since Wright’s introduction of the method in genetics and biol-
ogy. Second, Burks’ use and application of path modeling evidenced a keen awareness of what the
method could do versus what it could not do in terms of its ability to deduce causal claims. As Burks
noted early in his paper:

The method [of path coefficients] is limited by the rarity with which we have actual knowledge of
causal relations; but it provides a toll of the nicest precision in such situations as do offer an adequate
basis for postulating causation. It cannot, itself, uncover what is cause andwhat is effect, though in the
absence of definite knowledge regarding causal relationships between variables, the method ‘can be
used to find out the logical consequences of any particular hypothesis in regard to them.’ Conserv-
atively stated, in any situation in which we feel justified in drawing conclusions regarding the effects
of certain phenomena upon others, the Wright method provides a numerical expression of such
conclusions. (Burks, 1928, p. 299)

Child′s I.Q.

r = 0.6036
a

b r = 0.7653

c
r = 0.4771 Environment

Parental intelligence

FIGURE 15.3 Burks’ path diagram hypothesizing parental intelligence and environment as partial causes of
child’s IQ. Source: Burks (1928). © 1928 Stanford University.
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Every student, researcher, and user of path analysis and structural equations would do well to mem-
orize the above quote from Burks and repeat it to themselves each and every time they fit such a model.
In Burks, we find the correct contextualization of path modeling. It is a statistical technology, which no
more than regression, makes any claims about uncovering or otherwise establishing causality. As
Burks correctly emphasizes, should one be working with variables for which causal relations among
themmay be safely assumed, then naming a path coefficient that of a causal coefficient perhaps makes
more sense, assuming one can make sense of what such a partial cause actually means on a philo-
sophical level (good luck with that one!). What permitted Burks to associate any element of causality
with her model was not the fact that she employed path analysis. It was the fact that it made method-
ological sense, given the paradigm at the time, that intelligence was a hereditary trait, and thus “smart
parents” often had “smart kids.”Why? Because of a genetic causal link. Without evidence for a pre-
sumed causal link, speaking of causation makes little sense.

What has unfortunately happened since the advent of path analysis (and its overachieving offspring,
structural equation modeling) is that the term causality has made its way into models that have abso-
lutely no evidence of being causal extrinsic to the method. One can model the causal coefficients link-
ing self-esteem to life satisfaction all one wants, but unless evidence exists to suggest the pathway is in
fact causal, the so-called “causal coefficient” is more akin to an ordinary regression coefficient and
should be interpreted as such. Our theories may be causal, but our coefficients are not. Causality is
simply not that easy.

15.4 DECOMPOSING PATH COEFFICIENTS

Whenwe speak of “decomposing” a path coefficient, what wemean is learning what the coefficient is a
function of. That is, we want to know ways in which the coefficient can be generated by reference to
other pathways. The decomposition of path coefficients is the essence of path analysis, so we begin
with a simple example from Wright’s original work.

Consider another of Wright’s diagrams in Figure 15.4, also featured in his classic 1920 paper.
In the diagram, X and Y are designated as response variables, which recall in path models are typ-

ically known as endogenous variables. A, B, C, andD are the explanatory variables inWright’s model,
which also recall are known as exogenous variables in path analysis. Path coefficients in the model are
given by a, b, c, b , c , and d . The two-headed arrow joining B andC represents the correlation between
these two variables, denoted by rBC.

Following Wright, we would like to know the influences on the endogenous variable X. Notice that
X has three arrows pointing to it: one from A, one from B, and one from C. However, since B and C are
correlated, this correlation must also be taken into account when determining the influences on X.

A

B
X

Y
C

d′
c′
b′

c

b

a

D

r
BC

FIGURE 15.4 Wright’s generic path diagram. Source: Wright (1920).
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Squared path coefficients yield, as Wright put it, “the degree of determination by each cause.” (Wright,
1920, p. 329). How can we then write the equation for the determination of X?

Wright noted the following:

a2 + b2 + c2 + 2bcrBC = 1 (15.1)

That is, the determination of X is a function of the sum of all squared path coefficients pointing to it, that
is, a2 + b2 + c2. However, we must also account for the correlation between B and C (i.e., bcrBC
in (15.1)). Note that if the correlation between B and C were equal to zero, then the equation would
reduce to

a2 + b2 + c2 + 2bcrBC = 1

a2 + b2 + c2 + 2bc 0 = 1

a2 + b2 + c2 = 1

We see then that under the condition of zero correlation between B and C, in Wright’s model, the
determination of X is simply a function of the sum of squared coefficients.

You might ask why it makes sense, conceptually, to add 2bcrBC to the sum of squared coefficients
should there be a correlation between B and C. Suppose we did not add this term, even under the con-
dition that rBC 0. Without this correlation accounted for, however, can we really say we are deter-
mining the contributing factors to X? The reason we are adding 2bcrBC is to account for the fact that
there is shared variation between these variables. In doing, we are attempting to model the “system”

of variables, however far-reaching that system may be. This was the very essence of Wright’s path
analysis, to try to account for a network of variables, and attempting to model as much as possible
every aspect of that system.

Of note as well in Wright’s analysis is the assumption that the correlation between A and B is equal
to 0, or at minimum, simply not modeled. How do we know this?We do not actually know it is equal to
0, but we do know that Wright was not interested in modeling it, otherwise a two-headed arrow con-
necting A and B (and C andD) would have been included. AsWright wrote (Wright, 1920, p. 329), “…
to illustrate a system (i.e., the system in Figure 15.4) in which the variations of two quantities X and
Y are determined in part by independent causes, such as A and D, respectively, and in part by common
causes such as B and C. These common causes may be correlated with each other as in the figure.”

This idea of explicitly not modeling a path is an essential feature of path analysis and structural
equation modeling. It is very important to understand that not modeling something still constitutes
an act of modeling. Choosing not to correlate A and B should be a product of one’s theory. It is in
such ways that path and SEM models demand the investigator think carefully and clearly about the
model he or she is subjecting to test. One can appreciate then how with path and SEM models, the
otherwise constrained environment of regression and factor analysis has just been expanded to allow
more flexibility in modeling possibilities.

15.5 PATH COEFFICIENTS AND WRIGHT’S CONTRIBUTION

If a path coefficient is essentially nothing more than a regression coefficient, what then was Wright’s
contribution? It certainly was not simply that of calling a regression coefficient by the name of a path
coefficient. The contribution lay in demonstrating how coefficients along pathways could be decom-
posed, essentially revealing that correlations and the like could be written as a series of alternative
pathways in a given model. This gave us the mathematics to compute, for instance, the effect of
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one variable on another through an intervening variable. By a series of rules, we could now trace
paths in a system to determine the effects one variable has on others through intermediary pathways. As
Wright noted:

The path coefficients in a system of causes and effects can be calculated, if a sufficient number of simul-
taneous equations can be made, expressing the known correlations in terms of the unknown path coeffi-
cients … and expressing complete determination [emphasis added] of the effects by their causes.
(Wright, 1920, p. 330)

Ordinary regression models, even multivariate ones, do not allow for this, since the regression typ-
ically “ends” with the given endogenous variable(s). These variables are not given the opportunity to
predict other variables in the system. Path analysis and structural equation modeling provide the user
more flexibility in modeling a wider variety of hypotheses and more control over the fixing or freeing
of parameters. Virtually all regression models can be considered as special cases of the wider path-
analytic framework, just as many statistical models can be considered special cases of the wider struc-
tural equation modeling framework. If for no other reason, structural equation models are useful as a
pedagogical tool for conceptualizing statistical models in general, a point we return to later in this
chapter.

15.6 PATH ANALYSIS IN R—A QUICK OVERVIEW: MODELING GALTON’S DATA

Several software programs are available for fitting path and SEM models (e.g., AMOS, R, LISREL,
EQS, SAS). We illustrate a very simple path analysis using R’s lavaan package (Rosseel, 2012), using
for now only a chi-square goodness of fit test to assess model fit (we discuss additional indicators of
model fit later). We once again use data from the package HistData (Friendly, 2014), this time on the
heights of mothers and fathers and their offspring. The data are located in GaltonFamilies:

> library(car)
> some(GaltonFamilies)

family father mother midparentHeight children childNum gender childHeight
46 014 73.0 67.0 72.680 2 2 male 67.0
190 050 71.0 64.5 70.330 2 1 male 73.0
219 056 71.0 62.0 68.980 5 3 male 70.5

About the data:

• family is simply an index number identifying a given family in the data.

• father is the height of the father.

• mother is the height of the mother.

• midparentHeight is the mean height (computed as father + 1.08 ∗ mother)/2).

• children is the number of children spawn by the family.

• childNum is the number of the child within the family (ordered by height for boys followed
by girls).

• gender is the sex of the child.

• childHeight is the height of the offspring child.
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We first try a model in which childHeight is a function of both mother and father heights:

> library(lavaan)
> gf.model <- 'childHeight ~ mother + father'
> sem.fit <- sem(gf.model, data = GaltonFamilies)
> summary(sem.fit)

lavaan (0.5-16) converged normally after 1 iterations

Number of observations 934

Estimator ML
Minimum Function Test Statistic 0.000
Degrees of freedom 0
P-value (Chi-square) 0.000

Estimate Std.err Z-value P(>|z|)
Regressions:

childHeight ~
mother 0.291 0.048 5.996 0.000
father 0.368 0.045 8.218 0.000

Variances:
childHeight 11.451 0.530

The model is based on a total of 934 observations and was estimated using maximum likelihood
(ML). Note the model has zero degrees of freedom, which means it is saturated, implying that it will
fit perfectly yielding a chi-square value of 0.000. A model with zero degrees of freedom regenerates
the data fully, and hence has no opportunity to be wrong. Since the model is saturated, we do not
interpret parameter estimates and move on to specifying a model that is not saturated. We accomplish
this by imposing a constraint. We choose to constrain the path from mother to childHeight to be
equal to 1.0 (1∗mother). Doing such frees up a degree of freedom. When fitting this model, we
obtain:

> gf.model <- 'childHeight ~ 1*mother + father'
> sem.fit <- sem(gf.model, data = GaltonFamilies)
> summary(sem.fit)

lavaan (0.5-16) converged normally after 11 iterations

Number of observations 934

Estimator ML
Minimum Function Test Statistic 193.065
Degrees of freedom 1
P-value (Chi-square) 0.000

Estimate Std.err Z-value P(>|z|)
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Regressions:
childHeight ~

mother 1.000
father 0.329 0.050 6.626 0.000

Variances:
childHeight 14.080 0.652

We note the following regarding the output:

• Since the path from mother to childHeight is now fixed at 1.0, the model gains a single
degree of freedom.

• The parameter estimate for mother is reported as 1.000, since we fixed it as such, and hence is
not evaluated for statistical significance.

• Other parameter estimates have changed as a result of fixing the path to 1.0. For instance, note that
the variance for childHeight has increased from 11.451 to 14.080.

• Likewise, the parameter estimate for father has changed from 0.368 to 0.329 as a result of fix-
ing the mother to childHeight parameter at 1.0.

The following is the path diagram corresponding to the fitted model:

mth

5.24

fth

chH

14.08

6.13

0.34

1.00 0.33

Our example featured here is simply a cursory overview of fitting a path model and an introduction
to the concept of fixing parameters. Later, we will discuss a variety of fit indices for models such as that
just featured, which will include the chi-square test as only one possibility. As we will see, the p-value
obtained for Galton’s model suggests we not deem the model well-fitting. Problems abound with the
chi-square test as a measure of model fit, however, and other statistics will be discussed that seek to
improve on it.
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15.6.1 Path Model in AMOS

SPSS’s AMOS program is a specialized program for fitting path and structural equation models that is
relatively easy to use, and has a graphical interface that is helpful for drawing and visualizing path
models. A full tutorial on how to use AMOS is well beyond the scope of this chapter. For an excellent
tutorial and precise software guidance, see Byrne (2016). We wish here only to demonstrate a simple
generic path model using the software and survey partial output in the context of fixing and freeing
parameters as we did in the prior example using R. For this example, suppose we have data on variables
Y, X, and Z:
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In AMOS, we draw the following path model that we wish to fit:

r1

1

Y

ZX

It is evident in the path diagram that variables X, Y, and Z are observed or “manifest” variables, since
they are enclosed in squares/rectangles. Had they been latent variables, we would have enclosed them
in ovals, and had observed variables “indicate” them. We can see that “r1” is enclosed in an oval, and
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represents the residual error term associated with observed variable Y. When we run this model using
maximum likelihood as our estimator, we obtain the following output:

Notes for model (Default model)

Number of distinct sample moments: 6

Number of distinct parameters to be estimated: 6

Degrees of freedom (6-6): 0

Minimum was achieved

Chi-square = .000

Degrees of freedom = 0

Probability level cannot be computed

Computation of degrees of freedom (Default model)

Result (Default model)

Note that in the above output, there are a total of six sample moments available to be estimated, and
we are estimating them all as indicated by “Number of distinct parameters to be esti-
mated: 6”. Hence, the degrees of freedom are equal to 0, indicating that the model is saturated. Recall
that saturated models fit the data perfectly and hence have no way of being “wrong.” Consequently,
on a scientific level, they are useless to us. This is confirmed by the results of the chi-square statistic,
equal to 0. AMOS reports that the probability level cannot be computed, since the model has zero
degrees of freedom.

To make the model have positive degrees of freedom, we will again impose a constraint on one of
the parameters. Instead of estimating the path from X to Y, we will fix it at a value of 1.0:

r1

1

1.0

Y

ZX

Notice that the path from X to Y now has on it a value of 1.0, and hence is not being freely estimated.
When we once again run the model, we obtain the following:
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Notes for model (default model)
Computation of degrees of freedom (default model)

Number of distinct sample moments: 6
Number of distinct parameters to be estimated: 5

Degrees of freedom (6 − 5): 1
Result (default model)
Minimum was achieved
Chi-square = 10.381
Degrees of freedom = 1
Probability level = 0.001

Maximum Likelihood Estimates
Regression weights: (group number 1—default model)

Estimate S.E. C.R. P Label
Y <--- X 1.000
Y <--- Z 0.259 0.641 0.404 0.686
Covariances: (group number 1—default model)

Estimate S.E. C.R P Label
X <--> Z −1.250 1.635 −0.765 0.444
Variances: (group number 1—default model)

Estimate S.E. C.R. P Label
X 5.290 2.494 2.121 0.034
Z 4.250 2.003 2.121 0.034
r1 15.715 7.408 2.121 0.034

As we can see, the number of parameters to be estimated is now equal to 5 instead of 6, yielding
positive degrees of freedom (equal to 1). We see the chi-square statistic is now unequal to 0, yielding
instead a value of 10.381, with associated p-value of 0.001. Recall from our brief discussion of the
model fit in R that we actually desire a non-statistically significant p-value here, so if we were to con-
clude model fit based on the chi-square statistic alone (which as we will see is typically not a good
evaluative strategy), this would be considered a negative research result and a rather poor-fitting model.
On the underside of the output, AMOS reports the maximum likelihood estimates which are the esti-
mated regression weights. We see the path from X to Y fixed at 1.000, while the path from Z to Y yield-
ing an estimate of 0.259, and not statistically significant (p = 0.686). The covariance between X and Z
was estimated equal to −1.250, and the variances of X, Z and the residual term r1 are reported under-
neath. All are statistically significant at p = 0.034, indicating evidence that they are all unequal to 0 in
the population from which the data was drawn.

15.7 CONFIRMATORY FACTOR ANALYSIS: THE MEASUREMENT MODEL

Having briefly introduced the main ideas of path analysis, we now move on to a brief consideration of
what will form a central component of a structural equation model, that of the measurement model.
The measurement model in SEM usually takes the form of hypothesizing latent factors or hypothetical
structures. The structural model, on the other hand, usually denotes relationships among such hypo-
thetical constructs (Stevens, 2009), although structural models can, in theory at least, be as simple as
the path models featured earlier where no latent variables were hypothesized. SEM has a terminology
all its own, and specialists in the area may be adamant about terms used, but there is in reality nothing
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that special or unique about naming something a “structural” model. In this book, it simply denotes a
modeled relationship between variables. In SEM models, those modeled relationships often involve
latent variables. “Structural” for some writers implies a “causal” notion (e.g., see Bollen, 1989,
p. 4), but as we have noted, there is nothing inherently “causal” about a structural equation model
(Bollen would agree with us), and hence we prefer not to impose any meaning on the term “structural”
other than a statistically modeled relationship.

Recall that in our presentation of the exploratory factor analysis model of Chapter 14, we made a
cursory attempt to distinguish an exploratorymodel from that of a confirmatorymodel, and provided
a tentative conclusion that at best, the distinction is, at least from a substantive point of view, quite
fuzzy. From a technical point of view, confirmatory factor analysis (CFA) distinguishes itself from
EFA in that the former overcomes the rotational indeterminacy problem and that given proper con-
straints, usually imposed by the investigator, will yield an identified model with unique parameter esti-
mates. As Rencher and Christensen (2012, p. 482) note, “Every two-factor EFA model is
underidentified because the factor loadings can be rotated without affecting the implied covariance
matrix … In the CFA setting, our intent is to impose phenomenologically based constraints on the
model in order to ensure the model is identified. That is, we wish to guarantee that there exists a unique
solution [emphasis added] for the parameter vector.”

Even so, as Jöreskog noted, the distinction between CFA and EFA from a substantive vantage point
is quite imprecise. For instance, when we choose to extract two instead of three factors in EFA, are we
not engaged in confirmatory work? Of course we are. The fact that we specified a priori the extraction
of two factors instead of three implied, however imprecise or ill-defined, an underlying hypothesis.
In this sense then, the EFA was not really “exploratory” at all.

A convenient definition for our purposes then might be that when we start imposing additional con-
straints on a model, we might be said to be entering, at a technical level, the confirmatory stage of
model-building, whether that be a factor analysis, multiple regression, or any other type of model.
But surely, at a substantive or scientific level, this distinction is not really important. The difference
then between exploratory and confirmatory models is one more of flavor and degree than it is one of
absolute difference. One never finds oneself at a computer station, unsure of how he got there and
totally naïve about the data before him, and proceeds to engage in exploratory modeling. In the
end, all models are confirmatory, some less so than others. In models increasingly confirmatory in
nature, the investigator is typically more aware of the fixing and freeing of parameters.

We turn again to Jöreskog in defining the nature of confirmatory factor analysis:

We shall describe a general procedure for performing factor analysis in the followingway. Any values
may be specified in advance for any number of factor loadings, factor correlations and unique var-
iances. The remaining free parameters, if any, are estimated by the maximum likelihood method.
(Jöreskog, 1969, p. 183)

As previously mentioned in relation to path analysis, and as emphasized by Mulaik (2009), esti-
mated parameters are no more “important” than parameters either not estimated or constrained to par-
ticular values. As we featured in Wright’s analysis, that we not modeled a relation is nevertheless a
choice to model it. Hence, in the full range of SEM models, there is nowhere for the investigator to
“hide” or simply relegate decisions about parameter estimates to the “computer.”Onemust know one’s
model inside and out.

The CFA model is given by

x = Λf + ε
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where as before, x is a vector of manifest observed variables, Λ is a matrix of factor loadings corre-
sponding to the latent variables in f, and ε is a matrix of “unique factors” or “specific variances” unique
to each manifest variable in x. As an example of a simple CFA model, consider the following model
consisting of four observed variables and two hypothesized factors:

x = Λ f + ε
x1

x2

x3

x4

=

λ11 0

λ21 0

0 λ32

0 λ42

f 1

f 2
+

ε1

ε2

ε3

ε4

Multiplying through matrices we obtain the following:

x1 = λ11 f 1 + 0 f 2 + ε1

x2 = λ21 f 1 + 0 f 2 + ε2

x3 = 0 f 1 + λ32 f 2 + ε3

x4 = 0 f 1 + λ42 f 2 + ε4

Understanding the meaning of each of the above equations is important. Consider, for instance, the first
equation. We are hypothesizing that observed variable x1 can be written as a function of latent variable
f1 (weighted by the loading λ11), plus a disturbance term ε1 (or “specific variance”). For the second
equation, we hypothesize that observed variable x2 can also be written as a function of latent variable
f1 plus its own unique disturbance term ε2. Notice then that both of these first two manifest variables
load onto latent variable f1. The final two manifest variables load onto the latent factor f2 only, since
0f1 = 0 in each case. That is, it is hypothesized that x3 can be written as a function of f2 plus its own
disturbance term, ε3. Finally, it is hypothesized that x4 can be written as a function of f2 plus its own
disturbance term, ε4. Note that a loading set to zero, such as with 0f1 = 0, still constitutes a confirm-
atory move. Such a fixing should still be supported by theory. This is what we are referring to when
arguing that freely estimated parameters are no more “important” than those fixed. In most “noncon-
firmatory”modeling contexts, a path may be constrained without the researcher having any awareness
of the given parameterization of the model. In this way, the user is never given the opportunity to con-
sider the theoretical implications of the implicit constraining of such paths, analogous to a cell phone
with automated features that you cannot disable and may not even be aware of. Unmodeled paths are
somewhat akin to a disbelief in something. The disbelief is nonetheless a belief, analogous to how
not modeling a path is still an act of modeling. In the confirmatory model, the researcher is
implicitly accountable for virtually every parameter of the model, whether that parameter is
freely estimated or a priori fixed.

15.7.1 Confirmatory Factor Analysis as a Means of Evaluating Construct Validity
and Assessing Psychometric Qualities

As we discussed when surveying exploratory factor analysis, latent variable modeling is not solely
about statistics. Rather, it is equally about measurement. Confirmatory factor analysis modeling is
popular in part because it allows researchers to hypothesize unobservable variables that may be
exceedingly difficult to measure in practice and require several manifest indicators in order to get a
“handle” on them. One of many areas where CFA has proved useful is in the area of pain measurement
in chronically ill patients. The Brief Pain Inventory (BPI) is one such measure often used to assess
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self-reported pain of patients, and CFA has been used to assess the construct validity of the instrument
(Lapane et al., 2014). The following is a CFA path diagram depicting how observed manifest variables
load onto a hypothesized two-factor structure:

e1 Pain right now
0.81

0.88

0.87

0.95 0.84

0.77

0.66

0.88

0.71

0.85

0.80

Pain on average

Pain at its worst in last 24 hours

Interference with general activity

Interference with work

Interference with walking ability
Interference

Pain intensity

Interference with mood

Interference with relations/others people

Interference with sleep

Interference with enjoyment of life

e2

e3

e4

e5

e6

e7

e8

e9

e10

For this model, researchers hypothesized the two-factor structure having latent variables “Pain
Intensity” and “Interference” along with correspondingmanifest variables loading onto each respective
construct. It is important to note that these two latent variables are considered “latent” for the reason
that they are not easily measured, and must be inferred by measuring the series of manifest (or more
easily measured) variables on the left, which are the items of the Brief Pain Inventory. Loadings appear
along the paths indicating each construct, along with a two-sided arrow correlating both latent variables
to an extent of 0.84. Error terms e1 through e10 are also present pointing to each observed variable.

As we will survey shortly with regard to SEM fit statistics, this model was deemed an adequately
well-fitting model based on model fit statistics commonly used in the SEM field. What is perhaps most
relevant to our discussion here in the spirit of factor analysis in general, however, is that the latent
constructs of pain intensity and interference are inferred constructs, named as such only because
research specialists in the field of pain measurement choose to call these constructs by these names.
This is to say that the CFA model did not “discover” the latent variables “Pain Intensity” or “Interfer-
ence.” These names had to be inferred by the research community, analogous to what is done in the
typical exploratory factor analysis. The difference between EFA and CFA, however, is that CFA
requires us to identify the number of hypothesized latent variables in advance, along with the number
of manifest variables thought to load on each construct, as is done in the above pain CFA model. What
makes this particular model “confirmatory” is that the researchers evaluated an exact and precise a
priori model thought to reveal factor structure, instead of following a more exploratory route as is cus-
tomarily done in EFA. However, the naming and identification of the factors is not all that different
than in exploratory models. The key distinction is that, presumably, the research field on which the
CFA is being performed is “advanced” enough that researchers are evaluating specific factor structures
named prior to testing the actual model, rather than still being in state of “exploration” attempting to
figure out what factor structure is revealed. Many psychometric instruments such as this one are
designed specifically with particular factor structures in mind, but statistically speaking, all the under-
lying statistics are “doing” is evaluating the fit between model and data, not unlike what is done in
classical regression analysis with an R-squared statistic, for instance. If that fit is reasonable, then the
model becomes a plausible account for the observed data, one of potentially many.
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15.8 STRUCTURAL EQUATION MODELS

Having surveyed both the essentials of path and CFA models, we now introduce the full structural
equation model, of which both path analysis and CFA, as well as many other statistical modeling tech-
niques, can be considered special cases of this wider framework.

The classic structural equation model is given by

η = Bη + Γξ + ζ

whereη is a vector of latent endogenous variables (appearing onboth sides of the equation to allowendog-
enous variables to predict one another), ξ is a vector of latent exogenous variables, ζ is a vector of latent
errors or “disturbances,” B is a coefficient matrix for latent endogenous variables, and Γ is a coefficient
matrix for latent exogenous variables. The assumptions underlying a structural equation model are many
and typically include (depending on the given parameterization),E(η) = 0, that is, themean of endogenous
variables is equal to 0,E(ξ) = 0, the mean of latent exogenous variables is equal to 0,E(ζ) = 0, the mean of
latent errors or “disturbances” is equal to0, and thatζ are uncorrelatedwithξ, that is, latent errors are uncor-
related with latent exogenous variables. For additional assumptions, see Bollen (1989, p. 20).

The assumptions underlying a structural equation model in large part parallel those underlying the
classic multivariate linear model, with the key exception being, of course, that the multivariate linear
model does not explicitly feature such things as latent variables. Indeed, this distinction was also par-
amount as you may recall when comparing the EFAmodel to regression in the previous chapter. As we
did then, it is pedagogically meaningful to compare the two models

Y = XB + E (15.2)

versus

η = Bη + Γξ + ζ (15.3)

To highlight the similarities and differences, consider the simple SEM model in Figure 15.5.
Differences between the model in Figure 15.5 and that of the classic multivariate linear model (15.2)

include the following:

• Y, rather than η, is the response variable in the regression model. It is an observed vector of
responses, whereas η is a vector of endogenous response variables. In contrast to the classic linear
model, η is unobserved. Note that Bη in (15.3) also allows for the possibility of relating endog-
enous variables. In the model of (15.2), no such allowance is made for Y.

• In both models,E and ζ are measures of unexplained variation, which includes measurement error
and random “shocks,” as well as all those influences acting onY or η that are not accounted for in
each model, or perhaps are even “unknowable.”

ηξ

ζ

FIGURE 15.5 Simple structural equation model.
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Just as was the case in EFA where we learned that the covariance matrix could be “decomposed”
into = ΛΛ +ψ, the general structural equation model, of which recall the EFA model may be con-
sidered a special case, can also be decomposed into . See Bollen (1989, pp. 323–326) for details.

15.9 DIRECT, INDIRECT, AND TOTAL EFFECTS

Three types of effects can be distinguished in a path or structural equation model. A direct effect is
the prediction of one variable on another, unmediated by any other model variables. An indirect effect
is the prediction of one variable on another but mediated by at least one other intervening variable.
A total effect is the sum of direct and indirect effects. As noted by Bollen (1989, p. 36), “The decom-
position of effects always is with respect to a specific model. If the system of equations is altered by
including or excluding variables, the estimates of total, direct, and indirect effects may change.” Of
course, this isn’t simply true of SEM models. As noted several times in this book, the “context” of
a model is a powerful thing, in that a given variable may be predictive of another variable in one model,
but the strength of that prediction might change in another when one or more new variables are added.
Statistical models do not pretend to be perfect reflections of physical processes. The extent to which a
model reflects “reality” usually depends more on design issues and such things as ecological validity,
that is, the extent to which the experiment or study is actually reflective of what goes on in nature out-
side of the laboratory or setting in which the correlational study is being performed. Fitting a model is
only the first step. Relating that model to a scientific process is where things get philosophically
very difficult.

Returning to our defining of effects in SEM, we illustrate these effects by considering a now classic
structural equation reproduced from Bollen (1989, p. 37) on industrialization and political democracy
(Figure 15.6). For our purposes here, the actual substantive meaning of the variables is not relevant.
What we wish to demonstrate is simply how direct, indirect, and total effects can be interpreted.

Some immediate features of Bollen’s model are as follows:

• There are three latent variables, η1, η2, and ξ1.

• η1 is indicated by manifest variables y1 through y4, with errors ε1 through ε4.

• η2 is indicated by manifest variables y5 through y8, with errors ε5 through ε8.

• ξ1 is indicated by x1 through x3, with errors δ1 to δ3.

• Disturbances are associated with η1 and η2 (i.e., ζ1 and ζ2 respectively).

• Path parameters include λ1 through λ11, γ11, γ21, and β21.

Recall that when we speak of a direct effect, as the name suggests, it is the effect of one variable
onto another which does not go through any other variables. For example, the effect of ξ1 on η1 in
Figure 15.6 is a direct effect, represented by parameter γ11. Notice that ξ1 on η1 does not go through
any other intermediary path. If we compare this to the effect of ξ1 on η2, the distinction between a direct
effect and an indirect effect becomes immediately apparent. Note that like ξ1 on η1, ξ1 has a direct effect
on η2 modeled by coefficient γ21. However, it also has an indirect path. That path is ξ1 η1 η2. We
say that ξ1 “acts on” η2 through η1. Again, using the words “acts on” or “goes through” is fine, so long
as one knows what one means by such physical-sounding statements. What would be incorrect to
assume is that our semantics alone somehow give these coefficients “powers” they do not possess.
Stemming from our earlier discussions of Wright and those of mediation and moderation earlier in the
book, coefficients along paths in any model are simply functions of a calculating machine. Any assign-
ment of substantive powers must be a function of factors external to the modeling process. If you
conclude that ξ1 truly “acts on” η2, for instance, this conclusion must be defended not with reference
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to the model, but rather with reference to the objects you are modeling or the design adopted that pre-
sumably permits such powerful action statements.

Finally, the total effect is the sum of direct effects and indirect effects. For ξ1 on η2, we sum two
pathways, the first being the direct path of ξ1 η2, the second ξ1 η1 η2 (Bollen, 1989, p. 36).
Hence, to get the total effect of ξ1 on η2 we add γ21 to (γ11)(β21). We could obtain other effects in
the model in an analogous fashion.

15.10 THEORY OF STATISTICAL MODELING: A DEEPER LOOK INTO
COVARIANCE STRUCTURES AND GENERAL MODELING

Having provided a cursory overview of path analysis, confirmatory factor analysis, and structural equa-
tion models, we now provide a slightly deeper account of how models are fit in general. The following
is a very general account of the principles involved in model-fitting, and serves in part to summarize the

ϵ1

Y1

λ4
λ5 λ6

λ1 λ2 λ3

δ3δ2δ1

λ7

γ11 γ21

η1 η2

ζ1

ξ1

β21

λ8
λ9

λ10 λ11

ζ2

Y2 Y3 Y4 Y5

X3X2X1

Y6 Y7 Y8

ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7 ϵ8

FIGURE 15.6 Bollen’s classic structural equation model on industrialization and political democracy. Source:
Bollen (1989). With permission from John Wiley & Sons, Inc.
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modeling process, whether the model be one of a simple t-test or that of an elaborate structural equation
model. In the end, the model-fitting process is remarkably similar in virtually all cases when considered
from a global perspective. From a pedagogical standpoint, standing on the “summit” of the structural
equation model allows us to review the principles of modeling in its full generality. Our discussion is
motivated by leaders in the field such as Bollen (1989), Fox (1997), and Mulaik (2009).

The models we have been considering in this chapter go by different names, for instance, simul-
taneous linear equations, linear causal analysis, path analysis, structural equation modeling,
covariance structure modeling, to name but a few. Regardless of the model, the task typically boils
down to solving a set of equations, usually with imposed constraints. As noted by Bollen (1989), the
fundamental hypothesis on which virtually all statistical modeling is based can be given by

= θ (15.4)

where denotes the population covariance matrix of observed variables, θ is a vector of model para-
meters unique to the particular model under test, and (θ) represents the covariance of observed vari-
ables written (or “reproduced”) as a function of the model parameters contained in θ, usually referred to
as the implied covariance matrix (sometimes designated θ , since it is that “implied” by the model
function). Be sure to note that this implied matrix does not exist on real, observed variables. The matrix

exists since it is based on real, empirical variables. (θ), on the other hand, is a reproduction based
on how well our given model is specified. Good models imply covariance matrices that reproduce
population covariance matrices. This is precisely what “fitting a model” ultimately means in most
contexts. As noted by Bollen:

The simplicity of this equation is only surpassed by its generality. It provides a unified way of includ-
ing many of the most widely used statistical techniques in the social sciences. Regression analysis,
simultaneous equation systems, confirmatory factor analysis, canonical correlations, panel data anal-
ysis, ANOVA, analysis of covariance, and multiple linear indicator models are special cases of

= (θ). (Bollen, 1989, p. 2)

Hence, technically speaking, the job of the statistical modeler and scientist becomes one of equating
the population covariance matrix with the covariance matrix implied by his or her theory, that of

θ . Because we do not actually know the population covariances, we estimate them using S, the
sample covariance matrix. Estimators are then sought which will, in some sense, ensure for us that
the match between S and S(θ) is, on average, as close as possible. That is, we want our estimates
to be ones that in some sense help minimize the distance between S and S(θ), leaving our theory to
do the rest in helping S be as close as possible to S(θ). This logic applies to even the simplest case
of fitting a least-squares line to bivariate data. The least-squares criterion guarantees distance will
be minimized, but it is up to our theory to get us as close as possible the rest of the way. To formalize
this idea further, we require the concept of discrepancy functions.

A discrepancy function is a general name used to describe functions that minimize the degree of
misfit between S and S(θ) (Mulaik, 2009, pp. 312–314). Again referring to the case of fitting to data a
line of best fit in OLS regression, in the language of discrepancy functions, we were minimizing the
discrepancy between observed and fitted values by estimating parameters (e.g., intercept and slope
coefficients) in such a way that suchminimization is assured. The quality of our data and corresponding
fit brought us the rest of the way to how small this minimization would be. That is, differential calculus
provided us with the solutions, the so-called normal equations that guaranteed not that the function
would be small necessarily, but that it would be minimized. Hence, least-squares is one of the more
common so-called “discrepancy functions.”
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Path analysis and structural equation modeling likewise use discrepancy functions in minimizing
the degree of misfit between S and S(θ). Rather than seeking to minimize the sum of squared errors
as in OLS regression, much of covariance modeling uses maximum likelihood (ML) to minimize the
following very general fitting function (Bollen, 1989, p. 107):

FML = log θ + tr S
− 1 θ − log S − p + q (15.5)

where θ is the determinant of the population covariance matrix (implied by the model), S is the
sample covariance matrix, −1(θ) is the inverse of the population covariance matrix (implied by the
model), and p and q refer to the number of observed variables. Minimizing such a fitting function as
FML subject to particular constraints (see Bollen, 1989, p. 106) results in a consistent estimator of
hypothesized free parameters (e.g., variances, covariances). Should S = S(θ), then FML = 0. In general
then, as S(θ) gets closer and closer to S, we expect a value for FML closer and closer to zero.

15.11 THE DISCREPANCY FUNCTION AND CHI-SQUARE

We focus now on the maximum likelihood discrepancy function since, as mentioned, it is the one most
commonly used for evaluating fit under a wide variety of situations. As well, (n − 1)FML is distributed
as chi-square χ2 (i.e., the asymptotic distribution of (n − 1)FML is a χ2 distribution (Bollen, 1989,
p. 110)) which we can use for testing the null hypothesis in (15.4):

H0 = θ (15.6)

against the statistical alternative hypothesis

H1 θ (15.7)

In addition to the chi-square being a test of the null in (15.6), it can be shown also as a test that all
residual covariances of the form − (θ) are equal to zero (Bollen, 1989, p. 263). Hence, if our
model fits the data perfectly, then χ2 should approximate 0. To the extent that the matrices of
(15.6) differ, yielding the situation in (15.7), we would increasingly expect the covariances to not
“match” those of the implied covariance matrix, and thus residual covariances would be unequal
to 0. That is, − (θ) 0.

Recall that in traditional hypothesis testing, we ordinarily seek to reject a null hypothesis in favor of
a statistical alternative. For instance, recall that in an independent samples t-test, we ordinarily test the
null H0 : μ1 = μ2 against the alternative H1 : μ1 μ2 and reject the null should we observe a t-statistic
that is large enough in absolute value (two-tailed test) to make it improbable under H0. In the SEM
environment, because of the way the null is stated in (15.6), a rejection of the null hypothesis actually
indicates an unfavorable result for the researcher, because it implies that the observed covariance
matrix does not match that of the implied covariance matrix. Hence, achieving the infamous p <
0.05 would actually designate a disappointment to the researcher in testing her model. To the contrary,
she actually seeks to find support for the null hypothesis and not reject it. A “confirmation” of the null
hypothesis for a path or structural equation model is thus deemed a positive result. That is, we are
“cheering for” a chi-square statistic that is not statistically significant. As summarized by Stevens
(2009, p. 361), “contrary to the general rule in hypothesis testing, the researcher would not want to
reject the null hypothesis, as finding (θ) would mean that the hypothesized model parameters
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were unable to reproduce S. Thus, smaller rather than larger chi-square values are indicative of a
‘good fit’.”

As a preliminary indicator of the extent to which the fitted model has made use of the information
available, one may compare the size of χ2 with its degrees of freedom. Once again, Jöreskog explained
it best:

If a value of χ2 is obtained, which is large compared to the number of degrees of freedom, this is an indi-
cation that more information can be extracted from the data. One may then try to relax the model somewhat
by introducing more parameters. This can be done by relaxing some restrictions on the common factor space
or by introducing additional factors or both. If, on the other hand, a value of χ2 is obtained which is close to
the number of degrees of freedom, this is an indication that the model “fits too well.” Such a model is not
likely to remain stable in future samples and all parameters may not have real meaning. (Jöreskog,
1969, p. 201)

Jöreskog goes on to say that the final determination of model fit cannot be decided on fit statistics
alone, but rather must be evaluated primarily on its usefulness. Still, the ratio of χ2 to that of degrees of
freedom can be regarded as a first useful step toward model evaluation.

15.12 IDENTIFICATION

Identification is a property of a statistical model, and though a feature of all models, nowhere does
it come to the forefront more so than in SEM models. In classical ANOVA and regression, the iden-
tification of parameters is often implicitly assumed and rarely is an analyst confronted with having
unidentified parameters. Such models are usually parameterized so that identification is assured. In
SEM, however, as a consequence of the modeling flexibility available to the researcher, identification
of parameters is just one of the many facets to which the user must devote at least some attention. What
does it mean to say a parameter is identified? Formally, a parameter is identified if unique values of
the parameter correspond to unique probability distribution functions (Casella and Berger, 2002).
Less formally, a parameter is identifiable if one can estimate a unique value for that parameter.

A simple example will help clarify the concept of identification. Suppose we wish to solve the fol-
lowing equation:

y = f x

4 = 2x

The solution to the equation is of course 2, since

x =
4
2
= 2

That is, the value of “2” is the unique value that satisfies the equation 4 = 2x. In this case, we say that x,
the parameter we are seeking a solution for, is identifiable because a unique and distinct value for it
exists such that the equation 4 = 2x is solvable.

Now, consider the following equation:

x + y = 10
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Do unique values for x and y exist? Since a whole host of possibilities exist for what x and y could be
that will satisfy the equation, we say the parameters x and y are not identified.

As mentioned, identification is not a property of path or SEM models alone. In the analysis of var-
iance, for instance, the so-called sigma constraint or “sum-to-zero constraint” (Fox, 2016,
pp. 157–158) is typically used to ensure identifiability of parameter estimates. Recall that in the anal-
ysis of variance model parameterized as yij = μ + αi + εij, we required estimating parameters μ, α1, α2,
α3,…αj. However, there are only jmeans available, and so under this parameterization, we are trying to
estimate more parameters than we have information. The sigma-constraint sets αi = 0, which
reduces the number of parameters to be estimated to the number of j means, leading to a model that
is identified.

In structural equation models, we must ensure that each of the parameters of the given model is
identified. If every parameter is identified, then the model is said to be identified. As explained by
Mulaik (2009, p. 143), “The identification problem concerns whether or not one can determine
unique values for the unknown parameters using the observed data and constraints placed on other
parameters.”

For any model, any one of three conditions can be true regarding identification:

• The model is underidentified, meaning that there are more parameters to be estimated than there
is available information (e.g., x + y = 10).

• The model is just-identified, meaning that the number of parameters to be estimated is equivalent
to the amount of available information (e.g., 4 = 2x). This is typically the saturated model.

• The model is overidentified, meaning that there is more information available than there are para-
meters to be estimated.

Students new to statistical modeling, and especially SEM, are often taken aback by the issue of
identification. After all, the teachings in any science regularly encourage students to place inherent
value on empirical observations, that is, to allow data to speak for themselves. Surely then, it would
seem that “tweaking” a statistical model for the purpose of solving an identification issue should have
no place in the repertoire of the serious scientist, would it? After all, data are data, right? True, data are
data, but identification is not about the data, it is about themodel we are fitting to data. The process of
model-building is one of theorizing a structure to data. Data on its own are of little use without a theory
or narrative imposed on it to help us understand it, imperfect as the model may be. For this, we must
ensure that parameters we wish to estimate as a function of the data are identified. Remember, without a
model, without a theory, Darwin is simply noting observations, accumulating data, and never
“explains” them. Even the most hardcore anti-theory scientists must at some point “theorize,” and
many use mathematical or statistical modeling to help describe such theory in precise terms such that
they can more easily communicate such theory to other scientists. This is the precise rationale for build-
ing mathematical models. Furthermore, without theory, the plane crash is never “explained,” but is
rather simply observed, just as without theory, explaining the origins of the universe (or the causes
of a toothache) is never even attempted.

15.13 DISTURBANCE VARIABLES

Throughout this chapter, we have incorporated unobserved disturbance variables into our models.
But what exactly is a disturbance in SEM? At first thought, and drawing on our knowledge of linear
models studied thus far, it may be tempting to think of disturbances as typical residuals one would
obtain in a multiple regression analysis. However, it is generally incorrect to equate a disturbance term
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in SEM with that of a residual in multiple regression. To understand why, we quote Mulaik (2009) at
some length:

Disturbance variables represent extraneous influences such as errors of measurement and random shocks
that are combined with the effects of exogenous and/or endogenous variables on a given endogenous var-
iable. Disturbances are analogous to unique factors in common factor analysis or errors of measurement in
classical test theory. However, disturbances may contain both systematic and unsystematic error. They are
usually assumed to be mutually uncorrelated and uncorrelated also with the exogenous variables. Techni-
cally disturbances are also exogenous variables, but whatever is contained in them is not of focal interest in
contrast to the explicitly named exogenous variables… Requiring the disturbances to be uncorrelated with
the exogenous variables implies that there are no other hidden relevant causes, not explicitly represented in
the model, and permits unbiased estimation of the structural coefficients. In other words, the model repre-
sents a conception of external reality, and disturbances and their properties are supposed to hold in reality.
When these assumptions are violated, the model may be compromised and yield misleading inferences
when seemingly confirmed against data … Disturbances are not residual variables. Residual variables
are formed when one partials from a set of variables what can be predicted in them from other variables.
They are the result of a mathematical operation. In linear models, residuals are necessarily uncorrelated with
the predictor variables on which the partialled components are based. Disturbances, on the other hand, rep-
resent other causes of the variables not explicitly represented in the model otherwise, and subjunctively it is
possible in some cases to imagine their being correlated with the explicit causal variables within the system
and with each other. The constraints imposed on disturbances, that they are mutually uncorrelated
and uncorrelated with exogenous variables of the system, must be satisfied in the real-world situation
represented by the model to achieve a closed system of variables in which causal relations can be
inferred and structural coefficients estimated without bias. Residual variables become equivalent
to disturbances when these constraints are satisfied [emphasis added]. But if the constraints are not sat-
isfied in the situation represented by the model, for example, there are hidden relevant causes in the dis-
turbances that are correlated with the exogenous variables, then the residuals are not true disturbances
and parameter estimates are likely biased.” (p. 122)

We quoted Mulaik at length because of the clarity with which he defines what is and what is not a
disturbance variable. In applying his distinctions to our IQ model in Figure 15.1, d1 represents eve-
rything else (including random “shocks”) that could be accounting for the prediction of offspring IQ
over and above parental IQ. And as emphasized by Mulaik, it is only in the idealistic situation where
disturbance terms are mutually uncorrelated with one another and uncorrelated with exogenous vari-
ables contained in the system that they can quite possibly be equated to residual terms. For our model of
IQ transmission, this would suggest that the disturbance d1 is uncorrelated with both parental IQ and
the disturbance d2 associated with third generational IQ. Of course, such is very unlikely to ever hold in
practice, but if we could assume it to be true for the substantive setting under consideration, then the
disturbance associated with offspring IQ becomes more analogous to a residual such as one would have
in a multiple regression model. For a further discussion of disturbance terms, see Jöreskog (1978).

15.14 MEASURES AND INDICATORS OF MODEL FIT

We survey a few of the more common measures of model fit that have been proposed to evaluate SEM
models. Recall that in regression analysis, a measure of model fit such as R2 was meant to evaluate, in
general, howwell fitted values “regenerated” observed data on a response variable. The extent to which
predicted values correlated with observed values was the extent to which we deemed our regression
model to fit the data. The general idea of fit statistics is no different in path and SEM models, though
because of the complexity and multivariable nature of such models, more options exist for evaluating
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fit, each attempting to overcome shortcomings of competing statistics. However, the general idea is the
same across the range of possibilities, and that is to ultimately evaluate how well one’s theoretical
model accounts for observed empirical data.

We begin by surveying the chi-square goodness of fit test, the root-mean-square residual,
standardized root-mean-square residual, and root mean-square error of approximation. These
are all generally considered absolute or overall measures of model fit. Such assess the extent to which
the hypothesized model fits the data in a global fashion, measuring the extent to which S − S(θ) 0.
Overall fit measures, however, cannot be used to evaluate models that are just identified, since for these
models recall that S = S(θ), and so evaluating overall fit does not make sense. As well, overall measures
do not tell us about the performance of separate individual model equations within the global model.

15.15 OVERALL MEASURES OF MODEL FIT

The χ2 test, already discussed, is the classic fit statistic historically used to assess the general overall and
global fit of path and SEM models. For populations not multivariate normal, χ2 has been found to be
biased and the Satorra–Bentler χ2 is typically preferred (see Hu and Bentler, 1995). Under the null
hypothesis, we expect χ2 to equal zero, and hence the extent to which χ2 > 0 is the extent to which
the hypothesized model is less well-fitting. Recall, however, that one of its major weaknesses is that
the statistical significance of χ2 is largely a function of sample size. Given any discrepancy between
observed and expected, one merely has to collect an increasingly large sample size to essentially ensure
statistical significance. Hence, even if the model was well-fitting, a statistically significant χ2 would
suggest the model not be retained, since recall statistical significance of χ2 in the context of SEMworks
against the hypothesized model rather than in support of it.

Other drawbacks with χ2, as noted by Bollen (1989, p. 266), include the fact that it can be quite
sensitive to kurtosis, it requires the covariance matrix to be analyzed, it requires relatively large sam-
ples, and is tested under the assumption that H0 is exactly true. Other limitations of the chi-square test
include the fact that χ2 will generally decrease as model complexity increases. As one adds more para-
meters to one’s model, χ2 will generally diminish, which could give an illusion that a “better” model
has been achieved. Surely, we do not want to judge the “goodness” of our model by simply the number
of parameters we are estimating. Indeed, recall from Jöreskog (1969) that better-fitting models are gen-
erally those for which the ratio of χ2 to df is relatively small.

As a result of such problems with χ2, it is seldom interpreted without a simultaneous consideration
of other available criteria for assessing model fit. Indeed, as emphasized by Bollen (1989), though χ2

should always be reported for any structural equation model, it should nonetheless be supplemented
with a number of other indices and indicators. We briefly survey some now.

15.15.1 Root Mean Square Residual and Standardized Root Mean Square Residual

The root mean square residual (RMR) is an index of fit proposed by Jöreskog and Sörbom (1981). It
is essentially a measure of how well a model does not fit, since it is based on the residuals of the fitted
model. The root mean square residual is given by

RMR = 2
q

i = 1

i

j = 1

sij − sij
2

q q + 1

1 2
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where sij is a given element of the observed covariance matrix S, sij is a given element of the model-
implied covariance matrix, S(θ), and q is the number of observed variables for the given model. A look
at the equation for RMR reveals that in general, the greater the sum of differences sij − sij for a constant
q, the greater the size of the measure. Hence, the smaller the value of RMR, in general, the better the fit
of the model (Stevens, 2009). It is easy to see, however, that the differences sij − sij could be large or
small depending on the sizes of the variances and covariances of observed variables and their corre-
sponding scales, somewhat analogous to how the covariance for two variables could be small or large
in part due to the variability exhibited on each scale. If the raw observations are highly variable, then
RMR will tend to be larger than not, and hence assessing model fit in any “absolute” fashion is very
difficult using RMR.

A measure that purports to solve the scale issue problem of RMR is the standardized root mean
square residual (SRMR). As the name suggests, SRMR first standardizes residuals sij − sijby dividing

by respective standard deviations, sisj, that is, sij − sij sis j. Smaller values of SRMR are preferred

over larger ones. According to Hu and Bentler (1999), values of 0.08 or less are indicative of good fit.

15.15.2 Root Mean Square Error of Approximation

A final measure of overall model fit discussed here is the root mean square error of approximation
(RMSEA) (Steiger and Lind, 1980) given by

RMSEA =
1

n − 1
χ2m − df m
df m

The extent to which model χ2m − df m is large relative to dfm, RMSEA will likewise be larger than not.
Conversely, the extent to which χ2m − df m is small relative to dfm is the extent to which RMSEA will
approach zero. General cut-offs in the range of 0.01, 0.05, and 0.08 have been proposed to indicate
excellent, good, and relatively poor-fitting models (MacCallum, Browne, and Sugawara, 1996). As
we will see, the RMSEA is somewhat similar in spirit to that of the Tucker-Lewis index, in that it essen-
tially penalizes one for having “too complex” of a model by the discrepancy χ2m − df m.

Other measures of overall model fit include the goodness of fit index (GFI) and the adjusted good-
ness of fit index (AGFI), both proposed by Jöreskog and Sörbom (1986), though not discussed here.

15.16 MODEL COMPARISON MEASURES: INCREMENTAL FIT INDICES

To reiterate, the measures of fit we have so far discussed, that of χ2, RMR, SRMR, and RMSEA, are all
considered overall or absolutemeasures of model fit in that they make no attempt to compare the fit of
a given model to that of a competing model. Rather, they simply provide an indication of the extent to
which S − S(θ) 0. Oftentimes, however, we are more interested in comparing the fit of our hypothe-
sized model relative to a simpler model. Model comparison measures, or incremental fit indices,
attempt to address this need. In what follows, we survey a few of the more popular of such measures.
Our discussion of a few of them should give you an idea of how such incremental fit indices gener-
ally work.

The first measure we discuss is that of the normed-fit index (NFI) (Bentler and Bonett, 1980)
given by
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Δ1 =
χ2b − χ

2
m

χ2b
=

Fb −Fm

Fb

where χ2b and χ
2
m are obtained chi-square values for the baseline and hypothesized models, respectively,

and since χ2~(n − 1)FML, Fb and Fm are values of the corresponding fitting functions. The baseline
model on which Fb is computed is one that shows more restrictions on it compared with the hypothe-
sized model on which Fm is calculated. Indeed, the baseline model is usually quite restrictive and hence
the difference Fb − Fm is indicative of how much the respective fitting function for Fm decreases the
baseline value of Fb. The difference Fb − Fm is divided by Fb in order to provide a “context” for eval-
uating Fb − Fm, that is, it provides a maximum for evaluating the distance between competing models.
Since Fm must be equal to or less than Fb, it stands that when there is maximum improvement in
model fit, then (Bollen, 1989, p. 270):

Δ1 =
Fb − 0
Fb

= 1

Conversely, when the hypothesized model provides no improvement, then we would expect Δ1 to
equal approximately 0, since Fb − Fm = 0 and so 0/Fb = 0. Values of 0.95 and higher are typically indic-
ative of a well-fitting model, not in the “absolute” sense as in the case of such statistics as χ2, but instead
relative to a baseline model. As noted by Bollen (1989), however, a weakness of Δ1 is that it does not
incorporate degrees of freedom into its measure. Furthermore, like χ2, it is also quite sensitive to sample
size. As summarized by Bollen (1989, p. 270):

A limitation of Δ1 is that it does not control for degrees of freedom. The value of Fm can be reduced by
adding parameters. This is analogous to increasing the R2 for a regression equation by including more
explanatory variables. Though the R2 may improve, the degrees of freedom decrease, and the model
becomes more complex. An adjusted R2 that corrects for degrees of freedom can reveal that a more parsi-
monious equation has a superior fit.

Bollen’s ρ1 (1989) is similar to another fit statistic called the Tucker-Lewis Index (Tucker and
Lewis, 1973), which will be discussed shortly. There is a slight difference between these two statistics,
and hence for pedagogical purposes, we keep the two statistics distinct as to more easily study the logic
of their formulations. Bollen’s ρ1 is given by (Bollen, 1989, p. 272):

ρ1 =
Fb df b − Fm df m

Fb df b

=
χ2b df b − χ2m df m

χ2b df b

where as before, Fb and χ2b are the corresponding fit function and chi-square, respectively, for the base-
line model, and Fm and χ2m are the corresponding fit function and chi-square for the hypothe-
sized model.

Let us examine what ρ1 actually measures. We first note that it is very similar to our previous meas-
ureΔ1, in that it assesses how the hypothesized model improves overall fit relative to a baseline model.
There is, however, an important difference in that ρ1 divides each χ2 by its respective degrees of free-
dom.Why are degrees of freedom relevant in this regard? The logic of ρ1 is that it rewards the fitting of
models that “spend” a smaller number of degrees of freedom in order to improve model fit relative to
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the baseline model. It essentially evaluates the difference between χ2b − χ
2
m relative to χ

2
b, but also relative

to degrees of freedom under each model. Generally, values of ρ1 greater than 0.95 are indicative of
well-fitting models in relation to the baseline model. Again, Bollen (1989, p. 273) summarizes the con-
cept best:

Since introducing additional parameters lowers df, it is possible for ρ1 to stay the same or to decrease for
more complex specifications. Maintained models that have a lower fitting function value with relatively few
parameters have higher ρ1 values than models with the same fit value for a more complicated specification.

A measure of fit related to ρ1 is the Tucker-Lewis index (NNFI) given by:

ρ2 =
χ2b df b − χ2m df m

χ2b df b − 1

The distinction between ρ1 and ρ2 is such that for ρ1, the best case scenario for evidence of model
improvement occurs when χ2b df b − χ2m df m is equal to χ2b df b in the numerator driving the value
of ρ1 toward 1.0. Again, note that in this regard, the improvement in model fit as evidenced by
χ2b df b − χ2m df m is considered relative to χ2b df b . For ρ2, χ2b df b − χ2m df m is not compared

relative to χ2b df b but rather to χ2b df b − 1. In this denominator, we have a contrast between the

baseline fit and a “best fit” as indicated by “1.” That is, ρ2 puts χ2b df b in some context of a
best-fit model, something that is not done in ρ1. Bollen, again, summarizes it best:

For ρ2, the best fit is defined as the expected value of χ2m df m . This equals one when the assumptions
underlying the chi-square approximation are satisfied for the maintained model, since the expected value
of a chi-square variate is its df … When χ2m df m is one, ρ2 is one, and this is an ideal fit. (Bollen,
1989, p. 273)

Values of ρ2 greater than 0.90–0.95 are generally indicative of well-fitting models. For further
details on ρ2, see Bollen (1989, pp. 273–274) and Mulaik (2009, pp. 330–333).

A final measure of incremental fit discussed here is the comparative fit index (CFI), given by

CFI = 1 −
max χ2m − df m, 0

max χ2b − df b, χ
2
m − df m, 0

We can see that the logic of the CFI is similar in spirit to that of ρ1, only now we are subtracting df
from χ2 (i.e., χ2b − df b) instead of taking ratios as was done for ρ1. A value of CFI close to zero suggests
that the additional estimated parameters (i.e., increased model complexity) used in generating χ2m are
hardly worthwhile. Values of CFI in the range of 0.90 to 0.95 or higher are typically indicative of
good fit.

15.17 WHICH INDICATOR OF MODEL FIT IS BEST?

Our purpose in surveying a select sample of fit measures and indices was merely to give you a hint of
how models are assessed in the SEM literature. Numerous measures of model fit have been proposed
and there exists a whole literature of simulation studies and the like meant to evaluate their performance
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under conditions of violated assumptions, small to large sample sizes, and so on. A complete evaluation
of fit measures is well beyond the scope of this chapter. Hence, deciding on which measure of fit is
“best” under a variety of contexts is a decision tree we will not build here. Still, we can offer some
guidelines.

According to Hu and Bentler (1998), who have extensively evaluated a variety of fit indices, the
SRMR and RMSEA, supplemented with such indices as the TLI or CFI, assuming adequate sample
size, are generally recommended in reporting the results of most SEM models. The SRMR and
RMSEA, in addition to reporting χ2, provide an overall assessment of model fit, and when coupled
with incremental fit indices such as TLI or CFI, should give an overall adequate account of one’s
model. The reader is encouraged to consult Jackson, Gillaspy, and Purc-Stephenson (2009) for a useful
overview of reporting practices in CFAmodels and SEMmodels more generally, which also includes a
relevant discussion of fit indices.

What to do if model fit is unsatisfactory? Poor-fitting models should generally either be abandoned
or improved. When attempting to improve on model fit, one may conduct specification searches, in
which tests are performed on model parameters with the goal of estimating how the model would be
improved given the fixing, constraining, or freeing of relevant parameters. Specification searches are
often guided by computing so-called modification indices, which are numerical estimates of how
much a model’s fit would improve by adjusting parameters of the model. Of course, one can envision
how such searches could potentially be misused. Indeed, a well-fitting model that is such because it has
undergone a series of specification searches, though perhaps well-fitting statistically, may nonetheless
be quite meaningless scientifically. If you “tweak” a model enough, fitwill improve, but if the “tweak-
ing” was not based on your ideas but rather on an optimization criterion alone, then well-fitting as the
final model may be, it will nonetheless be of minimal value from a theory validation point of view. At
minimum, extensive cross-validation will be required. If one is to engage in specification searches, then
the number and nature of them should be guided primarily by theory. And if one is to extrapolate on
one’s theoretical predictions based on the results of such a search, he should be upfront about this to an
audience when reporting how the well-fitting model came to be. We discuss specification searches no
further here.

15.18 STRUCTURAL EQUATION MODEL IN R

As a simple demonstration of an SEM model in R, we fit a three-factor CFA model to the Holzinger
and Swineford data, using only tests x1–x9 (recall from Chapter 11, we named the data hs).
Hypothesized factors are visual, textual, and speed:

> hs.model <- ' visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed = ~ x7 + x8 + x9 '

We proceed to fit the model, displaying only partial results below:

> fit <- lavaan(hs.model, data = HolzingerSwineford1939, auto.var =
TRUE, auto.fix.first = TRUE, auto.cov.lv.x= TRUE)
> summary(fit, fit.measures = TRUE)

Number of observations 301

Estimator ML
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Minimum Function Test Statistic 85.306
Degrees of freedom 24
P-value (Chi-square) 0.000

Model test baseline model:

Minimum Function Test Statistic 918.852
Degrees of freedom 36
P-value 0.000

We can see that the model was fit using maximum likelihood yielding a statistically significant χ2 on
24 degrees of freedom.

User model versus baseline model:

Comparative Fit Index (CFI) 0.931
Tucker-Lewis Index (TLI) 0.896

Both the CFI and TLI are reported to be 0.931 and 0.896 respectively, indicating somewhat mod-
est fit.

Root Mean Square Error of Approximation:

RMSEA 0.092
90 Percent Confidence Interval 0.071 0.114
P-value RMSEA <= 0.05 0.001

RMSEA is reported as 0.092, higher than the preferred cut-off of 0.05 (or lower).

Standardized Root Mean Square Residual:

SRMR 0.065

SRMR of 0.065 meets the preferred cut-off of 0.08 or less for a reasonably well-fitting model.

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.554 0.100 5.554 0.000
x3 0.729 0.109 6.685 0.000

textual =~
x4 1.000
x5 1.113 0.065 17.014 0.000
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x6 0.926 0.055 16.703 0.000
speed =~

x7 1.000
x8 1.180 0.165 7.152 0.000
x9 1.082 0.151 7.155 0.000

Parameter estimates for the factor loadings are given above. We had specified the path of the first
variable on each factor at 1.0 through auto.fix.first = TRUE, which is why the estimates for x1,
x4, and x7 are all equal to 1.0. We can see that all other paths are statistically significant yielding very
low p-values. Covariances between latent variables appear below along with significance tests. Var-
iances with respective standard errors are also given.

Covariances:
visual ~~

textual 0.408 0.074 5.552 0.000
speed 0.262 0.056 4.660 0.000

textual ~~
speed 0.173 0.049 3.518 0.000

Variances:
x1 0.549 0.114
x2 1.134 0.102
x3 0.844 0.091
x4 0.371 0.048
x5 0.446 0.058
x6 0.356 0.043
x7 0.799 0.081
x8 0.488 0.074
x9 0.566 0.071
visual 0.809 0.145
textual 0.979 0.112
speed 0.384 0.086

15.19 HOW ALL VARIABLES ARE LATENT: A SUGGESTION FOR RESOLVING
THE MANIFEST-LATENT DISTINCTION

Recall that a latent variable in confirmatory factor analysis or structural equation modeling is generally
defined as a variable that is unobserved or considered directly unmeasurable. We must infer its exist-
ence by “indicating” it through the measurement of so-called manifest variables, which are variables
considered to be more measurable.

When one attempts a distinction between manifest versus latent variables, however, one more than
not finds oneself in philosophical quicksand, and some kind of “merger” of the two concepts is really
the only way out. For instance, consider the traditional interpretation of a characteristic such as weight.
One would rarely refer to such an attribute as “latent” but would instead consider it to be quite observ-
able. That is, though potentially subject to slight measurement error, its measurement is relatively
straightforward. On the other hand, an attribute such as intelligence is more times than not considered
unmeasurable, and its very existence must be inferred in reference to variables that are measurable.
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Indeed, one might collect data on quantitative, verbal, and analytical skills, and use these as indicators
of intelligence.

The distinction between what ismanifest versus what is latent, however, is, in actuality, quite triv-
ial. When one considers the finer points of such a distinction, one necessarily designates all variables,
nomatter however seemingly measurable somemight be, as latent variables. Some latent variables are
simply more measurable than others, but this does not remove from the fact that all variables, generally
speaking, are being used to indicate some construct. This idea is summarized in Figure 15.7, in which in
both cases weight and intelligence are regarded as latent variables indicating their respective con-
structs. In this sense, all variables (even physical ones measured quite precisely) may be considered
latent, some less so than others.

15.20 THE STRUCTURAL EQUATION MODEL AS A GENERAL MODEL: SOME
CONCLUDING THOUGHTS ON STATISTICS AND SCIENCE

In our discussion of canonical correlation analysis in Chapter 12, it was remarked that models such as
multiple regression can be considered subsumed as “special cases” of the canonical correlation model.
Recall we had also concluded that MANOVA (and MANCOVA) could likewise be considered special
cases of the wider multivariate multiple regression model.

We now extend this idea to note that virtually all of these models, and more, can in general be con-
sidered special cases of the wider structural equation modeling framework. In the spirit of what Bollen
(1989) remarked about virtually all models being subsumed under the fundamental identity = (θ),
it becomes clear then that the process of modeling, considered in totality, simplifies very much to that of
the fixing and freeing of parameters within a given theory-driven structure in which one has a rea-
sonable statistical theory for estimating unknown parameters. Most of the remaining details concern
themselves with how the given model is parameterized and the research context to which it is applied. As
emphasized throughout this book, there is nothing inherently “experimental” about ANOVA models no
more than there is anything “correlational” about regression models. Likewise, there is nothing “causal”
about structural equation models any more than there is anything “uncausal” about a t-test. There is, on
the other hand, something inherently experimental about experimental studies, just as there is something
inherently correlational about correlational studies, as there is something inherently causal about causal
studies. For the scientist, research design always begets statistics (Haddad, 2014, personal communica-
tion). Statistics alone can never really tell uswhat happened in the research, which is usually the purpose
of the investigation in the first place. Statistical analyses can help in many cases, although if used without
care and critical reflection, they can just as equally mislead. When applying a statistical model to data, a
researcher should always ask themselves whether it clarifies or confuses the empirical finding, if indeed
there is one.

In the end then, for the scientist, it is the quality of measurements obtained, the thought process,
ingenuity, care and experience that went into conjuring up hypotheses, and the insistence of a

Weight

measurement

(a) (b)

Weight
Intelligence

measurement
Intelligence

FIGURE 15.7 Weight (a) is less of a latent variable (indicated by smaller circle) than is intelligence (b).
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convincing research design that will ultimately determine one’s success and future discovery. Indeed,
the distinction between what is statistical versus what is scientific has been emphasized throughout
this book. Statistics and modeling serve as tremendous aids to discovery for the scientist, but they are
not panaceas that could ever replace what makes a good scientist a good scientist, which usually boils
down quite simply to doing good science, of which choosing and interpreting a useful statistical model
is but one of many responsibilities toward this end.

15.21 CHAPTER SUMMARY AND HIGHLIGHTS

• Path analysis and structural equation modeling are techniques useful for the simultaneous
modeling of a network of variables. In the case of SEM, latent variables, in addition tomanifest
variables, may be hypothesized, whereas in path analysis, all variables are considered to be
observable.

• Structural equation models distinguish between endogenous and exogenous variables. The
former are predicted by at least one explanatory variable, while the latter are variables featured
as predictors of endogenous variables that are external to the system.

• The phrase “causal modeling” has become associated with path analysis (and by extension, SEM
models) in part as a result of the methodological context in which such models arose historically,
with Wright’s work on modeling color in guinea pigs in which a causal “context” was not such a
far-fetched idea.

• For an accurate and precise account of what path coefficients can and cannot do, one should read
(and re-read) Burks’ 1928 interpretation.

• The true contribution of Wright was not in developing a causal methodology, but rather one of
demonstrating how path coefficients could be decomposed.

• Confirmatory factor analysis solves the rotational indeterminacy problem of EFA by allowing
researchers greater flexibility in fixing and freeing parameters, thereby providing more opportu-
nity for parameters to be identified.

• Substantively, the distinction between what constitutes exploratory versus confirmatory
modeling is fuzzy.

• The structural equationmodel η =Bη + Γξ + ζ can be likened somewhat to the regression model
Y = XB + E in some respects, the chief difference being that the former allows one to incorporate
latent structures, whereas the latter does not, at least not explicitly so.

• A direct effect is the prediction of one variable on another, unmediated by any other model vari-
ables. An indirect effect is the prediction of one variable on another, but mediated by at least one
other intervening variable. A total effect is the sum of direct and indirect effects.

• As noted by Bollen (1989), much of statistical modeling can be reduced to solving the equality
= (θ). Many statistical methods can be conceptualized as special cases of this wider

framework.

• A discrepancy function is a general name used to describe functions that minimize the degree of
misfit between S and S(θ). Ordinary least-squares, maximum likelihood, unweighted, and gen-
eralized least-squares are all examples of such discrepancy functions.

• Identification is a property of a model. A model may be underidentified, just-identified, or over-
identified. Typically, researchers seek to make their models overidentified.

• Disturbance variables are conceptualized as influences outside of the model, typically consid-
ered unmeasurable, that have an influence on a given endogenous variable. The distinction
between what constitutes a disturbance variable and that of a residual is important.
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• Several measures and indicators of model fit for SEM have been proposed. They are generally
classified into absolute (or overall) measures and incremental fit indices. The more popular ones
and those generally recommended for minimal inclusion into virtually every SEM model include
χ2, SRMR, RMSEA, TLI, and CFI.

• Poorly-fittingmodels should be either discarded or improved. Specification searches, which gen-
erate modification indices, can be conducted and reported so long as one is upfront about this
process when reporting findings to an audience.

• In resolving the manifest versus latent distinction, it is suggested to consider all variables as
latent, some less so than others.

• Structural equation models can be fit using R, among several other software programs such
as AMOS.

• Statistics andmodeling serve as tremendous aids to discovery, but choosing and interpreting the
correct statistical model is but one of the many responsibilities of the successful scientist.

REVIEW EXERCISES

15.1. Give a definition of path analysis, emphasizing its similarities and differences from regres-
sion analysis.

15.2. Distinguish between observed or manifest variables and latent variables. Why and how is this
distinction somewhat blurry and fuzzy? How can this fuzziness be potentially resolved?

15.3. Discuss the historical influence of how path analysis (and by extension, structural equation
modeling), came to be known as “causal modeling.”

15.4. Critically evaluate path analysis and structural equation modeling as “causal”methodologies.
Make an argument for why path and SEM models are or are not more causal than regression
models.

15.5. Why is it somewhat reasonable that in Burks’ early use of path analysis, it was safe to assume
that parental intelligence and environment, at least to some extent, caused child’s IQ?

15.6. Define a path coefficient as used in path analysis.

15.7. Interpret and discuss Burks’ quote:

Themethod [of path coefficients] is limited by the rarity with which we have actual knowledge
of causal relations; but it provides a toll of the nicest precision in such situations as do offer an
adequate basis for postulating causation. It cannot, itself, uncover what is cause and what is
effect, though in the absence of definite knowledge regarding causal relationships between
variables, the method ‘can be used to find out the logical consequences of any particular
hypothesis in regard to them.’ Conservatively stated, in any situation in which we feel jus-
tified in drawing conclusions regarding the effects of certain phenomena upon others, the
Wright method provides a numerical expression of such conclusions. (Burks, 1928, p. 299)

15.8. What does it mean to decompose path coefficients or effects? How was this a contribution of
Sewall Wright?

15.9. What does it mean to have a saturated model?Why does a saturated model always generate a
perfect (and hence, typically nonuseful) model fit?
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15.10. Explain why having positive degrees of freedom for a path analysis model (or structural
equation model) is necessary in order to meaningfully evaluate parameter estimates.

15.11. Explain what it means to fix a parameter in path analysis. Furthermore, explain why a
researcher might want to do this.

15.12. Consider the statement—the distinction between exploratory and confirmatory models is
one more of flavor that it is one of absolute difference. Comment on what this might mean.
Then, counter this argument by discussing how CFA solves the rotational indeterminacy
problem of EFA.

15.13. Provide a precise definition of a structural equation model.

15.14. Define and discuss each component of the structural equation model η = Bη + Γξ + ζ.

15.15. Distinguish between a direct, indirect, and total effect. How are such effects not necessarily
indicative of processes inherent in one’s data?

15.16. What, according to Bollen (1989), is the fundamental relation upon which virtually all sta-
tistical modeling is based? Explain the over-reaching concept implied by the equality.

15.17. Distinguish between an observed versus an implied covariance matrix.

15.18. Describe what is meant by a discrepancy function, and give a few examples of some.

15.19. According to Jöreskog, “If a value of χ2 is obtained, which is large compared to the num-
ber of degrees of freedom, this is an indication that more information can be extracted
from the data.” Interpret and discuss Jöreskog’s statement and why such an indicator is
meaningful in a general sense.

15.20. What does it mean, in general, to say that a parameter is identified, and how is the concept of
parameter identification different or similar to that of model identification?

15.21. In the equation x + 5 = 10, is x identified? Why or why not?

15.22. Distinguish between underidentified, just-identified, and overidentified models.

15.23. Discuss what is meant by a disturbance variable, using Mulaik (2009) as a guide to disen-
tangling this theoretically complex topic.

15.24. Distinguish between overall indicators of fit and incremental indicators. How are they
different?

15.25. Discuss how the root mean square residual (RMR) is more a measure of how well a model
does not fit rather than does fit.

15.26. What is a difficulty with RMR and how does SRMR attempt to resolve this difficulty?

15.27. Define the root mean-square error of approximation (RMSEA), and explain how it
assesses model fit.

15.28. Compare the index, ρ1 with that of ρ2. Discuss their structural similarities and differences.

15.29. Define the comparative fit index, and compare it with ρ1. How are they similar? Different?

15.30. Consider once more the Holzinger and Swineford (1939) data. Run a three-factor confirm-
atory factor analysis on variables x1 through x9 as hypothesized by the following model
equations. Compare the fit with the CFA performed in this chapter. Is the fit better or worse?
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visual =~ x1 + x2
textual =~ x4 + x5
speed =~ x7 + x8

15.31. Consider again the data (Holzinger Swineford) featured in Exercise 15.30. Run and interpret
another confirmatory factor analysis, this time, hypothesizing a one-factor solution:

factor =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

Compare and contrast the model fit to that in Exercise 15.30 and with the three-factor model of
this chapter.

Further Discussion and Activities

15.32. Consider how scientists, both natural and social, define the phenomena they study.Would you
claim that a characteristic such as weight is more real or less “real” than an attribute such as
intelligence? Why or why not? What makes one more real than another? Is it the fact that we
are able to better define weight that might, in the end, make it more real? What do you think?
For some insight into the problem of how concepts in science have been historically defined
and operationalized, read Green (1992).

15.33. As discussed in the chapter, path analysis and structural equation modeling have historically
been associated with the phrase “causal modeling.” Causality, however, is an enormous sub-
ject on which philosophers have grappled for centuries. Indeed, identifying when causation is
actually occurring is challenging. For example, if a person suffers from a headache and she
takes medication to alleviate that headache, is it correct to say that the medication caused a
lessening of symptomology? What would be the difference had we said the medication is
associated with a lessening of symptomology? Discuss how these statements are different
from one another and brainstorm some of the issues involved in identifying just what does
and does not connote causation in science.
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Standardized:
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Statistical:
alternative, 23
inference, 38
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Subject, fixed vs. random, 216-217
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Sufficiency, 39
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Theorizing, 2
Tolerance, 298-300
Tucker-Lewis index, 525
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Type I error rate, 365-366

Unbiased estimator, 38
Uncorrelated predictors, 293
Underidentified, 520
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of the estimate, 249
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Wilcoxon rank-sum test, 67
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