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PREFACE

Technology is not progress. Empathy is. The dogs are watching us.

Now in its second edition, this book provides a general introduction and overview of univariate
through to multivariate statistical modeling techniques typically used in the social, behavioral, and
related sciences. Students reading this book will come from a variety of fields, including psychology,
sociology, education, political science, biology, medicine, economics, business, forestry, nursing,
chemistry, law, among others. The book should be of interest to anyone who desires a relatively com-
pact and succinct survey and overview of statistical techniques useful for analyzing data in these
fields, while also wanting to understand and appreciate some of the theory behind these tools. Spanning
several statistical methods, the focus of the book is naturally one of breadth than of depth into any one
particular technique, focusing on the unifying principles as well as what substantively (scientifically)
can or cannot be concluded from a method when applied to real data. These are topics usually encoun-
tered by upper division undergraduate or beginning graduate students in the aforementioned fields.

The first edition has also been used widely as a reference resource for both students and researchers
working on dissertations, manuscripts, and other publications. It is hoped to provide the student with a
“big picture” overview of how applied statistical modeling works, while at the same time providing him
or her the opportunity in many places to implement, to some extent at least, many of these models using
SPSS and/or R software. References and recommendations for further reading are provided throughout
the text for readers who wish to pursue these topics further. Each topic and software demonstration can
literally be “unpacked” into a deeper discussion, and so long as the reader is aware of this, they will appre-
ciate this book for what it is—a bird’s eye view of applied statistics, and not the “one and only” source
they should refer to when conducting analyses. The book does not pretend to be a complete compendium
of each statistical method it discusses, but rather is a survey of each method in hopes of conveying how
these methods generally “work,” what technical elements unites virtually all of them, and the benefits and
limitations of how they may be used in addressing scientific questions.

This second edition has been revised to make the book clearer and more accessible compared to
the first edition. The book also contains a gentle introduction (“foot in the door™) to a variety of
new topics that did not appear in the first edition. All chapters have been edited to varying degrees
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to improve clarity of prose and in places provide more information or clarification of the concept under
discussion. The following is a summary of updates and revisions in the second edition:

Significant revision and corrections of errata appearing in the first edition. The second edition is
a stronger and better book because it has been thoroughly re-read and edited in places where
rewording was required. In this sense, the second edition has undergone very much “vetting”
since the first edition. At the same time, some sections have been entirely deleted from the first
edition due to their explanations being too brief to make them worthwhile. These are sections that
did not seem to “work” in the first edition, so they were omitted in the second. This hopefully will
help improve the “flow” of the book without the reader stumbling across sections that are insuf-
ficiently explained.

Bolded text is used quite liberally to indicate emphasis and signal areas that are key for a good
understanding of applied statistics. “Accentuate” bold text when reading the book. They are the
key words and themes around which the book was built.

The images in many chapters have been reproduced to make them clearer and more detailed than
in the first edition. This is thanks to Wiley’s team who has reconstructed many of the figures and
diagrams.

Chapter 2 now includes a brief survey of psychometric validity and reliability, along with a
simple demonstration of computing Cronbach’s alpha in SPSS.

Chapter 3 features a bit more detail and better introduction on the nature of nonparametric sta-
tistics in the context of the analysis of variance.

Chapters 7 and 8 on regression have been revised and edited in places to include expanded or new
discussion, including a demonstration of power analysis using G*Power in addition to R. Chapter
8 now includes a more thorough and deeper discussion of model selection, and also features a new
section that briefly introduces ridge and lasso regression, both penalized regression methods.

Chapter 9 on interactions in regression now contains a brief software demonstration of the anal-
ysis of covariance (ANCOVA), conceptualized as a special case of the wider regression model.
Some of the theory of the first edition has been removed as it did not seem to serve its intended
goal. For readers who would like to delve into the subject of interactions in regression more
deeply, additional sources and recommendations are provided.

Chapter 11 now includes R and SPSS code for obtaining Hotelling’s T2. While readers can sim-
ply use a MANOVA program to evaluate mean vector differences on two groups, the inclusion of
the relevant software code for Hotelling’s 7* is useful to make the MANOVA chapter a bit more
complete.

Chapter 14 on exploratory factor analysis now concludes with a brief introduction and overview
of the technique of multidimensional scaling should readers wish to pursue this topic further. By
relating the technique somewhat to previously learned techniques, the reader is encouraged to see
the learning of new techniques as extending their current knowledge base. This is due to the book
emphasizing foundations and fundamental principles of applied statistics, rather than a series of
topics seemingly unrelated.

Chapter 15 has been expanded slightly to include a basic demonstration of data analysis using
AMOS software. Many users who perform SEM models use AMOS instead of R, and so it
seemed appropriate to include a small sample of AMOS output in the context of building a simple
path model. Additional references for learning and using AMOS are also provided for those who
wish to venture further into structural equation models.

The inclusion in select places brief discussions of, and references to, “Big Data,” as well as data
science and machine learning, and why understanding fundamentals and classical statistics is
even more important today than ever before in light of these advancements. These fields are



XX

PREFACE

heavily computational, but for the most part, have technical origins in fundamental statistics and
mathematics. We try our best to key the reader to where these topics “fit” in the wider data analytic
landscape, so if they choose to embark on these topics in future study, or further their study of
computer science, for example, they have a sense of how many of these techniques build on foun-
dational elements.

Select chapter exercises have been edited as to clarify what they are asking, while a few others
have been deleted since they did not seem to work well in the first edition of the book. The major-
ity of the exercises remain conceptually-based as to encourage a deep and far-reaching under-
standing of the material. Select data-analytic exercises have been either edited or substituted for
better ones.

Additional references and citations have been added to supplement the book which already fea-
tures many classic references to pioneers in applied statistics.

An on-line Appendix featuring a review of essential mathematics is available at
www.datapsyc.com.
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PRELIMINARY CONSIDERATIONS

Still, social science is possible, and needs a strong empirical component. Even statistical technique may
prove useful — from time to time.
(Freedman, 1987, As Others See Us: A Case in Path Analysis, p. 125)

Before we delve into the complexities and details that is the field of applied statistics, we first lightly
survey some germane philosophical issues that lay at the heart of where statistics fit in the bigger pic-
ture of science. Though this book is primarily about applied statistical modeling, the end-goal is to use
statistical modeling in the context of scientific exploration and discovery. To have an appreciation for
how statistics are used in science, one must first have a sense of some essential foundations so that one
can situate where statistics finds itself within the larger frame of scientific investigation.

1.1 THE PHILOSOPHICAL BASES OF KNOWLEDGE:
RATIONALISTIC VERSUS EMPIRICIST PURSUITS

All knowledge can be said to be based on fundamental philosophical assumptions, and hence empirical
knowledge derived from the sciences is no different. There have, historically, been two means by
which knowledge is thought to be attained. The rationalist derives knowledge primarily from mental,
cognitive pursuits. In this sense, “real objects” are those originating from the mind via reasoning and
the like, rather than obtained empirically. The empiricist, on the other hand, derives knowledge from
experience, that is, one might crudely say, “objective” reality. To the empiricist, knowledge is in the
form of tangible objects in the “real world.”

Ideally, science should possess a healthy blend of both perspectives. On the one hand, science
should, of course, be grounded in objective objects. The objects one studies should be independent
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2 PRELIMINARY CONSIDERATIONS

FIGURE 1.1 Observing the behavior of a pigeon in a Skinner box. Source: Dtarazona (1998). https://commons.
wikimedia.org/wiki/File: UNMSM_PsiExperimental_1998_2.jpg. Public Domain.

of the psychical realm. A cup of coffee is a cup of coffee regardless of our belief or theory about the
existence of the cup. On the other hand, void of any rationalist activity, science becomes the study of
objects for which we are not allowed to assign meaning. For example, the behavior of a pigeon in a
Skinner box' (see Figure 1.1) can be documented as to the number of times it presses on the lever for
the reward of a food pellet. That the pigeon presses on the lever is empirical reality. Why the pigeon
presses on the level is theoretical speculation, of which there could be many competing possibilities.
Observing data is fine, but without theory, we have very little “guidance” to either explain current
observations or predict new ones. B.F. Skinner’s theory of operant conditioning, being such that
the pigeon presses the lever because it is reinforced to do so, is a prime example of where a wedding
of rationalism and empiricism takes place. The theory attempts to explain or account for the pigeon’s
behavior. It is a narrative for why the pigeon does what it does.

Of course, theorizing can go too far, much too far. One must be cautious to not “over-theorize” too
emphatically without acknowledging the absence of empirical backing. Is there anything wrong with
hypothesizing that cloudy days are associated with depressive moods? No, so long as you are prepared
to state what evidence exists that may support or contradict your theory. If no evidence exists, you may
still theorize, but you owe it to your audience to admit the lack of current empirical support for your
hypothesis.

As an example of “heightened theorizing,” recall the missing Malaysia Airlines Flight 370 where a
Being 777 aircraft vanished, apparently without a trace, originally destined from Kuala Lumpur to Bei-
jing in March of 2014. Media were sometimes criticized for proposing numerous theories as to its dis-
appearance, ranging from the plane being flown into a hidden location to it being hijacked or a result of
pilot suicide. One theory even speculated that the plane was swallowed by a black hole! Speculation is
fine and theorizing is a necessary scientific as well as human activity, so long as one is up front about
existent available evidence to support the theory one is advancing. Indeed, one could assign probabil-
ities to competing theories and revise such probabilities as new data become available. This is precisely
what Bayesian philosophers and statisticians are wont to do. A theory should only be considered cred-
ible however when empirical reality and the theory coincide (see Figure 1.2). The fit may not be per-
fect, and seldom if ever is, but when the rational coincides well with the empirical, credibility of the

"B.F. Skinner was a psychologist known for his theory of operant conditioning within the behaviorist tradition in psychology.
One of Skinner’s primary investigatory tools was that of observing and recording the conditions that would lead a rat, pigeon, or
other animal, to press a lever for a food pellet in a small chamber. This chamber came to be known as the Skinner box. For a read
of Skinner, see Rutherford (2009) and Fancher and Rutherford (2011).
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FIGURE 1.2 “Model fit” as an overlap of data with theory.

idea is at least tentatively assured, at least until potentially new evidence debunks it (e.g., the fall of
Newtonian physics).

We must also ensure that our theories are not too convenient of narratives fit to data. If you have
ever witnessed a sporting event where the deciding point occurred by the lucky bounce of a puck in
hockey or the breezy push of a tennis ball in midair, only to hear post-match commentators laud the
winning team or individual as suddenly so much better than the losing team, then you know what “con-
venient narratives” are all about. We must be careful not to exaggerate how well our given theory fits
data simply because a few data points went “our way.” George Box once said that all models are
wrong but some are useful. In any scientific endeavor, guard against falling in love with your theory
or otherwise exaggerating it far beyond what the data suggest. Otherwise, it no longer is a legitimate
theory, but rather is simply your brand and more a product of subjective bias and “career-building”
than anything scientific. After 20 years of advocating a theory, is the researcher you are speaking to
really prepared to “accept” evidence that contradicts his or her theory? They have a lot of stakes in that
theory, their whole career may have been built upon it, are they really willing to accept “defeat” of it?
Indeed, one reason I believe why economic predictions, for instance, are often looked upon with sus-
picion, is because economists, like psychologists (and theoretical physicists, for that matter), are far too
quick to advance theories as though they were near facts. “Sexy theories” sound great and may be mar-
ketable to uncritical consumers and media (make an outlandish claim on cable, you’ll be a hero!), but to
good scientists, theories are always only as good as the data that exist to support them. Science is excit-
ing, to be sure, but should not be overly speculative. If you are looking for fireworks, then you are best
to choose a field other than science.

1.2 WHAT IS A “MODEL”?

The word “model” is perhaps the most popular word featured in textbooks, tutorials, and lectures hav-
ing anything to do with the application of quantitative methods. Attempting to define just what is a
model in statistics can be a bit challenging. We discuss the concept by referring to Everitt’s definition:

A description of the assumed structure of a set of observations that can range from a fairly imprecise verbal
account to, more usually, a formalized mathematical expression of the process assumed to have generated
the observed data. The purpose of such a description is to aid in understanding the data.

(Everitt, 2002, p. 247)

Models, are, essentially, and perhaps somewhat crudely, equations. They are equations fit to data
that attempt to account for how the data came about or were generated in the first place. For example, if
for every hour a student studied for an exam corresponded to exactly a 1-point increase in a student’s
grade, the model that would best explain how this data was generated would be a linear model. Even if
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FIGURE 1.3 Hebbian Yerkes—Dodson performance—arousal curve. Source: Diamond et al. (2007). Licensed
under CC by 3.0.

the relationship between hours studied and student grade was not perfect, a perfect line might still be
the “best” summary. Models are often used to account for messy or imperfect data.

Another example of a model is the classic Hebbian version of the Yerkes—Dodson curve expressing
the relationship between performance and arousal, depicted in Figure 1.3.

The curve is an inverted “U” shape (an approximate parabola) that provides a useful model relating
these two attributes (i.e., performance and arousal). If one exhibits very low arousal, performance will
be minimal. If one exhibits a very high degree of arousal, performance will likely also suffer. However,
if one exhibits a moderate range of arousal, performance will likely be optimal. The model in this case,
as in most cases, does not account for all the data one might collect. The extent to which it accounts for
most of the data is the extent to which the model may be, in general, deemed “useful.” The use of a
model is also enhanced if it can make accurate predictions of future behavior.

As another example of a model, consider the number of O-ring incidents on NASA’s space shuttle
(the fleet is officially, and sadly, retired now) as a function of temperature (Figure 1.4). At very low or
high temperatures, the number of incidents appears to be elevated. A square function seems to ade-
quately model the relationship. Does it account for all points? No. But nonetheless, it provides a fairly

Number of incidents

Low High
Temperature

FIGURE 1.4 Number of O-ring incidents on boosters as a function of temperature.
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good summary of the available data. Some have argued that had NASA had such a model (i.e., essen-
tially the line joining the points) available before Challenger was launched on January 28, 1986, the
launch may have been delayed and the shuttle and crew saved from disaster.” We feature this data in our
chapter on logistic regression.

Why did George Box say that all models are wrong, some are useful? The reason is that even if we
obtain a perfectly fitting model, there is nothing to say that this is the only model that will account for the
observed data. Some, such as Fox (1997), even encourage divorcing statistical modeling as accounting
for deterministic processes. In discussing the determinants of one’s income, for instance, Fox remarks:

I believe that a statistical model cannot, and is not literally meant to, capture the social process by which
incomes are “determined” ... No regression model, not even one including a residual, can reproduce this
process ... The unfortunate tendency to reify statistical models — to forget that they are descriptive sum-
maries, not literal accounts of social processes — can only serve to discredit quantitative data analysis in
the social sciences.

-5

Indeed, psychological theory, for instance, has advanced numerous models of behavior just as bio-
logical theory has advanced numerous theories of human functioning. Two or more competing models
may each explain observed data quite well. Sometimes, and unfortunately, the model we adopt may
have more to do with our sociological (and even political) preferences than anything to do with whether
one is more ‘“correct” than the other. Science (and mathematics, for that matter) is a human activity,
and often theories that are deemed valid or true have much to do with the spirit of the times (the so-
called Zeitgeist) and what the scientific community will actually accept and tolerate as being true.’ Of
course, this is not true in all circumstances, but you should be aware of the factors that make theories
popular, especially in fields such as social science where “hard evidence” can be difficult to come by.
The reason the experiment is often considered the “gold standard” for evidence is because it often (but
not always) helps us narrow down narratives to a few compelling possibilities. In strictly correlational
research, isolating the correct narrative can be exceedingly difficult or nearly impossible, despite which
narrative we wish upon our data the most. Good science requires a very critical eye. Whether the
theory is that of the Big Bang, the determinants of cancer, or theories of bystander intervention, all
of these are narratives to help account for observed data.

1.3 SOCIAL SCIENCES VERSUS HARD SCIENCES

There is often stated a distinction between the so-called “soft” sciences and the “hard” sciences (Meehl,
1967). The distinction, as is true in many cases of so many things, is fuzzy and blurry and requires
deeper analysis to fully understand the issue. The difference between what is “soft” and what is “hard”
science has usually only to do with the object of study, and not with the method of analytical inquiry.

For example, consider what distinguishes the scientist who studies temperature of a human organ-
ism compared to a scientist who studies the self-esteem of adolescents. Their analytical approaches, at
their core, will be remarkably similar. They will both measure, collect data, and subject that data to
curve-fitting or probabilistic analysis (i.e., statistical modeling). Their objects, however, are quite dif-
ferent. Indeed, some may even doubt the measurability of something called “self-esteem” in the first

2 See Friendly (2000, pp. 208-211) for an analysis of the O-ring data. See Vaughan (1996) for an account of the social, political,
and managerial influences at NASA that were also purportedly responsible for the disaster.

3 The reader is strongly encouraged to consult Kuhn’s excellent book The Structure of Scientific Revolutions in which an emi-
nent philosopher of science argues for what makes some theories more longstanding than others and why some theories drop out
of fashion. So-called paradigm shifts are present in virtually all sciences. An awareness of such shifts can help one better put
“theories of the day” into their proper context.
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place. Is self-esteem real? Does it actually exist? At the heart of the distinction, really, is that of meas-
urement. Once measurement of an object is agreed upon, the debate between the hard and soft sciences
usually vanishes. Both scientists, natural and social, are generally aiming to do the same thing, and that
is to understand, document phenomena, and to identify relations among these phenomena. As Hays
(1994) put it so well, the overreaching goal of science, at its core, is to determine what goes with what.
Virtually every scientific investigation you read about has this underlying goal but may operationalize
and express it in a variety of different ways.

Social science is a courageous attempt. Hard sciences are, in many respects, much easier than
the softer social sciences, not necessarily in their subject matter (organic chemistry is difficult), but
rather in what they attempt to accomplish. Studying beats-per-minute in an organism is relatively
easy. It is not that difficult to measure. Studying something called intelligence is much, much harder.
Why? Because even arriving at a suitable and agreeable operational definition of what constitutes
intelligence is difficult. Most more or less agree on what “heart rate” means. Fewer people agree on
what intelligence really means, even if everyone can agree that some people have more of the mysterious
quality than do others. But the study of an object of science should imply that we can actually measure it.
Intelligence, unlike heart rate, is not easily measured largely because it is a construct open to much
scientific criticism and debate. Even if we acknowledge its existence, it is a difficult thing to “tap into.”

Given the difficulty in measuring social constructs, should this then mean the social scientist give up
and not study the objects of his or her craft? Of course not. But what it does mean is that she must be
extremely cautious, conservative, and tentative regarding conclusions drawn from empirical obser-
vations. The social scientist must be up front about the weaknesses of her research and must be very
careful not to overstate conclusions. For instance, we can measure the extent to which melatonin, a
popular sleep aid, reduces the time to sleep onset (i.e., the time it takes to fall asleep). We can perform
experimental trials where we give some subjects melatonin and others none and record who falls asleep
faster. If we keep getting the same results time and time again across a variety of experimental settings,
we begin to draw the conclusion that melatonin has a role in decreasing sleep onset. We may not know
why this is occurring (maybe we do, but I am pretending for the moment we do not), but we can be
reasonably sure the phenomenon exists, that “something” is happening.

Now, contrast the melatonin example to the following question—Do people of greater intelli-
gence, on average, earn more money than those of lesser intelligence? We could correlate a measure
of intelligence to income, and in this way, we are proceeding in a similar empirical (even if not exper-
imental, in this case) fashion as would the natural scientist. However, there is a problem. There is a big
problem. Since few consistently agree on what intelligence is or how to actually measure it, or even
whether it “exists” in the first place, we are unsure of where to even begin. Once we agree on what IQ
is, how it is measured, and how we will identify it and name it, the correlation between IQ and income is
as reputable and respectable as the correlation between such variables as height and weight. It is getting
to the very measurement of IQ that is the initial hard, and skeptics would argue, impossible part. But
we know this already from experience. Convincing a parent that her son has an elevated heart rate is
much easier than convincing her that her son has a deficit in IQ points. One phenomenon is measurable.
The other, perhaps so, but not nearly as easily, or at minimum, agreeably.

Our point is that once we agree on the existence, meaning, and measurement of objects, soft science
is just as “hard” as the hard sciences. If measurement is not on solid ground, no analytical method of its
data will save it. All students of the social (and natural, to some extent) sciences should be exposed to
in-depth coursework on the theory, philosophy, and importance of measurement to their field before
advancing to statistical applications on these objects, since it is in the realm of measurement where the
true controversies of scientific “reputability” usually lay. For general readable introductions to meas-
urement in psychology and the social sciences, the reader is encouraged to consult Cohen, Swerdlik,
and Sturman (2013), Furr and Bacharach (2013), and Raykov and Marcoulides (2011). For a deeper
and philosophical treatment, which includes measurement in the physical sciences as well, consult
Kyburg (2009). McDonald (1999) also provides a relatively technical treatment.
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1.4 IS COMPLEXITY A GOOD DEPICTION OF REALITY?
ARE MULTIVARIATE METHODS USEFUL?

One of the most prominent advances in social statistics is that of structural equation modeling. With
SEM, as we will survey in Chapter 15, one can model complex networks of variables, both measurable
and unmeasurable. Structural equation modeling is indeed one of the most complex of statistical
methods in the toolkit of the social scientist. However, it is a perfectly fair and reasonable question
to ask whether structural equation modeling has helped advance the cause of social science. Has it
increased our knowledge of social phenomena? Advanced as the tool may be statistically, has the tool
helped social science build a bigger and better house for itself?

Such a question is open to debate, one that we will not have here. What needs to be acknowledged
from the outset, however, is that statistical complexity has little, if anything, to do with scientific
complexity or the guarantee of scientific advance. Indeed, the two may even rarely correlate.
A classic scenario is that of the graduate student running an independent-samples ¢-test on well oper-
ationally defined experimental variables, yet feeling somewhat “embarrassed” that he used such a
“simple” statistical technique. In the lab next door, another graduate student is using a complex struc-
tural equation model, struggling to make the model identifiable through fixing and freeing para-
meters at will, yet feeling as though she is more “sophisticated” scientifically as a result of her
use of a complex statistical methodology. Not the case. True, the SEM user may be more sophisti-
cated statistically (i.e., SEM is harder to understand and implement than #-tests), but whether her
empirical project is advancing our state of knowledge more than the experimental design of the stu-
dent using a #-test cannot even begin to be evaluated based on the statistical methodology used. It
must instead be based on scientific merit and the overall strength of the scientific claim. Which sci-
entific contribution is more noteworthy? That is the essential question, not the statistical technique
used. The statistics used rarely have anything to do with whether good science versus bad science
was performed. Good science is good science, which at times may require statistical analysis as a
tool for communicating its findings.

In fact, much of the most rigorous science often requires the most simple and elementary of statis-
tical tools. Students of research can often become dismayed and temporarily disillusioned when they
learn that complex statistical methodology, aesthetic and pleasurable on its own that it may be (i.e.,
SEM models can be fun to work with), still does not solve their problems. Research wise, their pro-
blems are usually those of design, controls, and coming up with good experiments, arguments, and
ingenious studies. Their problems are usually not statistical at all, and in this sense, an overemphasis
on statistical complexity could actually delay their progress to conjuring up innovative, ground-
breaking scientific ideas.

The cold hard facts then are that if you have poor design, weak research ideas, and messy meas-
urement of questionable phenomena, your statistical model will provide you with anticlimactic find-
ings, and will be nothing more than an exercise in the old adage garbage in, garbage out.
Quantitative modeling, sophisticated as it has become, has not replaced the need for strict, rigorous
experimental controls and good experimental design. Quantitative modeling has not made correla-
tional research somehow more “on par” with the gold standard of experimental studies. Even with
the advent of latent variable modeling strategies and methodologies such as confirmatory factor
analysis and structural equation modeling, statistics does not purport to “discover,” for real, hidden
variables. Modeling is simply concerned with the partitioning of variability and the estimation of
parameters. Beyond that, the remainder of the job of the scientist is to know his or her craft and
to design experiments and studies that enlighten and advance our knowledge of a given field. When
applied to sound design and thoughtful investigatory practices, statistical modeling does partake in
this enlightenment, but it does nothing to save the scientist from his or her poorly planned or executed
research design. Statistical modeling, complex and enjoyable as it may be on its own, guarantees
nothing.
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1.5 CAUSALITY

One might say that the ultimate goal of any science is still to establish causal relations, even if classical
“Laplacian” determinism has been somewhat jettisoned by theoretical physicists, which would imply
that there may actually not be “true causes” to events (despite our continued attempts to assign them).
Our search for them may be entirely misguided. Still, and a bit more down to earth, nothing suggests a
stronger understanding of a scientific field than to be able to speak of causation about the phenomena it
studies. However, more difficult than establishing causation in a given research paradigm is that of
understanding what causation means in the first place. There exist several definitions of causality.
Most definitions have at their core that causation is a relation between two events in which the second
event is assumed to be a consequence, in some sense, of the first event.

For example, if I slip on a banana peel and fall, we might hypothesize that the banana peel caused
my fall. However, was it the banana peel that caused my fall, or was it the worn out soles on my shoes
that I was wearing that day that caused the fall? Had I been wearing mountain climbers instead of worn-
out running shoes, I might not have fallen. Who am I to say the innocent banana peel caused my fall?
Causality is hard. Even if it seems that A caused B, there are usually many variables associated with
the problem such that if adjusted or tweaked may threaten the causal claim. Some would say this is
simply a trivial philosophical problem of specifying causality and it is “obvious” from the situation
that the banana peel caused the fall. Nonetheless, it is clear from even such a simple example that cau-
sation is in no way an easy conclusion to draw. Perhaps this is also why it is extremely difficult to
pinpoint true causes of virtually any behavior, natural or social. Hindsight is 20/20, but attributing
causal attributes with any kind of methodological certainty in violent crimes, for instance, usually turns
out to be speculative at best. True, we may accumulate evidence for prediction, but equating that with
causation is under most circumstances the wish, not the reality, of a social theory.

In our brief discussion here we will not attempt to define causality. Books, dissertations, and treatises
have been written exclusively on the topic. At most, what we can do in the amount of space we have is to
simply heed the following advice to the reader—If you are going to speak of causation with regard to
your research, be prepared to back up your theory of causation to your audience. It is simply not
enough to say A causes B without subjecting yourself to at least some of the philosophical issues that
accompany such a statement. Otherwise, it is strongly advised that you avoid words such as “cause” in
hypothesizing or explaining results and findings. Relations and predictions are much epistemologi-
cally “safer” words to use, less prone to critique ending in quicksand. For a brief, but enlightening dis-
cussion of causality in the social sciences, see Fox (1997, pp. 3—14). For a more thorough treatment of
the subject as it relates to structural equation models, see Mulaik (2009, pp. 63—117). Even a brief study
of the philosophy of science goes a long way to understanding the complexities involved in using
“causal” statements in research. These issues are not nearly as simple as they may at first appear.

1.6 THE NATURE OF MATHEMATICS: MATHEMATICS
AS A REPRESENTATION OF CONCEPTS

Ian Stewart (1995) said it best when he wrote that the mathematician is not a juggler of numbers, he is a
juggler of concepts. The greatest ambivalence to learning statistical modeling experienced by students
outside (and even inside, I suppose) the mathematical sciences is that of the presumed mathematical
complexity involved in such pursuits. Who wants to learn a mathematically-based subject such as
statistics when one has “never been good at math?”

The first step in this pursuit is to critically examine assumptions and prior learned beliefs that
have become implicit. One way to help “demystify” mathematics and statistics is to challenge your
perception of what mathematics and statistics actually are in the first place. It is of great curiosity that



THE NATURE OF MATHEMATICS: MATHEMATICS AS A REPRESENTATION OF CONCEPTS 9

so many students claim to dislike mathematics and statistics, yet at the same time cannot verbalize just
what mathematics and statistics actually are, and then even worse, proceed to engage in real-life activ-
ities that utilize very much the same analytical cognitive capacities as would be demanded from doing
mathematics and statistics!

More than likely, the “dislike” of these subjects has more to do with the perceptions one has learned
to associate with these subjects than with an inherent ontological disdain for them. Human beings are
creatures of psychological association. Any dislike of anything without knowing what that thing is in
the first place is almost akin to disliking a restaurant dish you have never tried. You cannot dislike
something until you at least know something about it and open your mind to new possibilities of what
it might be that you are forming opinions about. Not to sound overly “Jamesian,” (the analogy isn’t
perfect, but it’s close) but perhaps you are afraid of mathematics because of your fear of it rather than
the mathematics itself. That is, you run, not because of the mathematics, but because of the fear. If you
accept that you are yet unsure of what mathematics is, and will not judge it until you are knowledgeable
of it, it may delay derogatory opinion about it. It is only when we assume we know something (to
some extent, at least) that we usually feel free to judge and evaluate it. Keep your perceptions open
to revision, and what you may find is that what was disliked yesterday curiously becomes likable today,
simply because you have now learned more about what that something actually is. But to learn more
about it, you need to first drop, or at minimum suspend, previously held beliefs about it. Have an open
mind from the outset, and refresh that mindset each time you open a book or attend a lecture in a course.

The first point is that statistics is not mathematics. Statistics is a discipline unto itself that uses
mathematics, the way physics uses mathematics, and the way that virtually all of the natural and social
sciences use mathematics. Mathematics is the tool statisticians use to express their statistical ideas, and
statistics is the tool that scientists use to help make sense of their research findings. The field of the-
oretical or mathematical statistics is heavily steeped in theorem-building and proofs. Applied sta-
tistics, of the kind featured in this book, is definitely not. Thus, any fear of real mathematics can be
laid to rest, because you will find no such mathematics in this book. Upon browsing this book, if you
are of the opinion that it contains “lots of math,” then quite simply, you do not know what “lots of
math” looks like. Rest assured, the mathematics in this book is simply used as a vehicle for understand-
ing statistics.

Mathematics and statistics are not things “mysterious” that can only be grasped by those with higher
mental faculties. A useful working definition might be that mathematics is a set of well-defined and
ever-expanding rules and consequences about symbolic abstract objects based on fundamental
assumptions called axioms. The axioms of mathematics are typically assumed to be true without need-
ing to be proved. Theorems and other results built on such axioms usually require proof. What is a
proof? It is an analytical argument for why a proposition should be considered true. Any given proof
usually relies on other theorems that have already been proven to be true. Make no mistake, mathe-
matics is a very deep field of intellectual endeavor and activity. However, expecting something to
be deeper than it is can also lead you to just as well not understand it. Sometimes, if you are not under-
standing something, it may very well be that you are looking far beyond what there is to be understood.
If you retreat in your expectations slightly of what there is to see, it sometimes begins to make more
sense. Thinking “too deep” where such depth is not required or encouraged, is a peril. Many “bright”
students have this “gift” of critical analysis, and to understand a concept, need to actually retreat some-
what in their depth of inquiry (at least for the moment).

For a general overview of the nature of mathematics, the reader is encouraged to consult Courant,
Robbins, and Stewart (1996), and for an excellent introduction to basic mathematical analysis, Labarre
(1961). Hamming (1985) is another good introduction to the field of mathematics, as well as Aleksan-
drov, Kolmogorov, and Lavrent’ev (1999). For more philosophical treatments, the reader should con-
sult Dunham (1994) and Stewart (1995). For an in-depth and very readable history of mathematics,
consult Boyer and Merzbach (1991).
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1.7 AS A SCIENTIST, HOW MUCH MATHEMATICS DO YOU NEED TO KNOW?

The answer to this question is, of course, as much as possible, for working through problems of any
kind can only serve to hone your analytical and deductive abilities. Even working through problems
completely unrelated to statistics can help your statistical abilities, because they give you practice in
“figuring things out.” However, that answer is, of course, a naive if not idealistic one, since there is only
so much time available for study and the study of statistics must be balanced by your own study of your
chosen field.

For example, if the biology student became immersed in mathematics and statistics full-time, then
that student would no longer be a student of biology. It can be exceedingly difficult to apply a sta-
tistical technique and interpret the results of such a technique in a field for which you are not famil-
iar. If you are unaware of the substantive objects you are working with, that is, the “stuff” on which
the statistics are being applied, then regardless of your quantitative expertise, you will often have
difficulty interpreting the scientific result. Likewise, if spending too much time computing
higher-order derivatives, the student of animal learning, for instance, will have little time remaining
to study the learning patterns of the rats he is conditioning, or to speculate on theoretical advance-
ments in his field. Hence, a “happy medium” is required that will balance your study of your sub-
stantive area along with the technical quantitative demands of your field of study. Indeed, even for
those who specialize exclusively in statistics, the American Statistical Association strongly advises
aspiring statisticians to choose a field of application. As a researcher, you will be expected to apply
modeling techniques that are quite advanced (entire courses are devoted to the statistical technique
you may be applying), and so you will face the opposite problem, that of choosing to specialize in
statistics (to some extent) so that you may better understand the phenomena of your own science.
Hence, regardless of whether one is coming from a mathematics or science background, one should
aspire for a healthy mix of scientific and statistical expertise. Computing experience (e.g., R, SPSS,
SAS, etc.) should also be part of your “repertoire” of skills. As an applied scientist, you should prob-
ably find yourself in the data science or traditional research intersections in the following Venn
diagram.
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Source: From Drew Conway, THE DATA SCIENCE VENN DIAGRAM, Sep 30, 2010. Reproduced
with permission from Drew Conway.
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1.8 STATISTICS AND RELATIVITY

Statistical thinking is all about relativity. Statistics are not about numbers, they are about distributions
of numbers (Green, 2000, personal communication). Rarely in statistics, or science for that matter, do
we evaluate things in a vacuum.

Consider a very easy example. You board an airplane destined to your favorite vacation spot. How
talented is the pilot who is flying your airplane? Is he a “good” pilot or a “bad” pilot? One would hope
he is “good enough” to fulfill his duties and ensure your and other passengers’ safety. However,
when you start thinking like a statistician, you may ponder the thought of how good of a pilot he
is relative to other pilots. Where on the curve does your pilot fall? In terms of his or her skill,
the pilot of an airplane can be absolutely good, but still relatively poor. Perhaps that pilot falls
on the lower end of the talent curve for pilots. The pilot is still very capable of flying the plane, they
have passed an absolute standard, but he or she just isn’t quite as good as most other pilots (see
Figure 1.5).

We can come up with a lot of other examples to illustrate the absolute versus relative distinc-
tion. If someone asked you whether you are intelligent, ego aside, as a statistician, you may
respond “relative to who?” Indeed, with a construct like 1Q, relativity is all we really have. What
does absolute intelligence look like? Should our species discover aliens on another planet one day,
we may need to revise our definition of intelligence if such are much more (or much less) advanced
than we are. Though of course, this would assume we have the intelligence to comprehend that
their capacities are more than ours, a fact not guaranteed and hence another example of the trap
of relativity.

Relativity is a benchmark used to evaluate much phenomena, from intelligence to scholastic
achievement to prevalence of depression, and indeed much of human and nonhuman behavior. Under-
standing that events witnessed could be theorized to have come from known distributions (like the
talent distribution of pilots) is a first step to thinking statistically. Most phenomena have distributions,
either known or unknown. Statistics, in large part, is a study of such distributions.

Is your pilot absolutely
skilled but relatively
unskilled?

Pilot
criterion

-4 -2 0 2 4

FIGURE 1.5 The “pilot criterion” must be met for any pilot to be permitted to fly your plane. However, of those
skilled enough to fly, your pilot may still lay at the lower end of the curve. That is, your pilot may be absolutely
good, but relatively poor in terms of skill.
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1.9 EXPERIMENTAL VERSUS STATISTICAL CONTROL

Perhaps most pervasive in the social science literature is the implicit belief held by many that methods
such as regression and analysis of covariance allow one to “control” variables that would otherwise
not be controllable in the nonexperimental design. As is emphasized throughout this book, statistical
methods, whatever the kind, do not provide methods of controlling variables, or “holding variables
constant” as it were. Not in the real way. To get these kinds of effects, you usually need a strong
and rigorous bullet-proof experimental design.

It is true, however, that statistical methods do afford a method, in some sense, for presuming (or
guessing) what might have been had controls been put into place. For instance, if we analyze the
correlation between weight and height, it may make sense to hold a factor such as age “constant.” That
is, we may wish to partial out age. However, partialling out the variability due to age in the bivariate
correlation is not equivalent to actually controlling for age. The truth of the matter is that our statistical
control is telling us nothing about what would actually be the case had we been able to truly control age,
or any other factor. As will be elaborated on in Chapter 8 on multiple regression, statistical control is
not a sufficient “proxy” whatsoever for experimental control. Students and researchers must keep this
distinction in mind before they throw variables into a statistical model and employ words like “control”
(or other power and action words) when interpreting effects. If you want to truly control variables, to
actually hold them constant, you usually have to do experiments. Estimating parameters in a statistical
model, confident that you have “controlled” for covariates, is simply not enough.

1.10 STATISTICAL VERSUS PHYSICAL EFFECTS

In the establishment of evidence, either experimental or nonexperimental, it is helpful to consider the
distinction between statistical versus physical effects. To illustrate, consider a medical scientist who
wishes to test the hypothesis that the more medication applied to a wound, the faster the wound heals.
The statistical question of interest is—Does amount of medication predict the rate at which a
wound heals? A useful statistical model might be a linear regression where amount of medication
is the predictor and rate of healing is the response. Of course, one does not “need” a regression anal-
ysis to “know” whether something is occurring. The investigator can simply observe whether the
wound heals or not, and whether applying more or less medication speeds up or slows down the
healing process. The statistical tool in this case is simply used to model the relationship, not deter-
mine whether or not it exists. The variable in question is a physical, biological, “real” phenomenon.
It exists independent of the statistical model, simply because we can see it. The estimation of a sta-
tistical model is not necessarily the same as the hypothesized underlying physical process it is
seeking to represent.

In some areas of social science, however, the very observance of an effect cannot be realized without
recourse to the statistics used to model the relationship. For instance, if I correlate self-esteem to intel-
ligence, am I modeling a relationship that I know exists separate from the statistical model, or, is the
statistical model the only recourse I have to say that the relationship exists in the first place? Because of
mediating and moderating relationships in social statistics, an additional variable or two could dras-
tically modify existing coefficients in a model to the point where predictors that had an effect before
such inclusion no longer do after. As we will emphasize in our chapters on regression:

When you change the model, you change parameter estimates, you change effects. You are never,
ever, testing individual effects in the model. You are always testing the model, and hence the inter-
pretation of parameter estimates must be within the context of the model.
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This is one of the general problems of purely correlational research with nonphysical or “nonor-
ganic” variables. It may be more an exercise in variance partitioning than it is in analyzing “true”
substantive effects, since the effects in question may be simply statistical artifacts. They may have little
other bases. Granted, even working with physical or biological variables this can be a problem, but it
does not rear its head nearly as much. To reiterate, when we model a physical relationship, we have
recourse to that physical relationship independent of the statistical model, because we have evidence
that the physical relationship exists independent of the model. If we lost our modeling software, we
could still “see” the phenomenon. In many models of social phenomena, however, the addition of
one or two covariates in the model can make the relationship of most interest “disappear” and because
of the nature of measured variables, we may no longer have physical recourse to justify the original
relationship at all, external to the statistical model. This is why social models can be very “neurotic,”
frustrating, and context-dependent. Self-esteem may predict achievement in one model, but in another,
it does not. Many areas of psychological, political, and economic research, for instance, implicitly
operate on such grounds. The existence of phenomena is literally “built” on the existence of the sta-
tistical model and often does not necessarily exist separate from it, or at least not in an easily observed
manner such as the healing of a wound. Social scientists working in such areas, if nothing else, must be
aware of this. Estimating a statistical model may or may not correspond to actual physical effects
it is seeking to account for.

1.11 UNDERSTANDING WHAT “APPLIED STATISTICS” MEANS

In this day and age of extraordinary computing power, the likes of which will probably seem laughable
in even a decade from the date of publication of this book, with a few clicks of the mouse and a software
manual, one can obtain a principal components analysis, factor analysis, discriminant analysis,
multiple regression, and a host of other relatively theoretically advanced statistical techniques in a
matter of seconds. The advance of computers and especially easy-to-use software programs has made
performing statistical analyses seemingly quite easy because even a novice can obtain output from a
statistical procedure relatively quickly. One consequence of this however is that there seems to have
arisen a misunderstanding in some circles that “applied statistics” somehow equates with the idea of
“statistics without mathematics” or even worse, ‘“‘statistics via software.”

The word “applied” in applied statistics should not be understood to necessarily imply the use of
computers. What “applied” should mean is that the focus on the writing is on how to use statistics in the
context of scientific investigation, oftentimes with demonstrations with real or hypothetical data.
Whether that data is analyzed “by hand” or through the use of software does not make one approach
more applied than the other. If analyzed via computer, what it does make it is more computational
compared to the by-hand approach. Indeed, there is a whole field of study known as computational
statistics that features a variety of software approaches to data analysis. For examples, see Dalgaard
(2008), Venables and Ripley (2002), and Friendly (1991, 2000) for an emphasis on data visualization.
Fox (2002) also provides good coverage of functions in S-Plus and R. And of course, computer sci-
ence and the machine-learning movement have contributed greatly to software development and our
ability to analyze data quickly and efficiently via algorithms, and implement new and classic proce-
dures that would be impossible otherwise.

On the opposite end of the spectrum, if a course in statistics is advertised as not being applied, then
most often what this implies is that the course is more theoretical or mathematical in nature with a focus
on proof and the justification of results. In essence, what this really means is that the course is usually
more abstract than what would be expected in an applied course. In such theoretical courses, very
seldom will one see applications to real data, and instead the course will feature proofs of essential
statistical theorems and the justification of analytical propositions. Hence, this is the true distinction
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between applied versus theoretical courses. The computer has really nothing to do with the distinc-
tion other than facilitating computation in either field.

REVIEW EXERCISES

1.1.

1.2
1.3.

1.4.

1.5.
1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

Distinguish between rationalism versus empiricism in accounting for different types of
knowledge, and why being a rationalist or empiricist exclusively is usually quite unreasonable
and unrealistic.

Briefly discuss what is meant by a model in scientific research.

Compare and contrast the social versus so-called “hard” sciences. How are they similar? Dif-
ferent? In this context, discuss the statement “Social science is a courageous attempt.”

Compare and contrast a physical quantity such as weight to a psychological one such as intel-
ligence. How is one more “real” than the other? Can they be considered to be equally real? Why
or why not?

Why would some people say that an attribute such as intelligence is not measurable?

Discuss George Box’s infamous statement “All models are wrong, some are useful.” What are
the implications of this for your own research?

Consider an example from your own area of research in which two competing explanations, one
simple, and one complex, may equally well account for observed data. Then, discuss why the
simpler explanation may be preferable to the more complex. Are there instances where the
more complex explanation may be preferable to the simpler? Discuss.

Briefly discuss why using statistical methods to make causal statements about phenomena
may be unrealistic and in most cases unattainable. Should the word “cause” be used at all in
reference to nonexperimental social research?

Discuss why it is important to suspend one’s beliefs about a subject such as applied statistics or
mathematics in order to potentially learn more about it.

Statistical thinking is about relativity. Discuss what this statement means with reference to the
pilot example, then by making up an example of your own.

Distinguish between experimental versus statistical control, and why understanding the dis-
tinction between them is important when interpreting a statistical model.

Distinguish between statistical versus physical effects and how the effect of a medication treat-
ing a wound might be considered different in nature from the correlation between intelligence
and self-esteem.

Distinguish between the domains of applied versus theoretical statistics.

Further Discussion and Activities

1.14.

William of Ockham (c. 1287-1347) is known for his infamous principle Ockham’s razor,
which essentially states that all things equal, given competing theories accounting for the same
data, the simpler theory is the better theory. In other words, complex explanations for phenom-
ena that could be explained by simpler means are not encouraged. Read Kelly (2007), and
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1.15.

1.16.

1.17.

1.18.

evaluate the utility of Ockham’s razor as it applies to statistical modeling. Do you agree that the
simpler statistical model is usually preferred over the more complex when it comes to modeling
social phenomena? Why or why not?

Read Kuhn (2012). Discuss what Kuhn means by normal science and the essence of what con-
stitute paradigm shifts in science.

As briefly discussed in this chapter, statistical control is not the same thing as experimental
control or that of a control group. Read Dehue (2005), and provide a brief commentary regard-
ing what constitutes a real control group versus the concept of statistical controls.

It was briefly discussed in the chapter potential problems with using the word cause or speaking
of causality at all when describing findings in the social and (often) natural sciences. The topic
of causality is a philosopher’s career and a scientist’s methodological nightmare. Epidemiol-
ogy, the study of diseases in human and other populations, has, like so many other disciplines,
had to grapple with the issue of causation. For example, if one is to make the statement smoking
causes cancer, one must be able to defend one’s philosophical position in advancing such a
claim. Not everyone who smokes gets cancer. Further, some who smoke the most never get
the disease, whereas some who smoke the least do. Tobacco companies have historically relied
on the fact that not everyone who smokes gets cancer as a means for challenging the smoking-
cancer “link.” As an introduction to these issues, as well as a brief history of causal interpreta-
tions, read Morabia (2005). Summarize the historical interpretations of causality, as well as how
epidemiology has generally dealt with the problem of causation.

Models are used across the sciences to help account for empirical observations. How to best
relate mathematical models to reality is not at all straightforward. Read Hennig (2009), and
discuss Hennig’s account of the relation between reality and mathematical models. Do you
agree with this account? What might be some problems with it?
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In spite of the immense amount of fruitful labour which has been expended in its practical applications, the
basic principles of this organ of science are still in a state of obscurity, and it cannot be denied that, during
the recent rapid development of practical methods, fundamental problems have been ignored and funda-
mental paradoxes left unresolved.

(Fisher, 1922a, p. 310)

Our statistics review includes topics that would customarily be seen in a first course in statistics at the
undergraduate level, but depending on the given course and what was emphasized by the instructor, our
treatment here may be at a slightly deeper level. We review these principles with demonstrations in
R and SPSS where appropriate. Should any of the following material come across as entirely
“new,” then a review of any introductory statistics text is recommended. For instance, Kirk (2008),
Moore, McCabe, and Craig (2014), Box, Hunter, and Hunter (1978) are relatively nontechnical
sources, whereas Degroot and Schervish (2002), Wackerly, Mendenhall III, and Scheaffer (2002)
along with Evans and Rosenthal (2010) are much deeper and technically dense. Casella and Berger
(2002), Hogg and Craig (1995) along with Shao (2003) are much higher-level theoretically oriented
texts targeted mainly at mathematical and theoretical statisticians. Other sources include Panik (2005),
Berry and Lindgren (1996), and Rice (2006). For a lighter narrative on the role of statistics in social
science, consult Abelson (1995).

Because of its importance in the interpretation of evidence, we close the chapter with an easy but
powerful demonstration of what makes a p-value small or large in the context of statistical significance
testing and the testing of null hypotheses. It is imperative that as a research scientist, you are knowl-
edgeable of this material before you attempt to evaluate any research findings that employ statistical
inference.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.

© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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2.1 DENSITIES AND DISTRIBUTIONS

When we speak of density as it relates to distributions in statistics, we are referring generally to the-
oretical distributions having area under their curves. There are numerous probability distributions or
density functions. Empirical distributions, on the other hand, rarely go by the name of densities. They
are in contrast “real” distributions of real empirical data. In some contexts, the identifier normal dis-
tribution may be given without reference as to whether one is referring to a density or to an empirical
distribution. It is usually evident by the context of the situation which we are referring to. We survey
only a few of the more popular densities and distributions in our discussion that follows.
The univariate normal density is given by:

f (i, 0%) = L -Gw?poe?

V2ro?

where,
* u is the population mean for the given density,
« 67 is the population variance,
* 7 is a constant equal to approximately 3.14,
* ¢ is a constant equal to approximately 2.71,
* x; is a given value of the independent variable, assumed to be a real number.

When y is 0 and o¢° is 1, which implies that the standard deviation ¢ is also equal to 1

(i.e., V62 = 6 = 1), the normal distribution is given a special name. It is called the standard normal
distribution and can be written more compactly as:
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Notice thatin (2.1), e~ (®i=#)"/26 = ¢=(i=0)/2(1) where u is now 0 and 62 is now 1. Note as well that the
density depends only on the absolute value of x;, because both x; and —x; give the same value x7; the
greater is x; in absolute value, the smaller the density at that point, because the constant e is raised to the
negative power —x7/2.

The standard normal distribution is the classic z-distribution whose areas under the curve are
given in the appendices of most statistics texts, and are more conveniently computed by software.
An example of the standard normal is featured in Figure 2.1.

Scores in research often come in their own units, with distributions having means and variances
different from O and 1. We can transform a score coming from a given distribution with mean p
and standard deviation ¢ by the familiar z-score:

A z-score is expressed in units of the standard normal distribution. For example, a z-score of +1 denotes
that the given raw score lay one standard deviation above the mean. A z-score of —1 means that the
given raw score lay one standard deviation below the mean. In some settings (such as school psychol-
ogy), t-scores are also useful, having a mean of 50 and standard deviation of 10. In most contexts,
however, z-scores dominate.
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FIGURE 2.1 Standard normal distribution with shaded area from —1 to +1 standard deviations from the mean.

A classic example of the utility of z-scores typically goes like this. Suppose two sections of a sta-
tistics course are being taught. John is a student in section A and Mary is a student in section B. On the
final exam for the course, John receives a raw score of 80 out of 100 (i.e., 80%). Mary, on the other
hand, earns a score of 70 out of 100 (i.e., 70%). At first glance, it may appear that John was more
successful on his final exam. However, scores, considered absolutely, do not allow us a comparison
of each student’s score relative to their class distributions. For instance, if the mean in John’s class was
equal to 85% with a standard deviation of 2, this means that John’s z-score is:

xi—p _ 80-385

-2.5
o 2

=

Suppose that in Mary’s class, the mean was equal to 65% also with a standard deviation of 2. Mary’s z-
score is thus:

xi—p _70-65

2.5
c 2

Z:

As we can see, relative to their particular distributions, Mary greatly outperformed John. Assuming
each distribution is approximately normal, the density under the curve for a normal distribution with
mean 0 and standard deviation of 1 at a score of 2.5 is:

> dnorm (2.5, 0, 1)
[1] 0.017528

where dnorm s the density under the curve at 2.5. This is the value of f{x) at the score of 2.5. What then
is the probability of scoring 2.5 or greater? To get the cumulative density up to 2.5, we compute:

> pnorm(2.5, 0, 1)
[1] 0.9937903

The given area is represented in Figure 2.2. The area we are interested in is that at or above 2.5 (the
area where the arrow is pointing). Since we know the area under the normal density is equal to 1, we can
subtract pnorm (2.5, 0, 1) from I:

> l-pnorm(2.5, 0, 1)
[1] 0.006209665
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FIGURE 2.2 Shaded area under the standard normal distribution at a z-score of up to 2.5 standard deviations.

We can see then the percentage of students scoring higher than Mary is in the margin of approx-
imately 0.6% (i.e., multiply the proportion by 100). What proportion of students scored better than John
in his class? Recall that his z-score was equal to —2.5. Because we know the normal distribution is
symmetric, we already know the area lying below —2.5 is the same as that lying above 2.5. This means
that approximately 99.38% of students scored higher than John. Hence, we see that Mary drastically
outperformed her colleague when we consider their scores relative to their classes. Be careful to note
that in drawing these conclusions, we had to assume each score (that of John’s and Mary’s) came from a
normal distribution. The mere fact that we transformed their raw scores to z-scores in no way nor-
malizes their raw distributions. Standardization standardizes, but it does not normalize.

One can also easily verify that approximately 68% of cases in a normal distribution lie within —1 and
+1 standard deviations, while approximately 95% of cases lie within —2 and +2 standard deviations.

2.1.1 Plotting Normal Distributions

We can plot normal densities in R by simply requesting the lower and upper limit on the abscissa:

> X <- seqg(from = -3, to = +3, length.out = 100)
> plot (x, dnorm(x))
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Normal

Distributions (and densities) of a single variable typically go by the name of univariate distributions
to distinguish them from distributions of two (bivariate) or more variables (multivariate).
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For example, we consider some of Galton’s data on parent and child heights (the height of the chil-
dren were measured when they were adults, not actual toddlers). Some of Galton’s data appears below,
retrieved from the HistData package (Friendly, 2014) in R:

> install.packages (“HistData”)
> library (HistData)
> attach(Galton)

> Galton

parent child
1 70.5 61.7
2 68.5 61.7
3 65.5 61.7
4 64.5 61.7
5 64.0 61.7
6 67.5 62.2
7 67.5 62.2
8 67.5 62.2
9 66.5 62.2
10 66.5 62.2

We first install the package using the install.packages function. The 1ibrary statement
loads the package HistData into R’s search path. From there, we at tach the Galton data to insert
the object (dataframe) into the search list. We generate a histogram of parent height:

> hist (parent, main = "Histogram of Parent Height")

Histogram of parent height
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One can overlay a normal density over an empirical plot to show how closely observed data match
that of a theoretical normal distribution, as was done by Fisher in 1925 displaying a distribution of the
heights of 1375 women (see Figure 2.3, taken from Classics in the History of Psychology'). R.A.
Fisher is usually regarded as the father of modern statistics and among his greatest contributions
was the publication of Statistical Methods for Research Workers in 1925 in which he discussed such
topics as tests of significance, correlation coefficients, and the analysis of variance.

! Classics in the History of Psychology is an on-line educational resource hosted by Christopher D. Green of York University in
Toronto, Canada. It contains a huge selection of milestone papers and articles in the history of psychology. It can be accessed via
http://psychclassics.yorku.ca/.


http://psychclassics.yorku.ca/Rozeboom/

DENSITIES AND DISTRIBUTIONS 21

We can see that the normal density serves as a close, and very convenient, approximation to empir-
ical data. Indeed, the normal density has figured prominent in the history of statistics largely because it
serves as a useful model for many phenomena, and also because it provides a very convenient starting
point for much work in theoretical statistics. Oftentimes the assumption of normality will be invoked
in a derivation because it makes the problem simpler and easier to solve.

2.1.2 Binomial Distributions

The binomial distribution is given by:
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where,
« p(r) is the probability of observing r occurrences out of n possible occurrences,’

* p is the probability of a “success” on any given trial, and
* 1 —p is the probability of a failure on any given trial, often simply referred to by “g” (i.e.,
q=1-p).

The binomial setting provides an ideal context to demonstrate the essentials of hypothesis-testing
logic, as we will soon see. In a binomial setting, the following conditions must hold:

* The variable under study must be binary in nature. That is, the outcome of the experiment can resultin
only one category or another. That is, the outcome categories are mutually exclusive. For instance,
the flipping of a coin has this characteristic, because the coin can either come up “head” or “tail” and
nothing else (yes, we are ruling out the possibility thatitlands on its side, and I think it is safe to do so).

* The probability of a “success” on each trial remains constant (or stationary) from trial to trial. For
example, if the probability of head is equal to 0.5 on our first flip, we assume it is also equal to 0.5
on the second, third, fourth flips, and so on.

* Each trial is independent of each other trial. That is, the fact that we get a head on our first flip of
the coin in no way changes the probability of getting a head or tail on the next flip, and so on for
the other flips (i.e., no outcome is ever “due” to occur, as the gambler sometimes believes).

We can easily demonstrate hypothesis testing in a binomial setting using R. For instance, let us
return to the coin-flipping experiment. Suppose you would like to know the probability of obtaining
two heads on five flips of a fair coin, where each flip is assumed to have a probability of heads equal to
0.5. In R, we can compute this as follows:

> dbinom(2, size = 5, prob = 0.5)
[1] 0.3125

2We can also extend the binomial distribution to one in which instead of n trials giving rise to r occurrences, we have 7 trials
giving rise to outcomes in k categories:

= = I’l' X1 X2 Xk
P(X) _p(x19x27 ...,-Xk) = mpl DY Dy

where x is now a vector of random variables X = [x|, X, ..., X'
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FIGURE 2.3 Fisher’s overlay of normal density on empirical observations. Source: Fisher (1925, 1934).

where dbinom calls the “density for the binomial,” “2” is the number of successes we are specifying,
“size = 5” represents the number of trials we are taking, and “prob = 0.5” is the probability of success on
any given trial, which recall is assumed constant from trial to trial.

Suppose instead of two heads, we were interested in the probability of obtaining five heads:

> dbinom (5, size = 5, prob = 0.5)
[1] 0.03125

Notice that the probability of obtaining five heads out of five flips on a fair coin is quite a bit less
than that of obtaining two heads. We can continue to obtain the remaining probabilities and obtain the
complete binomial distribution for this experiment:

Heads 0 1 2 3 4 5
Prob 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125 >°1.0

A plot of this binomial distribution is given in Figure 2.4.
Suppose that instead of wanting to know the probability of getting two heads out of five flips,
we wanted to know the probability of getting two or more heads out of five flips. Because

FIGURE 2.4 Binomial distribution for the probability of the number of heads on a fair coin.
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the events 2 heads, 3 heads, 4 heads, and 5 heads are mutually exclusive events, we can add their
probabilities by the probability rule that says p(U2 A;) = > p(A;): 0.3125+0.3125+0.15625 +
i=1

0.03125 = 0.8125. Hence, the probability of obtaining two or more heads on a fair coin on five
flips is equal to 0.8125.

Binomial distributions are useful in a great variety of contexts in modeling a wide number of phe-
nomena. But again, remember that the outcome of the variable must be binary, meaning it must have
only two possibilities. If it has more than two possibilities or is continuous in nature, then the binomial
distribution is not suitable. Binomial data will be featured further in our discussion of logistic regres-
sion in Chapter 10.

One can also appreciate the general logic of hypothesis testing through the binomial. If our null
hypothesis is that the coin is fair, and we obtain five heads out of five flips, this result has only a
0.03125 probability of occurring. Hence, because the probability of this data is so low under the model
that the coin is fair, we typically decide to reject the null hypothesis and infer the statistical alternative
hypothesis that p(H) # 0.5. Substantively, we might infer that the coin is not fair, though this substan-
tive alternative also assumes it is the coin that is to “blame” for it coming up five times heads. If the
flipper was responsible for biasing the coin, for instance, or a breeze suddenly came along that helped
the result occur in this particular fashion, then inferring the substantive alternative hypothesis of
“unfairness” may not be correct. Perhaps the nature of the coin is such that it is fair. Maybe the flipper
or other factors (e.g., breeze) are what are ultimately responsible for the rejection of the null. This is one
reason why rejecting null hypotheses is quite easy, but inferring the correct substantive alternative
hypothesis (i.e., the hypothesis that explains why the null was rejected) is much more challenging
(see Denis, 2001). As concluded by Denis, “Anyone can reject a null, to be sure. The real skill
of the scientist is arriving at the true alternative.”

The binomial distribution is also well-suited for comparing proportions. For details on how to run
this simple test in R, see Crawley (2013, p. 365). One can also use binom. test in R to test simple
binomial hypotheses, or the prop . test for testing null hypotheses about proportions. A useful test
that employs binomial distributions is the sign test (see Siegel and Castellan, 1988, pp. 80-87 for
details). For a demonstration of the sign test in R, see Denis (2020).

2.1.3 Normal Approximation

Many distributions in statistics can be regarded as limiting forms of other distributions. What this
statement means can be best demonstrated through an example of how the binomial and normal dis-
tributions are related. When the number of discrete categories along the x-axis grows larger and larger,
the areas under the binomial distribution more and more resemble the probabilities computed under the
normal curve. It is in this sense that for a large number of trials on the binomial, it begins to more
closely approximate the normal distribution.

As an example, consider once again the binomial distribution for n =5, p = 0.5, but this time with a
normal density overlaying the binomial (Figure 2.5).

We can see that the normal curve “approximates” the binomial distribution, though perhaps not
tremendously well for only five trials. If we increase the number of trials, however, to say, 20, the
approximation is much improved. And when we increase the number of trials to 100, the binomial
distribution looks virtually like a normal density. That is, we say that the normal distribution is
the limiting form of the binomial distribution.

We can express this idea more formally. If the number of trials » in a binomial experiment is made
large, the distribution of the number of successes x will tend to resemble a normal distribution. That is,
the normal distribution is the limiting form of a binomial distribution as n — oo for a fixed p (and where
q =1 —p), where E(x,) is the expectation of the random variable x; (the meaning of “random variable”
will be discussed shortly):
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FIGURE 2.5 Binomial distributions approximated by normal densities for 5 (far left), 20 (middle), and 100 trials
(far right).
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Notice that in a z-score calculation using the population mean y, in the numerator, we are actually cal-
culating the difference between the obtained score and the expectation, E(x;). We can change this to a
binomial function by replacing the expectation u with the expectation from a binomial distribution, that
is, np, where np is the mean of a binomial distribution. Similarly, we replace the standard deviation
from a normal distribution with the standard deviation from the binomial distribution, \V/1pq. As n
grows infinitely large, the normal and the binomial probabilities become identical for any standardized
interval.”

Z:

2.1.4 Joint Probability Densities: Bivariate and Multivariate Distributions

A univariate density expresses the probability of a single random variable within a specified interval of
values along the abscissa. A joint probability density, analogous to a joint probability, expresses the
probability of simultaneously observing two random variables over a given interval of values. The
bivariate normal density is given by:

_ 1 1 w-m)? L —p)n-m) | (a-m)’
f(M,XZ)_meXp{_z(l_pZ)[ 21 -2 ; =+ 22 ]}

(2 01072 05
where p? is the squared Pearson correlation coefficient between x; and x,.
When plotted, the bivariate density resembles a pile of raked leaves in the Autumn. A plot generated
in R is given in Figure 2.6.
Empirical bivariate distributions (as opposed to bivariate densities) are those showing the joint
occurrence on two variables. For instance, again using Galton’s data, we plot parent height by child
height, in which we also fit both regression lines (see Chapter 7) using 1m:

> plot (parent, child, main = "Bivariate Plot of Parent and Child Height")
> abline (lm(parent~child))
> abline (1m(child~parent))

3 For a more technical demonstration of how and why this convergence occurs, see Proschan (2008).
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FIGURE 2.6 Bivariate density. Source: Data from Plotting bivariate normal distributions, Mon Sep 1 2003.
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Note the relation between parent height and child height. Recall that a mathematical relation is a
subset of the Cartesian product. The Cartesian product in the plot consists of all theoretically possible
parent—child pairings. The fact that shorter than average parents tend to have shorter than average chil-
dren and taller than average parents tend to have taller than average children reveals the linear form of
the mathematical relation. In the plot are regression lines for child height as a function of parent height
and parent height as a function of child height. Computing both the mean of child and of parent, we
obtain:

> mean (child)
[1] 68.08847
> mean (parent)
[1] 68.30819
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Notice that both regression lines, as they are required to do whatever the empirical data, pass
through the means of each variable. The reason for this will become clearer in Chapter 7.
Turning now to multivariate distributions, the multivariate density is given by:

1 -1
g(xi) = EE—— ¢ S DDA C S Dk
(\/2-7;)17|2|1/2

where p is the number of variables and |Z| is the determinant of the population covariance matrix, which
can be taken as a measure of generalized variance since it incorporates both variances and covariances.
Refer to the Appendix for examples of computing covariance and correlation matrices. Multivariate dis-
tributions represent the joint occurrence of three or more variables, and thus are quite difficult to visualize.
One way, however, of representing a density in three dimensions is attempted in Figure 2.7.

Most multivariate procedures make some assumption regarding the multivariate normality of
sampling distributions. Evaluating such an assumption is intrinsically difficult due to the high dimen-
sionality of the data. The best researchers can usually do is attempt to verify univariate and bivariate
normality through such devices as histograms and scatterplots. Fortunately, as is the case for methods
assuming univariate normality, multivariate procedures are relatively robust, in most cases, to modest
violations. Though Mardia’s test (Mardia, 1970) is favored by some (e.g., Romeu and Ozturk, 1993),
no single method for evaluating multivariate normality appears to be fully adequate. Visual inspections
of Q-Q plots (to be discussed) are usually sufficient for applied purposes.

In cases where rather severe departures of normality exist, one may also choose to perform data
transformations on the “offending” variables to better approximate normal distributions. However,
it should be kept in mind that sometimes a severely nonnormal distribution can be evidence more
of a scientific problem than symptomatic of a statistical issue. For example, if we asked individuals
in a sample how many car accidents they got into this month, the vast majority of our responses would
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FIGURE 2.7 A 3D scatterplot with density contour and points (Image is taken from http://www.jmp.com/
support/help/Scatterplot_3D_Platform_Options.shtml). Source: Figure taken from JMP 12 Essential Graphing,
Copyright © 2015, SAS Institute Inc., USA. All Rights Reserved. Reproduced with permission of SAS
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indicate a count of “0.” Is the distribution skewed? Yes, but this is not a statistical problem alone, it is
first and foremost a substantive one. We likely would not even have sufficient variability in our meas-
urement responses to conduct any meaningful analyses since probably close to 100% of our sample
will likely respond with “0.” If virtually everyone in your sample responds with a constant, then
one might say the very process of measurement may have been problematic, or at minimum, not very
meaningful for scientific purposes. The difficulties presented in subjecting that data to statistical ana-
lyses should be an afterthought, second in priority to the more pressing scientific issue.

2.2 CHI-SQUARE DISTRIBUTIONS AND GOODNESS-OF-FIT TEST

The chi-square distribution is given by:

1
- = Jv/2)-1],-x/2
X) = X e
&) 2'21(v/2)

for x> 0, where v are degrees of freedom and I is the gamma function.* The chi-square distribution of a
random variable is also equal to the sum of squares of n independent and normally distributed z-scores
(Fisher, 1922b). That is,

2 _ - 2 _ - (Xi—ﬂ)2
PEDIEED P
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The chi-square distribution plays an important role in mathematical statistics and is associated with a
number of tests on model coefficients in a variety of statistical methods. The multivariate analog to the
chi-square distribution is that of the Wishart distribution (see Rencher, 1998, p. 53, for details).

The chi-square goodness-of-fit test is one such statistical method that utilizes the chi-square test
statistic to evaluate the tenability of a null hypothesis. Recall that such a test is suitable for categorical
data in which counts (i.e., instead of means, medians, etc.) are computed within each cell of the design.
The goodness-of-fit test is given by

“For details on the gamma function, see Degroot and Schervish (2002, p. 295). A plot of the gamma function appears as follows
(see Crawley, 2013, p. 264, for the R code):

Gamma(t)
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TABLE 2.1 Contingency Table for 2 x 2 Design

Condition Present (1) Condition Absent (0) Total
Exposure yes (1) 20 10 30
Exposure no (2) 5 15 20
Total 25 25 50

where O; and E; represent observed and expected frequencies, respectively, summed across r rows
and ¢ columns.

As a simple example, consider the hypothetical data (Table 2.1), where the frequencies of those
exposed to something adverse are related to whether a condition is present or absent. If you are a clin-
ical psychologist, then you might define exposure as, perhaps, a variable such as combat exposure, and
condition as posttraumatic stress disorder (if you are not a psychologist, see if you can come up with
another example).

The null hypothesis is that the 50 counts making up the entire table are more or less randomly dis-
tributed across each of the cells. That is, there is no association between condition and exposure. We
can easily test this hypothesis in SPSS by weighting the relevant frequencies by cell total:

exposure condition freq

1.00 0.00 10.00
1.00 1.00 20.00
2.00 0.00 15.00
2.00 1.00 5.00

WEIGHT BY freq.

CROSSTABS
/TABLES=condition BY exposure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ
/CELLS=COUNT
/COUNT ROUND CELL.

The output follows in which it is first confirmed that we set up our data file correctly:

Exposure * Condition Crosstabulation

Count
Condition Total
1.00 0.00
Exposure 1.00 20 10 30
2.00 5 15 20
Total 25 25 50

We focus on the Pearson chi-square test value of 8.3 on a single degree of freedom. It is statistically
significant (p = 0.004), and hence we can reject the null hypothesis of no association between condition
and exposure group.
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Chi-square Tests

Asymp. Sig. Exact Sig. Exact Sig.

Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 8.333¢ 1 0.004
Continuity correction” 6.750 1 0.009
Likelihood ratio 8.630 1 0.003
Fisher’s exact test 0.009 0.004
Linear-by-linear association 8.167 1 0.004
No. of valid cases 50

“0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.00.
bComputed only for a 2 x 2 table.

In R, we can easily perform the chi-square test on this data. We first build the matrix of cell counts,
calling it diag.table:

> diag.table <- matrix(c(20, 5, 10, 15), nrow = 2)
> diag.table
[,11 [,2]
[1,] 20 10
[2,] 5 15

> chisqg.test (diag.table, correct = F)
Pearson's Chi-squared test

data: diag.table
X-squared = 8.3333, df = 1, p-value = 0.003892

We see that the result in R agrees with what we obtained in SPSS. Note that specifying correct =
F (correction = false) negated what is known as Yates’ correction for continuity, which involves
subtracting 0.5 from positive differences in O — E and adding 0.5 to negative differences in O — E
in an attempt to better make the chi-square distribution approximate that of a multinomial distribution
(i.e., in a crude sense, to help make discrete probabilities more continuous). To adjust for Yates, we can
either specify correct = T or simply chisqg. test (diag.table), which will incorporate the
correction. With the correction implemented, our p-value increases from 0.003 to 0.009 (not shown).
We notice that this adjustment parallels that made in SPSS by adjusting for continuity. When expected
counts per cell are relatively small (a working rule is that they should be at least five in each cell), one
can also request Fisher’s exact test (see Fisher, 1922a), which we note also mirrors the output gen-
erated by SPSS:

> fisher.test (diag.table)
Fisher's Exact Test for Count Data

data: diag.table
p-value = 0.008579
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.466377 26.597383
sample estimates:
odds ratio
5.764989
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Other useful statistics for contingency tables include the phi coefficient and Cramer’s V. Phi, ¢, is
a measure of association for 2 x 2 contingency tables, computed as

2
b=\
n

where y* is the chi-square statistic calculated on the 2 x 2 table, and n is the total sample size. The
maximum ¢) can attain is 1.0, indicating maximal association. ¢» can be computed in SPSS by /sta-
tistics =phi andis available in R in the psych package (Revelle, 2015). Cramer’s ¢, extends on
¢ in that it allows for contingency tables of greater than 2 x 2. It is included in the /statistics =
phi command and also available in R’s psych package. It is given by:

where k is the minimum of the number of rows or columns. The relationship between ¢, and ¢ is easily

shown for k = 2:
_ |
fe = n(2-1) n_¢

2.2.1 Power for Chi-Square Test of Independence
We can estimate power” and required sample size for the chi-square test of independence using the

package pwr in R:

> library (pwr)
> pwr.chisg.test (w =, N =, df = , sig.level = , power = )

where w is the anticipated or required effect size, estimated as:

>

i=1

(p0; =p1;)?
pO;

and p0; and p1; are the probabilities in a given cell i under the null and alternative hypotheses, respec-
tively. We demonstrate by estimating power for w =0.2:

> pwr.chisqg.test(w = 0.2, N =, df = 5, sig.level = .05, power = 0.90)

Chi squared power calculation

w = 0.2
N = 411.7366
df = 5

sig.level = 0.05
power = 0.9
NOTE: N is the number of observations

5 Power will be discussed later in this chapter.
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TABLE 2.2 Contingency Table for 2 x 2 x 2 Design

Exposure Condition Absent (0) Condition Present (1) Total
Males Yes 10 20 30
No 15 5 20
Females Yes 13 17 30
No 12 8 20
Total 50 50 100

R estimates that a total of approximately 411 subjects are required to achieve power set at 0.90. Such a
large sample is required because w = 0.2 constitutes a relatively small effect size (see Cohen (1988) for
details).

The reader may ask at this point how one might go about analyzing data for higher-dimensional
frequency tables. The example for the chi-square test of the data in Table 2.1 is only for that of a
2 x 2 layout. Suppose we added a third factor to our analysis, such as gender, making our contingency
table appear as in Table 2.2.

For data such as that in Table 2.2 featuring higher-dimensional frequency data, log-linear models
are a possibility (Agresti, 2002). Log-linear models are an option in the wider class of generalized
linear models, to be discussed further in Chapter 10, where we discuss in some detail a special case
of the generalized linear model called the logistic regression model.

2.3 SENSITIVITY AND SPECIFICITY

Sensitivity and specificity are measures historically used in diagnostic situations but can be applied to
other contexts as well. We can easily adapt the data in Table 2.1 to suit a brief discussion of these
measures. We keep the same cell frequencies, but modify variable names so the data become a bit more
applicable to a discussion of sensitivity and specificity (see Table 2.3).

The sensitivity of the diagnostic instrument is the probability that the test is positive given that the
individual has the disease. In the margins, we see that 30 people have the disease, of which 20 were
diagnosed with it. Thus, the sensitivity of the test is 20/30 = 0.66. The specificity of the diagnostic
instrument is the probability that the test is negative, given that the individual does not have the disease.
In the margins, we see that 20 people do not have the disease, of which 15 were diagnosed with not
having the disease. Hence, the specificity of the test is 15/20 = 0.75. The overall prevalence of the
disease is equal to 30/50 (i.e., 30 people have the disease out of 50). One can also compute what
are known as positive and negative predictive values from such tables. For these and other measures
useful for diagnostic situations, see Dawson and Trapp (2004).

2.4 SCALES OF MEASUREMENT: NOMINAL, ORDINAL, INTERVAL, RATIO

Recall that in our discussion of the so-called “soft” versus “hard” sciences in Chapter 1, we concluded
that a key principal difference between the two is not necessarily one of different statistical or analytical
methods used in drawing conclusions, but rather in the actual material that is subjected to measure-
ment. Though this book is not about measurement per se, we nonetheless wish to review the scales of
measurement as first proposed by S.S. Stevens in 1946 (Stevens, 1946).

TABLE 2.3 Contingency Table for 2 x 2 Diagnostic Design

Diagnosis Yes Diagnosis No Total
Disease Yes 20 10 30
Disease No 5 15 20

Total 25 25 50
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Before we discuss these scales, it would do well to remind ourselves just what is measurement in the
first place. We propose the following workable definition:

Measurement is the systematic assignment of numbers to observations according to a well-defined set
of rules.

The job of the “rules” is to make good sense of the measurement process. For instance, if we simply
assigned numbers to observations without a set of rules to govern the assignment, then even if  weigh more
than you, I could be assigned 150 1bs and you 180 Ibs. The requirement of having rules of measurement
avoids such meaningless and contradictory assignments. If I weigh more than you, rules of measurement
imply that my weight measurement will be larger than yours within the margin of measurement error.

2.4.1 Nominal Scale

Measurement at the nominal scale is hardly considered real measurement, because it is simply the
process of grouping objects or subjects into classes. Each class is usually represented by a number,
letter, name, etc. Other than naming these categories, no other properties are assumed or inferred, such
as distance between objects or magnitude.

A classic example of measurement at the nominal level is that of hockey jersey numbers. That the
number “99” is greater than the number “22” on the shirts of two hockey players does not imply any-
thing about magnitude (though Wayne Gretzky did in this case wear “99” and was perhaps the best
hockey player ever). The numbers 99 and 22 are simply “classes,” they are symbols used to identify
(or name) one class as different or distinct from the other. The fact that we use a rational system such as
the real numbers to identify these different classes of “99” versus ‘“22” does not imply anything about
order or magnitude at the level of substantive measurement. Yes, to the mathematician, 99 is indeed
numerically greater than 22. That is, an order property is implied in the numbers. However, to the sci-
entist, nothing of order or magnitude needs to be implied when working with a nominal scale.

To briefly elaborate on this point, the concept of using numbers to represent classes makes for an
ideal example of the distinction between mathematical measurement versus scientific measurement. In
the mathematical measurement of the distance on the real line (e.g., the “length” between two real num-
bers), order is a necessary implication and differentiates any two numbers on the line. In scientific
measurement, though we may still use the “objects” (i.e., the numbers) of pure mathematics, whether
there exist order and magnitude in our empirical objects of study is for us to decide as scientists with
the aid of our measurement tools. It is not solely a mathematical or “abstract” consideration.

As an example, consider the following objects:

* $ # %

Though we can say, at minimum, that nominal level measurement has been achieved (the objects
have different symbols, that is, different names), we cannot say anything more about either the distance
or magnitude between the objects, unless we decide to impose an order relation on the above objects.
For instance, if we decide, based on our rules of measurement, that $ is greater than x, then not only
have we measurement at the nominal level, we also have measurement at the ordinal level.

2.4.2 Ordinal Scale

In addition to categorizing objects into classes, measurement at the ordinal level imposes an order
relation between objects. For instance, if $ is greater than * for some characteristic that these symbols
represent, then we have measurement at the ordinal level. The imposition of an order relation is fun-
damental to any sort of true measurement. Consider that if your measurement system does not even
allow you to say one thing has more of a characteristic than another, what could be the purpose of
even measuring?
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Ordinal measurement, however, does not say anything about the precise amount of magnitude
between objects. For example, first place, second place, and third place in a race constitute measure-
ment at the ordinal level, but that you finished second does not immediately tell us the distance
between first and second, or the distance between second and third. To speak of distances between
objects, we require measurement at the interval level.

2.4.3 Interval Scale

Measurement at the interval level possesses all the features of measurement of both nominal and ordi-
nal scales, but with the extra requirement that distances between measured objects are quantifiable,
and that distances between successive measuring points on the scale are equal in magnitude. For
instance, consider the measurement of temperature in degrees Fahrenheit. The change in temperature
from 10 degrees to 20 degrees essentially contains the same “amount” of temperature change as that
from 20 to 30 degrees. That is, the intervals between measurement points are meaningful and represent
an equal distance in the “thing” (i.e., temperature, in this case) we are measuring.

Is intelligence measurable on an interval scale? What would it mean for it to be measurable at the
interval level? Well, supposing we base our measurements on a reputable standardized test, for IQ to be
measurable at the interval scale would imply that the distance in the thing called “IQ” is equivalent
from say, 90 to 100 as it is from 100 to 110. At first glance, this might appear an easy condition to
satisfy, after all, the real number distance in each interval is equal to 10. However, recall that that
is a distance of real numbers, not necessarily of IQ. As William James put it, we must not confuse
the phenomena we study with the abstractions we use to study them. The real numbers are the abstrac-
tion. The 1Q is the phenomenon. That we used a real line to measure these distances does not neces-
sarily imply that the actual true distances in terms of “IQ substance” corresponds one-to-one (or even at
all) to our measurement tool. It is entirely possible that 90 to 100 represents a greater increase in IQ than
does 100 to 110, making the relation between our measurement of IQ versus “true IQ,” nonlinear. Our
measurement of 1Q is simply not that precise to make such statements. Numerical length in this case
may not translate to the substantive length of the difference under study.

2.4.4 Ratio Scale

The most sophisticated scale of measurement is that of the ratio scale. It is the most sophisticated
because it is the only scale for which we can speak meaningfully about ratios between competing
measurement intervals. By “ratio,” we simply mean we have the power to make such statements as
“object a is twice as large as object b.” Up to now, no other scale has allowed us to make such state-
ments. For instance, in the interval scale, concluding that a is any factor greater than » made no sense.
We did not have a starting point to base such conclusions. An IQ of zero did not necessarily mean the
absence of intelligence. Rather, it was simply an arbitrary point on the IQ scale presumably denoting a
particular quantity of IQ (even if, in all probability, very small).

What gives us license to make statements of ratios? The element of the ratio scale that permits us to
make such statements is the fact that the ratio scale has at its origin a true zero point. When something
is deemed measurable at the ratio scale, a measurement of zero actually means zero of the thing that
is being measured. Was this fact true of the interval scale? No, because zero degrees Fahrenheit did not
equate to there being zero temperature. “Zero” was simply an arbitrary value on the scale. However, the
fact that I have zero coins in my pocket actually means that I have zero coins. “Zero” is said to be, in
this case, “absolute,” meaning that there is truly nothing there.

Physical quantities such as weight, distance, velocity, motion, are all measurable at the ratio level.
Variables such as reaction time in sensation experiments are also measurable at the ratio level. Phe-
nomena such as intelligence, anxiety, attitude, are generally not. More often we deem them measurable
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at the interval level or less, and when we really get critical, it is even a stretch at times to consider the
ordinal level of measurement as being satisfied for such variables. Then again, if we decided to oper-
ationally define anxiety by beats per minute of one’s heart, then theoretically at least, one could con-
clude that an individual has zero anxiety if that individual has zero beats per minute (though of course,
this could make for an awkward definition for the absence of anxiety!).

2.5 MATHEMATICAL VARIABLES VERSUS RANDOM VARIABLES

When we speak of a mathematical variable (or simply, variable), we mean a symbol that at any point
could be replaced by values contained in a specified set. For instance, consider the mathematical var-
iable y;. By the subscript i is indicated the fact that y; stands for a set of values, not all equal to the same
number (otherwise y would be a constant) such that at any point in time any of these values in the set
could serve as a temporary “replacement” for the symbol.

Of course, social and natural sciences are all about variables. Here are some examples:

* Height of persons in the world is a variable because persons of the world have different heights.
However, height would be considered a constant if 10 people in a room were of the exact same
height (and those were the only people we were considering).

* Blood pressure is a variable because persons, animals, and other living creatures have different
blood pressure measurements.

* Intelligence (IQ) of human beings (difficult to measure to be sure, though psychology has devel-
oped instruments in an attempt to assess such things) is a variable because presumably people
have differing intellectual capacities.

* Earned run average (ERA) of baseball players is a variable because players do not all have the
same ERA.

A random variable is a mathematical variable that is associated with a probability distribution.
That is, as soon as we assign probabilities to values of the variable, we have a random variable. More
formally, we can say that a random variable is a function from a sample space into the real numbers
(Casella and Berger, 2002), which essentially means that elements in the set (i.e., sample space) have
probabilities associated with them (Dowdy, Wearden, and Chilko, 2004).

Consider a simple comparison between a mathematical variable and a discrete random variable in
Table 2.4.

Notice that for the mathematical variable, probability does not enter the picture, it is not of any con-
sideration. For the discrete random variable, each value of the variable has a probability associated with
it. Note as well that the probabilities must sum to 1.0 for it to be a legitimate probability distribution
(i.e.,0.20+0.50 + 0.30 = 1.0). How the given probabilities are assigned is a matter to be governed by
the specific context of the problem. Recall as well that variables can be classified as discrete or con-
tinuous (see Appendix for a review). This same distinction can be applied to random variables as to
ordinary mathematical variables. In Table 2.4 features a discrete random variable. For continuous

TABLE 2.4 Mathematical versus Discrete Random Variable

Mathematical Variable y; Random Variable y;
=1 yi=1(p=020)
y2=3 y2=3 (p =0.50)

y3=35 y3 =5 (p =0.30)
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random variables, since the probability of any particular value in a continuous distribution is theoret-
ically zero, instead of associating probabilities with particular values, probabilities are associated with
areas under the curve computed by way of integration in calculus.

The distinction between mathematical and random variables is important when we discuss such
things as means, variances, and covariances. A reader first learning about random variables, having
already mastered the concept of sample or population variance (to be discussed shortly), can be some-
what taken aback when encountering the variance of a random variable, given as

o> = E(y;—pn)*

and then attempting to compare it to the more familiar variance of a population:

S (i-n)’

n

(72

Realize, however, that both expressions are essentially similar, they both account for squared devia-
tions from the mean. However, the variance of a random variable is stated in terms of its expectation,
E. Throughout this book, we will see the operator E at work. What is an expectation? The expectation E
of a random variable is the mean of that random variable, which amounts to it being a probability-
weighted average (Gill, 2006). The operator E occurs several times throughout this book because
in theoretical statistics, long-run averages of a statistic are of especial interest. As noted by Feller
(1968, p. 221), should an experiment be repeated n times under identical conditions, the average of
such trials should be close to expectation. Perhaps less formally, the operator E then tells us what
we might expect to see in the long run for large n. Theoretical statisticians love taking expectations,
because the short run of a variable is seldom of interest at a theoretical level. It is the long (probability)
run that is often of most theoretical interest. As a crude analogy, on a personal level, you may be “up” or
“down” now, but if your expectation E pointed to a favorable long-run endpoint, then perhaps that is
enough to convince you that though “on the way” is a rough tumbly road, in the end, as the spiritual
would say, we “arrive” at our expectation (which perhaps some would denote as an afterlife of sorts).

The key point is that when we are working with expectations, we are working with probabilities.

n
Thus, instead of summing squared deviations of the kind >_ (y; —,u)2 as one does in the sample or
i=1
population variance for which there is specified n, one must rather assign to these squared deviations
probabilities, which is what is essentially being communicated by the notation “E(y; — u)~.” We can
“unpack” this expression to read

ZP()’i)()’i _/4)2

where p(y;) is the probability of the given deviation, (y; — u), for in this case, a discrete random variable.

2.6 MOMENTS AND EXPECTATIONS

When we speak of moments of a distribution or of a random variable, we are referring to such things as
the mean, variance, skewness, and kurtosis.

The first moment of a distribution is its mean. For a discrete random variable y;, the expectation is
given by:
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EG) =3 vl

i=1

where y; is the given value of the variable, and p(y,) is its associated probability. When y; is a continuous
random variable, the expectation is given by:

E(y,) = Jjo yip(y;)dy

Notice again that in both cases, whether the variable is discrete or continuous, we are simply summing
products of values of the variable with its probability, or density if the variable is continuous. In the
case of the discrete variable, the products are “explicit” in that our notation tells us to take each value of
y (i.e., ;) and multiply by the probability of that given value, p(y;). In the case of a continuous variable,
the products are a bit more implicit one might say, since the “probability” of any particular value in a
continuous density is equal to 0. Hence, the product y;p(y;) is equal to the given value of y; multiplied by
its corresponding density.

n
The arithmetic mean is a point such that > (y;—¥) = 0. That is, the sum of deviations around the
i=1
mean is always equal to O for any data set we may consider. In this sense, we say that the arithmetic
mean is the center of gravity of a distribution, it is the point that “balances” the distribution (see

Figure 2.8).

2.6.1 Sample and Population Mean Vectors

We often wish to analyze data simultaneously on several response variables. For this, we require vector
and matrix notation to express our responses. The matrix operations presented here are surveyed more
comprehensively in the Appendix and in any book on elementary matrix algebra.

FIGURE 2.8 Because the sum of deviations about the arithmetic mean is always zero, it can be conceptualized
as a balance point on a scale.
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Consider the following vector:

Yn

where y; is observation 1 up to observation y,,.
We can write the sample mean vector y for several variables y, through y, as

|
I
S =
=
I

Yp

where y, is the mean of the p™ variable.

The expectation of individual observations within each vector is equal to the population mean y, of
which the expectation of the sample vector y is equal to the population vector, p. This is simply an
extension of scalar algebra to that of matrices:

V1 E()’l ) M1

Y2 E(y,) Ho
Ey=E| " |=| = |=| |=n

Y E(y,) Hn

Likewise, the expectations of individual sample means y,, y,, ... ¥, are equal to their population coun-
terparts, p, 4o, ... 4p. The expectation of the sample mean vector y is equal to the population mean
vector, L

i E(y,) My

Y2 E(y,) Mo
Em-E| |- ) I

Yy E(yp) Hp

We note also that y is an unbiased estimator of p since E(Y) = p.

Recall that we said that the mean is the first moment of a distribution. We discuss the second
moment of a distribution, that of the variance, shortly. Before we do so, a brief discussion of estimation
is required.
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2.7 ESTIMATION AND ESTIMATORS

The goal of statistical inference is, in general, to estimate parameters of a population. We distinguish
between point estimators and interval estimators. A point estimator is a function of a sample and is
used to estimate a parameter in the population. Because estimates generated by estimators will vary
from sample to sample, and thus have a probability distribution associated with them, estimators
are also often random variables. For example, the sample mean y is an estimator of the population
mean yu. However, if we sample a bunch of ¥ from a population for which y is the actual population
mean, we know, both from experience and statistical theory, that y will vary from sample to sample.
This is why the estimator y is often a random variable, because its values will each have
associated with them a given probability (density) of occurrence. When we use the estimator to obtain
a particular number, that number is known as an estimate. An interval estimator provides a range of
values within which the true parameter is hypothesized to exist within some probability. A popular
interval estimator is that of the confidence interval, a topic we discuss later in this chapter.

More generally, if T'is some statistic, then we can use 7T as an estimator of a population parameter 6.
Whether the estimator 7 is any good depends on several criteria, which we survey now.

On average, in the long run, the statistic T is considered to be an unbiased estimator of 0 if

E(T)=0

That is, an estimator is considered unbiased if its expected value is equal to that of the parameter it
is seeking to estimate. The bias of an estimator is measured by how much E(T) deviates from 6. When
an estimator is biased, then E(T) # 0, or, we can say E(T)—6 # 0. Since the bias will be a positive
number, we can express this last statement as E(7) - 6> 0.

Good estimators are, in general, unbiased. The most popular example of an unbiased estimator is
that of the arithmetic sample mean since it can be shown that:

EQY)=u

An example of an estimator that is biased is the uncorrected sample variance, as we will soon discuss,
since it can be shown that

E (SZ) # 0’
However, S° is not asymptotically biased. As sample size increases without bound, E(S%) converges to

6. Once the sample variance is corrected via the following, it leads to an unbiased estimator, even for
smaller samples:

where now,

= 0i-3)

n—-1

SZ

Consistency® of an estimator means that as sample size increases indefinitely, the variance of the esti-

mator approaches zero. That is, a% — 0 as n — co. We could also write this using a limit concept:

lim 62 =0

n— oo

©Though in this text we define consistency of an estimator quite simply, further distinctions exist between weak and strong
consistency. See Shao (2003, pp. 132-133).
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which reads “the variance of the estimator 7 as sample size n goes to infinity (grows without bound) is
equal to 0.” Fisher called this the criterion of consistency, informally defining it as “when applied to
the whole population the derived statistic should be equal to the parameter” (Fisher, 1922a, p. 316). The
key to Fisher’s definition is whole population, which means, theoretically at least, an infinitely large
sample, or analogously, n — co. More pragmatically, o% — 0 when we have the entire population.

An estimator is regarded as efficient the lower is its mean squared error. Estimators with lower var-
iance are more efficient than estimators with higher variance. Fisher called this the criterion of effi-
ciency, writing “when the distributions of the statistics tend to normality, that statistic is to be chosen
which has the least probable error” (Fisher, 1922a, p. 316). Efficient estimators are generally preferred
over less efficient ones.

An estimator is regarded as sufficient for a given parameter if the statistic “captures” everything we
need to know about the parameter and our knowledge of the parameter could not be improved if we
considered additional information (such as a secondary statistic) over and above the sufficient estima-
tor. As Fisher (1922a, p. 316) described it, “the statistic chosen should summarize the whole of the
relevant information supplied by the sample.” More specifically, Fisher went on to say:

If 6 be the parameter to be estimated, €; a statistic which contains the whole of the information as to the
value of 6, which the sample supplies, and €, any other statistic, then the surface of distribution of pairs of
values of 8, and 6,, for a given value of @, is such that for a given value of 6, the distribution of 8, does not
involve 6. In other words, when 6, is known, knowledge of the value of &, throws no further light upon the
value of 6. (Fisher, 1922a, pp. 316-317)

2.8 VARIANCE

Returning to our discussion of moments, the variance is the second moment of a distribution. For the
discrete case, variance is defined as:

=

o’ = [)’i_E(Yi)]ZP( ;)

i=1

while for the continuous case,
« 2
= bi-Eop0Iey

Since E(y;) = p, it stands that we may also write E(y;) as u. We can also express o> asE (ylz) — 1% since,
when we distribute expectations, we obtain:

o’ =E(yi—/4)2
= E(y;—p)(vi—#)
= E(y; —ypu—y + i1°)
=E(y}) —EG)u—EQ)u+u’
= E(y7) —up—pp + p°
=E(y})-i*-u’ +
=E(y;)-#
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Recall that the uncorrected and biased sample variance is given by:

S 0im3)’

n

§? =

As earlier noted, taking the expectation of $2, we find that E(SZ) #* o°. The actual expectation of $%is
equal to:

E(S%) = [(n—1)/n]o’

which implies the degree to which S? is biased is equal to:

We have said that $? is biased, but you may have noticed that as n increases, (n — 1)/n approaches 1, and
so E(S%) will equal ¢° as n increases without bound. This was our basis for earlier writing
nlingo E (SZ) = ¢2. That is, we say that the estimator Sz, though biased for small samples, is asymptot-

ically unbiased because its expectation is equal to ¢” as n — 0.
When we lose a degree of freedom in the denominator and rename S° to s%, we get

Z:I] ;-9)°

n—-1

S2

Recall that when we take the expectation of 5%, we find that E(sz) =6’ (see Wackerly, Mendenhall, and
Scheaffer (2002, pp. 372-373) for a proof’).

The population standard deviation is given by the positive square root of ¢°, that is, Vo? = 6.

Analogously, the sample standard deviation is given by V2 =s.

Recall the interpretation of a standard deviation. It tells us on average how much scores deviate
from the mean. In computing a measure of dispersion, we initially squared deviations so as to avoid
our measure of dispersion always equaling zero for any given set of observations, since the sum of
deviations about the mean is always equal to 0. Taking the average of this sum of squares gave us
the variance, but since this is in squared units, we wish to return them to “unsquared” units. This is
how the standard deviation comes about. Studying the analysis of variance, the topic of the following
chapter, will help in “cementing” some of these ideas of variance and the squaring of deviations, since
ANOVA is all about generating different sums of squares and their averages, which go by the name of
mean squares.

The variance and standard deviation are easily obtained in R. We compute for parent in Gal-
ton’s data:

> var (parent)
[1] 3.194561

> sd(parent)
[1] 1.787333

One may also wish to compute what is known as the coefficient of variation, which is a ratio of the
standard deviation to the mean. We can estimate this coefficient for parent and child respectively
in Galton’s data:
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> cv.parent <- sd(parent) /mean (parent)
> cv.parent

[1] 0.02616573

> c¢v.child <- sd(child) /mean (child)
> cv.child

[1] 0.03698044

Computing the coefficient of variation is a way of comparing the variability of competing distribu-
tions relative to each distribution’s mean. We can see that the dispersion of child relative to its mean
(0.037) is slightly larger than that of the dispersion of parent relative to its mean (0.026).

2.9 DEGREES OF FREEDOM

In our discussion of variance, we saw that if we wanted to use the sample variance as an estimator of the
population variance, we needed to subtract 1 from the denominator. That is, $% was “corrected” into s°:

u 2
> =)
2o izl
n—-1

We say we lost a degree of freedom in the denominator of the statistic. But what are degrees of free-
dom? They are the number of independent units of information in a sample that are relevant to the
estimation of some parameter (Everitt, 2002). In the case of the sample variance, 5%, one degree of

freedom is lost since we are interested in using s* as an estimator of 2. We are losing the degree of
n

freedom because the numerator, Y (y;,— y)z, is not based on n independent pieces of information since
i=1

4 had to be estimated by y. Hence, a degree of freedom is lost. Why? Because values of y; are not

independent of what y is, since ¥ is fixed in terms of the given sample data. In general, when we

estimate a parameter, it “costs” a degree of freedom. Had we p, such that > (y, - y)z, we would have
i=1
not lost a degree of freedom, since u is a known (not estimated) parameter.

A conceptual demonstration may prove useful in understanding the concept of degrees of freedom.
Imagine you were asked to build a triangle such that there was to be no overlap of lines on either side of
the triangle. In other words, the lengths of the sides had to join neatly at the vertices. We shall call this
the “Beautiful Triangle” as depicted in Figure 2.9. You are now asked to draw the first side of the
triangle. Why did you draw this first side the length that you did? You concede that the length of
the first side is arbitrary, you were free to draw it whatever length you wished. In drawing the second
length, you acknowledge you were also free to draw it whatever length you wished. Neither of the first
two lengths in any way violated the construction of a beautiful triangle with perfectly adjoining
vertices.

However, in drawing the third length, what length did you choose? Notice that to complete the tri-
angle, you were not free to determine this length arbitrarily. Rather, the length was fixed given the con-
straint that the triangle was to be a beautiful one. In summary then, in building the beautiful triangle, you
lost 1 degree of freedom, in that two of the lengths were of your free choosing, but the third was fixed.
Analogously, in using s* as an estimator of 67, a single degree of freedom is lost. If  is equal to 10,
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FIGURE 2.9 The “Beautiful Triangle” as a way to understanding degrees of freedom.

for instance, and the sample is based on five observations, then y;, y,, y3, y4 are freely chosen, but the
fifth data point, ys is not freely chosen so long as the mean must equal 10. The fifth data point is fixed.
We lost a single degree of freedom.

Degrees of freedom occur throughout statistics in a variety of statistical tests. If you understand this
basic example, then while working out degrees of freedom for more advanced designs and tests may
still pose a challenge, you will nonetheless have a conceptual base from which to build your
comprehension.

2.10 SKEWNESS AND KURTOSIS

The third moment of a distribution is its skewness. Skewness of a random variable generally refers to
the extent to which a distribution lacks symmetry. Skewness is defined as:

E{()’i_ﬂf]

(o)

* Skewness for a normal distribution is equal to 0, just as skewness for a rectangular distribution is
also equal to O (one does not necessarily require a bell-shaped curve for skewness to equal 0)

]/:

» Skewness for a positively skewed distribution is greater than 0; these distributions have tails that
stretch out into values on the abscissa of greatest value

» Skewness for a negatively skewed distribution is less than 0; these distributions have tails that
stretch out to values on the abscissa of least value

An example of a positively skewed distribution is that of the typical F density, given in Figure 2.10.

The fourth moment of a distribution is its kurtosis, generally referring to the peakness of a
distribution (Upton and Cook, 2002), but also having much to do with a distribution’s tails
(DeCarlo, 1997):
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2 4 6
FIGURE 2.10 F distribution on 2 and 5 degrees of freedom. It is positively skewed since the tail stretches out to
numbers of greater value.

With regard to kurtosis, distributions are defined:

» mesokurtic if the distribution exhibits kurtosis typical of a bell-shaped normal curve

* platykurtic if the distribution exhibits lighter tails and is flatter toward the center than a normal
distribution

* leptokurtic if the distribution exhibits heavier tails and is generally more narrow in the center than
a normal distribution, revealing that it is somewhat “peaked”

We can easily compute moments of empirical distributions in R or SPSS. Several packages in R are
available for this purpose. We could compute skewness for parent on Galton’s data by:

> library (psych)
> skew (parent)
[1] -0.03503614

The psych package (Revelle, 2015) also provides a range of descriptive statistics:

> library (psych)
> describe (Galton)

vars n mean sd median trimmed mad min max range skew kurtosis

parent 1 928 68.31 1.79 68.5 68.32 1.48 64.0 73.0 9 -0.04 0.05

child 2 928 68.09 2.52 68.2 68.12 2.97 61.7 73.7 12 -0.09 -0.35
se

parent 0.06
child 0.08

The skew for child has a value of —0.09, indicating a slight negative skew. This is confirmed by
visualizing the distribution (and by a relatively close inspection in order to spot the skewness):

> hist (child)
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2.11 SAMPLING DISTRIBUTIONS

Sampling distributions are at the cornerstone of statistical inference. The sampling distribution of a
statistic is a theoretical probability distribution of that statistic. As defined by Degroot and Scher-
vish (2002), “the sampling distribution of a statistic tells us what values a statistic is likely to assume
and how likely it is to assume those values prior to observing our data” (p. 391).

As an example, we will generate a theoretical sampling distribution of the mean for a given pop-
ulation with mean y and variance, 6°. The distribution we will create is entirely idealized in that it does
not exist in nature anywhere. It is simply a statistical theory of how the distribution of means might
look if we were able to take an infinite number of samples of a given size from a given population, and
on each of these samples, calculate the sample mean statistic.

When we derive sampling distributions for a statistic, we are asking the following question:

If we were to draw an infinite number of samples of size n from this population and calculate the
sample mean on each sample, what would the distribution of sample means look like?

If we can specify this distribution, then we can evaluate obtained sample means relative to it. That
is, we will be able to compare our obtained means (i.e., the ones we obtain in real empirical research) to
the theoretical sampling distribution of means, and answer the question:

If my obtained sample mean really did come from this population, what is the probability of obtaining
a mean such as this?

If the probability is low, you might then decide to reject the assumption that the sample mean you
obtained arose from the population in question. It could have, to be sure, but it probably did not. For
continuous measures, our interpretation above is slightly informal, since the probability of any par-
ticular value of the sample mean in a continuous distribution is essentially equal to O (i.e., in the limit,
the probability equals 0). Hence, the question is usually posed such that we seek to know the proba-
bility of obtaining a mean such as the one we obtained or more extreme.

2.11.1 Sampling Distribution of the Mean

Since we regularly calculate and analyze sample means in our data, we are often interested in the sam-
pling distribution of the mean. If we regularly computed medians, we would be equally as interested in
the sampling distribution of the median.
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Recall that when we consider any distribution, whether theoretical or empirical, we are usually espe-
cially interested in knowing two things about that distribution: a measure of central tendency and a
measure of dispersion or variability. Why do we want to know such things? We want to know these
two things because they help summarize our observations, so that instead of looking at each individual
data point to get an adequate description of the objects under study, we can simply request the mean and
standard deviation as telling the story (albeit an incomplete one) of the obtained observations. Simi-
larly, when we derive a sampling distribution, we are interested in the mean and standard deviation of
that theoretical distribution of a statistic.

We already know how to calculate means and standard deviations for real empirical distributions.
However, we do not know how to calculate means and standard deviations for sampling distributions.
It seems reasonable that the mean and standard deviation of a sampling distribution should depend in
some way on the given population from which we are sampling. For instance, if we are sampling from a
population that has a mean ¢ = 20.0 and population standard deviation ¢ =5, it seems plausible that the
sampling distribution of the mean should look different than if we were sampling from a population
with 4 =10.0 and o = 2. It makes sense that different populations should give rise to different
theoretical sampling distributions.

What we need then is a way to specify the sampling distribution of the mean for a given population.
That is, if we draw sample means from this population, what does the sampling distribution of the mean
look like for this population? To answer this question, we need both the expectation of the sampling
distribution (i.e., its mean) as well as the standard deviation of the sampling distribution (i.e., its stand-
ard error (SE)). We know that the expectation of the sample mean y is equal to the population mean u.
That is, E(y) = p. For example, for a sample mean y = 20.0, the expected value of the sample mean is
equal to the population mean p of 20.0.

To understand why E(¥) = u should be true, consider first how the sample mean is defined:

i +y+ - +,)
n

y=
Incorporating this into the expectation for y, we have:

EG) :E((y1 +yr e +yn))

n

There is a rule of expectations that says that the expectation of the sum of random variables is equal
to the sum of individual expectations. This being the case, we can write the expectation of the sample
mean y as:

E(yy +y, +---+Y,)
n

[E(y)) + E(y;) + -+ + E(y,)]

E®y) =

Since the expectation of each y; through y, is E(y,) = u, E(v2) = p, ... E(y,) = u, we can write

E(y)= [ﬂ+ﬂ+n"'+ﬂ]
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We note that the n values in numerator and denominator cancel, and so we end up with
E(y) =p

Using the fact that E(y;) = u, we can also say that the expected value of a sampling distribution of the
mean is equal to the mean of the population from which we did the theoretical sampling. That s, y5 = p
is true, since given E(¥) = u, it stands that if we have say, five sample means ,, ¥,, J3, V4, Vs, the expec-
tation of each of these means should be equal to x, from which we can easily deduce y5 = p. That is, the
mean of all the samples we could draw is equal to the population mean.

We now need a measure of the dispersion of a sampling distribution of the mean. At first glance, it
may seem reasonable to assume that the variance of the sampling distribution of means should equal the
variance of the population from which the sample means were drawn. However, this is not the case.
What is true is that the variance of the sampling distribution of means will be equal to only a fraction of
the population variance. It will be equal to %of it, where n is equal to the size of samples we are collect-
ing for each sample mean. Hence, the variance of means of the sampling distribution is equal to

or simply,

n

The mathematical proof of this statistical fact is in most mathematical statistics texts. A version of the
proof can also be found in Hays (1994). The idea, however, can be easily and perhaps even more intu-
itively understood by recourse to what happens as n changes. We consider first the most trivial and
unrealistic of examples to strongly demonstrate the point. Suppose that we calculate the sample mean
from a sample size of n = 1, sampled from a population with z = 10.0 and 6” = 2.0. Suppose the sample
mean we obtain is equal to 4.0. Therefore, the sampling variance of the corresponding sampling dis-
tribution is equal to:

That is, the variance in means that you can expect to see if you sampled an infinite number of means
based on samples of size n = | repeatedly from this population is equal to 2. Notice that 2 is exactly
equal to the original population variance. In this case, the variance in means is based on only a single
data point.

Consider now the case where n > 1. Suppose we now sampled a mean from the population based
on sample size n = 2, yielding

2
—=—=1
n 2

What has happened? What has happened is that the variance in sample means has decreased by 1/2 of
the original population variance (i.e., 1/2 of 2 is 1). Why is this decrease reasonable? It makes sense,
because we already know from the law of large numbers that as the sample size grows larger, one gets
closer and closer to the true probability in estimating a parameter. That is, for a consistent estimator, our
estimate of the true population mean (i.e., the expectation) should get better and better as sample size
increases. This is exactly what happens as we increase n, our precision of that which is being estimated
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increases. In other words, the sampling variance of the estimator decreases. It’s less variable, it doesn’t
“bounce around as much” on average from sample to sample.

Analogous to how we defined the standard deviation as the square root of the variance, it is also
useful to take the square root of the variance of means:

/6> o
no \n
which we call the standard error of the mean, o,,. The standard error of the mean is the standard
deviation of the sampling distribution of the mean. Lastly, it is important to recognize that \/i’;is not

“the” standard error. It is merely the standard error of the mean. Other statistics will have different SEs.

2.12 CENTRAL LIMIT THEOREM

It is not an exaggeration to say that the central limit theorem, in one form or another, is probably the
most important and relevant theorem in theoretical statistics, which translates to it being quite relevant
to applied statistics as well.

We borrow our definition of the central limit theorem from Everitt (2002):

If a random variable y has a population mean x and population variance 67, then the sample mean, 3, based
2

on n observations, has an approximate normal distribution with mean y and variance —, for sufficiently
n

large n. (p. 64)

Asymptotically, the distribution of a normal random variable converges to that of a normal distri-
bution as n — co. A multivariate version of the theorem can also be given (e.g., see Rencher,
1998, p. 53).”

The relevance and importance of the central limit theorem cannot be overstated: it allows one to
know, at least on a theoretical level, what the distribution of a statistic (e.g., sample mean) will look
like for increasing sample size. This is especially important if one is drawing samples from a population
for which the shape is not known or is known a priori to be nonnormal. Normality of the sampling
distribution, for adequate sample size, is still assured even if samples are drawn from nonnormal
populations. Why is this relevant? It is relevant because if we know what the distribution of means will
look like for increasing sample size, then we know we can compare our obtained statistic to a normal
distribution in order to estimate its probability of occurrence. Normality assumptions are also typically
required for assuming independence between ¥ and s° in univariate contexts (Lukacs, 1942), and y
(mean vector) and S (covariance matrix) in multivariate ones. When such estimators can be assumed
to arise from normal or multivariate normal distributions (i.e., in the case of y and S) we can generally
be assured one is independent of the other.

2.13 CONFIDENCE INTERVALS

Recall that a goal of statistical inference is to estimate functions of parameters, whether a single param-
eter, a difference of parameters (for instance, in the case of population differences), or some other func-
tion of parameters. Though the sample mean y is an unbiased estimator of u, the probability that y is

"We can also distinguish between weaker vs. stronger forms of the theorem. For details, see Casella & Berger
(2002, pp. 236-238).
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equal to u in any given sample, for a continuous measure, converges to zero (Hays, 1994). For this
reason, and to build some flexibility in estimation overall, the idea of interval estimation in the form
of confidence intervals was developed. Confidence intervals provide a range of values for which we
can be relatively certain lay the true parameter we are seeking to estimate. In what follows, we provide a
brief review of 95 and 99% confidence intervals.

We can say that over all samples of a given size n, the probability is 0.95 for the following event
to occur:

~1.960y <y—pu < 1.960y 2.2)

How was (2.2) obtained? Recall the calculation of a z-score for a mean:

_Yy—H
7=
oM

Suppose now that we want to have a 0.025 area on either side of the normal distribution.
This value corresponds to a z-score of 1.96, since the probability of a z-score of +1.96 is
2(1 — 0.9750021) = 0.0499958, which is approximately 5% of the total curve. So, from the z-score,
we have

—p
7= —
oM
+196=2"F
oM
We can modify the equality slightly to get the following:
y—19606y <u<y+ 1960y (2.3)

We interpret (2.3) as follows:

Over all possible samples, the probability is 0.95 that the range between y—1.960), and y + 1.960)/
will include the true mean, p.

Very important to note regarding the above statement is that  is not the random variable. The part
that is random is the sample on which is computed the interval. That is, the probability statement is not
about p but rather is about samples. The population mean y is assumed to be fixed. The 95% confi-
dence interval tells us that if we continued to sample repeatedly, and on each sample computed a
confidence interval, then 95% of these intervals would include the true parameter.

The 99% confidence interval for the mean is likewise given by:

y—2.580y <pu<y+2.580y 2.4)
Notice that the only difference between (2.3) and (2.4) is the choice of different critical values on either
side of u (i.e., 1.96 for the 95% interval and 2.58 for the 99% interval).

Though of course not very useful, a 100% confidence interval, if constructed, would be defined as:

y—oooy <pu<y+ oooy
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If you think about it carefully, the 100% confidence interval should make perfect sense. If you would
like to be 100% “‘sure” that the interval will cover the true population mean, then you have to extend
your limits to negative and positive infinity, otherwise, you could not be fully confident. Likewise, on
the other extreme, a 0% interval would simply have y as the upper and lower limits:

y<u<y

That is, if you want to have zero confidence in guessing the location of the population mean, g, then
guess the sample mean y. Though the sample mean is an unbiased estimator of the population mean, the
probability that the sample mean covers the population mean exactly, as mentioned, essentially con-
verges to 0 for a truly continuous distribution (Hays, 1994). As an analogy, imagine coming home and
hugging your spouse. If your arms are open infinitely wide (full “bear hug”), you are 100% confident to
entrap him or her in your hug because your arms (limits of the interval) extend to positive and negative
infinity. If you bring your arms in a little, then it becomes possible to miss him or her with the hug (e.g.,
95% interval). However, the precision of the hug is a bit more refined (because your arms are closing
inward a bit instead of extending infinitely on both sides). If you approach your spouse with hands
together (i.e., point estimate), you are sure to miss him or her, and would have 0% confidence of your
interval (hug) entrapping your spouse. An inexact analogy to be sure, but useful in visualizing the
concept of confidence intervals.

2.14 MAXIMUM LIKELIHOOD

When we speak of likelihood, we mean the probability of some sample data or set of observations
conditional on some hypothesized parameter or set of parameters (Everitt, 2002). Conditional proba-
bility statements such as p(D/Hy) can very generally be considered simple examples of likelihoods,
where typically the set of parameters, in this case, may be simply u and 6°. A likelihood function
is the likelihood of a parameter given data (see Fox, 2016).

When we speak of maximum-likelihood estimation, we mean the process of maximizing a like-
lihood subject to certain parameter conditions. As a simple example, suppose we obtain 8 heads on
10 flips of a presumably fair coin. Our null hypothesis was that the coin is fair, meaning that the prob-
ability of heads is p(H) = 0.5. However, our actual obtained result of 8 heads on 10 flips would suggest
the true probability of heads to be closer to p(H) = 0.8. Thus, we ask the question:

Which value of 6 makes the observed result most likely?

If we only had two choices of 4 to select from, 0.5 and 0.8, our answer would have to be 0.8, since
this value of the parameter § makes the sample result of 8 heads out of 10 flips most likely. That is the
essence of how maximum-likelihood estimation works (see Hays, 1994, for a similar example). ML is
the most common method of estimating parameters in many models, including factor analysis, path
analysis, and structural equation models to be discussed later in the book. There are very good reasons
why mathematical statisticians generally approve of maximum likelihood. We summarize some of
their most favorable properties.

Firstly, ML estimators are asymptotically unbiased, which means that bias essentially vanishes as
sample size increases without bound (Bollen, 1989). Secondly, ML estimators are consistent
and asymptotically efficient, the latter meaning that the estimator has a small asymptotic variance rel-
ative to many other estimators. Thirdly, ML estimators are asymptotically normally distributed, mean-
ing that as sample size grows, the estimator takes on a normal distribution. Finally, ML estimators
possess the invariance property (see Casella and Berger, 2002, for details).
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2.15 AKAIKE’S INFORMATION CRITERIA

A measure of model fit commonly used in comparing models that uses the log-likelihood is Akaike’s
information criteria, or AIC (Sakamoto, Ishiguro, and Kitagawa, 1986). This is one statistic of the
kind generally referred to as penalized likelihood statistics (another is the Bayesian information
criterion, or BIC). AIC is defined as:

—-2L,, +2m

where L, is the maximized log-likelihood and m is the number of parameters in the given model.
Lower values of AIC indicate a better-fitting model than do larger values. Recall that the more
parameters fit to a model, in general, the better will be the fit of that model. For example, a model that
has a unique parameter for each data point would fit perfectly. This is the so-called saturated model.
AIC jointly considers both the goodness of fit as well as the number of parameters required to obtain
the given fit, essentially “penalizing” for increasing the number of parameters unless they contribute
to model fit. Adding one or more parameters to a model may cause —2L,, to decrease (which is a
good thing substantively), but if the parameters are not worthwhile, this will be offset by an increase
in 2m.

The Bayesian information criterion, or BIC (Schwarz, 1978) is defined as —-2L,, + m log(N),
where m, as before, is the number of parameters in the model and N the total number of observations
used to fit the model. Lower values of BIC are also desirable when comparing models. BIC typically
penalizes model complexity more heavily than AIC. For a comparison of AIC and BIC, see Burnham
and Anderson (2011).

2.16 COVARIANCE AND CORRELATION

The covariance of a random variable is given by:

COV(xia)’i) =0Oxy = E[(xi _'ux) (yi _”,V)]

where E[(x; — p.)(y; — uy)] is equal to E(x;y;) — pyft, since

Oxy = [(xi_ﬂx) (yi_'uy)]

(xiyi _xiﬂy — Vil + :ux”y)

E
E
E(xiy;) = E(xi)uy = E(vi) e + popy
E(Xiy;) = Hyty = Hyy + fchty

E

= E(xiy;) = potty
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The concept of covariance is at the heart of virtually all statistical methods. Whether one is running
analysis of variance, regression, principal component analysis, etc. covariance concepts are central to
all of these methodologies and even more broadly to science in general.

The sample covariance is a measure of relationship between two variables and is defined as:

n

2 (=X (=)
cov==L 2.5)

n

n
The numerator of the covariance, Y (x; —X)(y; —¥), is the sum of products of respective deviations of
i=1

observations from their respective means. If there is no linear relationship between two variables in a
sample, covariance will equal 0. If there is a negative linear relationship, covariance will be a negative
number, and if there is a positive linear relationship covariance will be positive. Notice that to measure
covariance between two variables requires there to be variability on each variable. If there is no var-
iability in x;, then (x; —x) will equal O for all observations. Likewise, if there is no variability in y;, then
(y; —¥) will equal O for all observations on y;. This is to emphasize the essential fact that when measur-
ing the extent of relationship between two variables, one requires variability on each variable to moti-
vate a measure of relationship in the first place.

The covariance of (2.5) is a perfectly reasonable one to calculate for a sample if there is no intention
of using that covariance as an estimator of the population covariance. However, if one wishes to use it
as an unbiased estimator, similar to how we needed to subtract 1 from the denominator of the variance,
we lose 1 degree of freedom when computing the covariance:

o8

]
—_

(xi =X)(vi =)
cov =
n—1
It is easy to understand more of what the covariance actually measures if we consider the trivial case of
computing the covariance of a variable with itself. In such a case for variable x;, we would have

o8

(x; = %) (x; = X)

i=1

cov =
n—1

But what is this covariance? If we rewrite the numerator as (x; — x)*instead of (x; —X)(x; — X), it becomes
clear that the covariance of a variable with itself is nothing more than the usual variance for that var-
iable. Hence, to better understand the covariance, it is helpful to start with the variance, and then realize
that instead of computing the cross-product of a variable with itself, the covariance computes the cross-
product of a variable with a second variable.

We compute the covariance between parent height and child height in Galton’s data:

> attach(Galton)
> cov(parent, child)
[1] 2.064614

We have mentioned that the covariance is a measure of linear relationship. However, sample cov-
ariances from data set to data set are not comparable unless one knows more of what went into each
specific computation. There are actually three things that can be said to be the “ingredients” of the
covariance. The first thing it contains is a measure of the cross-product, which represents the degree
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to which variables are linearly related. This is the part in our computation of the covariance that we are
especially interested in. However, other than concluding a negative, zero, or positive relationship, the
size of the covariance does not by itself tell us the degree to which two variables are linearly related.

The reason for this is that the size of covariance will also be impacted by the degree to which there
is variability in x; and the degree to which there is variability in y;. If either or both variables contain size-
able deviations of the sort (x; —X) or (y; —¥), then the corresponding cross-products (x; —X)(y; - y) will

n
also be quite sizeable, along with their sum, > (x; —)(y; —¥). However, we do not want our measure
i=1

of relationship to be small or large as a consequence of variability on x; or variability on y,. We want our
measure of relationship to be small or large as an exclusive result of covariability, that is, the extent to
which there is actually a relationship between x; and y;. To incorporate the influences of variability in x;
and y; (one may think of it as “purifying”), we divide the average cross-product (i.e., the covariance) by
the product of standard deviations of each variable. The standardized sample covariance is thus:

n
3 3-3)04-)
i=
n—1 cov
= =
)zci'sgl S)%i.sgl

The standardized covariance is known as the Pearson product-moment correlation coefficient, or
simply r, which is a biased estimator of its population counterpart, p,,, except when p,,, is exactly equal
to 0. The bias of the estimator r can be minimized by computing an adjustment found in Rencher (1998,
p. 6), originally proposed by Olkin and Pratt (1958):

Because the correlation coefficient is standardized, we can place lower and upper bounds on it. The
minimum the correlation can be for any set of data is —1.0, representing a perfect negative relationship.
The maximum the correlation can be is +1.0, representing a perfect positive relationship. A correlation
of 0 represents the absence of a linear relationship. For further discussion on how the Pearson corre-
lation can be a biased estimate under conditions of nonnormality (and potential solutions), see Bishara
and Hittner (2015).

One can gain an appreciation for the upper and lower bound of r by considering the fact that the
numerator, which is an average cross-product, is being divided by another product, that of the standard
deviations of each variable. The denominator thus can be conceptualized to represent the total amount
of cross-product variation possible, that is, the “base,” whereas the numerator represents the total
amount of cross-product variation actually existing between the variables because of a linear relation-

ship. The extent to which cov,, accounts for all of the possible “cross-variation” in , /sfc‘_ -s2 is the extent

to which r will approximate a value of |1l (either positive or negative, depending on the direction of the
relationship). It thus stands that cov,, cannot be greater than the “base” to which it is being compared

(e, /52 -si_). In the language of sets, cov,, must be a subset of the larger set represented by  /s2 -si.

It is important to emphasize that a correlation of 0 does not necessarily represent the absence of a
relationship. What it does represent is the absence of a linear one. Neither the covariance or Pearson’s r
capture nonlinear relationships, and so it is possible to have very strong relations in a sample or pop-
ulation yet still obtain very low values (even zero) for the covariance or Pearson r. Always plot your
data to see what is going on before drawing any conclusions. Correlation coefficients should
never be presented without an accompanying plot to characterize the form of the relationship.
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We compute the Pearson correlation coefficient on Galton’s data between child and parent:

> cor (child, parent)
[1] 0.4587624

We can test it for statistical significance by using the cor. test function:
> cor.test(child, parent)

Pearson's product-moment correlation

data: child and parent
t = 15.7111, df = 926, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4064067 0.5081153
sample estimates:
cor
0.4587624

We can see that observed ¢ is statistically significant with a computed 95% confidence interval hav-
ing limits 0.41 to 0.51, indicating that we can be 95% confident that the true parameter lies approx-
imately between the limits of 0.41 and 0.51. Using the package ggplot2 (Wickham, 2009), we plot
the relationship between parent and child (with a smoother):

> library (ggplot2)
> gplot (child, parent, data = Galton, geom = c("point", "smooth"))

Parent

e &+ * e+ @ *
64 - ¢ * + & ¢ & ¢ @
I I
65 70
Child

One drawback of such a simple plot is that the frequency of data points in the bivariate space cannot
be known by inspection of the plot alone. Jittering is a technique that allows one to visualize the den-
sity of points at each parent—child pairing. By jittering, we can see where most of the data fall in the
parent—child scatterplot (i.e., points are concentrated toward the center of the plot):

> gplot (child, parent, geom = "jitter")
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2.17 PSYCHOMETRIC VALIDITY, RELIABILITY:
A COMMON USE OF CORRELATION COEFFICIENTS

Correlation coefficients, specifically the Pearson correlation, are employed in virtually all fields of
study, and without the invention or discovery of correlation, most modern-day statistics would simply
not exist. This is especially true for the field of psychometrics, which is the science that deals with the
measurement of psychological qualities such as intelligence, self-esteem, motivation, among others.
Psychometrics features the development of psychometric tests purported to measure the construct
of interest. For an excellent general introduction to psychometrics, consult McDonald (1999).

When developing psychometric instruments, two statistical characteristics of these tests are espe-
cially important: (1) validity, and (2) reliability. Validity of a test takes many forms, including face
validity, criterion validity, and most notably, construct validity. Construct validity attempts to assess
whether a purported psychometric test actually measures what it was designed to measure, and one
way of evaluating construct validity is to correlate the newly developed measure with that of an existing
measure that is already known to successfully measure the construct.

For example, in the area of depression assessment, the Beck Depression Inventory (BDI) is a pop-
ular self-report measure often used in evaluating one’s level or symptoms of depression. Now, if we
were to develop a new test, in order to learn whether that new test measures something called
“depression,” we may wish to compute a Pearson correlation of that measure with the BDI. To the
extent that the correlation is relatively high, we might tentatively conclude that the new measure is
assessing the same (or at least a similar) construct as that of the BDI. Not surprisingly, these correla-
tions in this context often go by the name of validities in the psychometric literature. If a test lacks
construct validity, then there is little guarantee that it is measuring the construct under investigation.
Fields such as psychology depend on such construct validation to gain some sense of certainty that their
measures are tapping into what they are most interested in. Clinical psychology, especially, depends
on the strength of such things as construct validity to secure a sense of sureness that their diagnostic
tests are measuring what they are thought to measure. Without psychometrics, clinical testing in this
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way would be no more advanced than folk or “pop” psychology tests we often find on the internet,
which are usually wholly unscientific.

The second area of concern, that of reliability, is just as important. Two popular and commonly
used forms of reliability in psychometrics are those of test-retest and internal consistency reliability.
Test-retest reliability evaluates the consistency of test scores across one or more measurement time
points. For example, if I measured your IQ today, and the test was worth its salt, I should expect that a
measurement of your IQ a month from now should, within a reasonable margin of error, generate a
similar score, assuming it was administered under standardized conditions both times. If not, we might
doubt the test’s reliability. The Pearson correlation coefficient is commonly used to evaluate test—retest
reliability, where a higher-than-not coefficient between testings is desirable. In addition to test-retest,
we often would like a measure of what is known as the internal consistency of a measure, which,
though having potentially several competing meanings (e.g., see Tang et al., 2014), can be considered
to assess how well items on a scale “hang together,” which is informal language for whether or not
items on a test are interrelated (Schmitt, 1996). For this assessment, we can compute Cronbach’s
alpha, which we will now briefly demonstrate in SPSS.

As a very small-scale example, suppose we have a test having only five items (items 1 through 5 in
the SPSS data view), and would like to assess the internal consistency of the measure using Cronbach’s
alpha. Suppose the scores on the items are as follows:

Ttem_1 Item_2 Item_3 Item_4 Item_5
1 10.00 12.00 15.00 11.00 12.00
2 12.00 18.00 12.00 12.00 1.00
3 8.00 16.00 14.00 14.00 4.00
4 6.00 8.00 16.00 8.00 6.00
5 4.00 7.00 8.00 7.00 5.00
6 6.00 6.00 3.00 7.00 3.00
7 3.00 4.00 6.00 5.00 8.00
8 7.00 3.00 7.00 9.00 9.00
9 8.00 9.00 4.00 10.00 10.00
10 9.00 5.00 6.00 11.00 12.00

To compute a Cronbach’s alpha, and obtain a handful of statistics useful for conducting an item
analysis, we code in SPSS:

RELIABILITY
/VARIABLES=Item 1 Item 2 Item 3 Item 4 Item 5
/SCALE ('ALL VARIABLES') ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR
/SUMMARY=TOTAL.

The MODEL = ALPHA statement requests SPSS to compute a Cronbach’s alpha. Select output now
follows:
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Reliability Statistics

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized Items No of Items

0.633 0.691 5
Item Statistics

Mean Std. Deviation N

Item_1 7.3000 2.71006 10

Item_2 8.8000 5.05085 10

Item_3 9.1000 4.74810 10

Item_4 9.4000 2.71621 10

Item_5 7.0000 3.80058 10

Inter-Item Correlation Matrix

Item_1 Item_2 Item_3 Item_4 Item_5

Item_1 1.000 0.679 0.351 0.827 0.022

Item_2 0.679 1.000 0.612 0.743 -0.463

Item_3 0.351 0.612 1.000 0.462 -0.129

Item_4 0.827 0.743 0.462 1.000 -0.011

Item_5 0.022 -0.463 -0.129 -0.011 1.000

We can see that SPSS reports a raw reliability coefficient of 0.633 and 0.691 based on standardized
items. SPSS also reports item statistics, which include the mean and standard deviation of each item, as
well as the inter-item correlation matrix, which, not surprisingly, has values of 1.0 down the main diag-
onal (i.e., the correlation of an item with itself is equal to 1.0).

Next, SPSS features Item-Total Statistics, which contains useful information for potentially drop-

ping items and seeking to ameliorate reliability:

Item-Total Statistics

Corrected Squared Cronbach’s

Scale Mean if Scale Variance if Item-Total Multiple Alpha if Ttem

Item Deleted Item Deleted Correlation Correlation Deleted
Item_1 34.3000 108.900 0.712 0.726 0.478
Item_2 32.8000 80.400 0.558 0.841 0.476
Item_3 32.5000 88.278 0.512 0.448 0.507
Item_4 32.2000 104.844 0.796 0.776 0.445
Item_5 34.6000 164.267 -0.228 0.541 0.824

The most relevant column of the above is the last one on the far right, “Cronbach’s Alpha if Item
Deleted.” What this reports is how much alpha would change if the given item were excluded. We can
see that for all items, alpha would decrease if the given item were excluded, but for item 5, alpha would
increase. If we drop item 5 then, we should expect alpha to increase. We recompute alpha after remov-

ing item 5:

RELIABILITY
/VARIABLES=Item 1 Item 2 Item 3 Item 4

/SCALE ('ALL VARIABLES') ALL
/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR

/SUMMARY=TOTAL.
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Reliability Statistics

Cronbach’s Alpha Cronbach’s Alpha Based on Standardized Items Not Items
0.824 0.863 4

As we can see, alpha indeed did increase to 0.824 as indicated it would based on our previous out-
put. Hence, according to coefficient alpha, dropping item 5 may be worthwhile in the hopes of improv-
ing the instrument and making its items a bit more interrelated.

Though we have provided an easy demonstration of Cronbach’s alpha, it would be negligent at this
point to not issue a few cautions and caveats regarding its everyday use. According to Green and Yang
(2009), the regular employment of coefficient alpha for assessing reliability should be discouraged
based on the fact that assumptions for the statistic are rarely ever met, and hence the statistic can exhibit
a high degree of bias. What is more, according to a now classic paper by Schmitt (1996), alpha should
not be used to conclude anything about unidimensionality of a test, and thus should not be interpreted
as such. Confirmatory factor analysis models (Chapter 15) are typically better suited for assessing
and establishing the dimensionality of a set of items. What is more, cut-offs for alpha regarding what is
low versus high internal consistency can be very difficult to define, and as argued by Schmitt, low
levels of alpha may still be useful. Hence, though easily computable in SPSS and other software,
the reader should be cautious about the unrestricted employment of alpha in their work. For more
details on how it should be used, in addition to the aforementioned sources, Cortina (1993) and Miller
(1995) are very informative readings and should be read before you readily and regularly adopt alpha in
your everyday statistical toolkit.

2.18 COVARIANCE AND CORRELATION MATRICES

Having reviewed the concept of covariance, we need a way to account for the covariance of many
variables. For this, we write the sample covariance in matrix form:

S S12 ... Sip

$21 $§22 ... S2p
S= (Sjk) =

Spl Sp2 - Spp

where s are the covariances for variables j by k. The population covariance matrix X can be analo-
gously defined:

011 012 ... Oyp

021 022 ... O2p

Opl Op2 ... Opp
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where along the main diagonal of the covariance matrix are variances o1, 647, etc., for variables 1, 2,
etc., up to 6, the variance of the p" variable.

When we standardize the covariance matrix, dividing each of its elements by respective products of
standard deviations, we obtain the correlation matrix:

1 rn2 ... Tip

1 1 2p
R = (rj) =

Tpt Tpo ... 1

where 5 is the correlation between variables 1 and 2, etc., and ry, is the correlation between variable 1
and the p” variable.

An example of a correlation matrix (Heston, 1948) is that between different tests on the GRE
(Graduate Record Examination):

Intercorrelations Among The G.R.E. Tests Of General Education

Math P.S. B.S. Soc. Lit. Arts ExXp. Voc.
Mathematics .55 .44 .51 .36 .35 .52 .38
Physical Science .55 .49 .43 .20 .40 .32 .29
Biological Science .44 .49 .57 .42 .42 .46 .50
Social Studies .51 .43 .57 .54 .40 .61 .59
Literature .36 .20 .42 .54 .39 .53 .54
Arts .35 .40 .42 .40 .39 .42 .52
Effecive Expression .52 .32 .46 .61 .53 .42 .66
Vocabulary .38 .29 .50 .59 .54 .52 .66

From the matrix, we can see that most correlations are low to moderate, with the correlation between
Effective Expression and Vocabulary relatively large at a value of 0.66. The correlation between Phys-
ical Science and Vocabulary is relatively small, equaling 0.29.

2.19 OTHER CORRELATION COEFFICIENTS

It often happens that once we hear of Pearson’s r, this becomes the only correlation coefficient in one’s
vocabulary, and too often the concept, rather than calculation, of a correlation is automatically linked
to Pearson’s r. Pearson r is but one of many correlation coefficients available at one’s disposal in
applied research. Recall that Pearson r captures linear relationships between (typically) continuous
variables. If the relationship is not linear, or one or more variables are not continuous, or again if
the data are in the form of ranks, then other correlation coefficients are generally more suitable.
We briefly review Spearman’s rho, although a host of other correlation coefficients exist that are
well-suited for a variety of particular types of data.®

8 For an overview of alternative correlation coefficients such as the biserial, point-biserial and tetrachoric coefficients, see Howell
(2002) or Warner (2013).
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Spearman’s r, (“rho”), named after Charles Spearman who developed the coefficient in 1904,° is a
correlation coefficient suitable for data on two variables that are expressed in terms of ranks rather than
actual measurements on a continuous scale. Mathematically, the Spearman correlation coefficient is
equivalent to a Pearson r when the data are ranked. There are important differences between these
two coefficients. Spearman’s r, can be defined as:

__OZ(R-R)” 654
=T n(n>-1)  n@n2-1)

where R, and R, are the ranks on x; and y; for the "M individual in the data, d? are squared rank devia-
tions, and n is the number of pairs of ranks (Kirk, 2008). When we compute r, on the Galton data, we
obtain:

> cor.test (parent, child, method = "spearman")
Spearman's rank correlation rho

data: parent and child
S = 76569964, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4251345

We see that r, of 0.425 is slightly less than was Pearson r of 0.459.

To understand why Spearman’s rank correlation and Pearson coefficient differ, consider data
(Table 2.5) on the rankings of favorite movies for two individuals. In parentheses are subjective scores
of “favorability” of these movies, scaled 1-10, where 1 = least favorable and 10 = most favorable.

From the table, we can see that Bill very much favors Star Wars (rating of 10) while least likes
Batman (rating of 2.1). Mary’s favorite movie is Scarface (rating of 9.7) while her least favorite movie
is Batman (rating of 7.6). We will refer to these subjective scores in a moment. For now, we focus only
on the ranks. For instance, Bill’s ranking of Scarface is third, while Mary’s ranking of Star Wars
is third.

TABLE 2.5 Favorability of Movies for Two Individuals in Terms of Ranks

Movie Bill Mary
Batman 5@2.1) 5(7.6)
Star Wars 1 (10.0) 3(9.0)
Scarface 3(8.4) 19.7)
Back to the Future 4 (7.6) 4 (8.5)
Halloween 2 9.5 2 (9.6)

Actual scores on the favorability measure are in parentheses.

°The coefficient appears in Spearman, C. (1904). The proof and measurement of association between two things. American
Journal of Psychology, 15, 72-101.
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To compute Spearman’s r, in R the “long way,” we generate two vectors that contain the respective
rankings:

> bill <- c(5, 1, 3, 4, 2)
> mary <- c(5, 3, 1, 4, 2)

Because the data are already in the form of ranks, both Pearson r and Spearman rho will agree:

> cor(bill, mary)
[1] 0.6

> cor (bill, mary, method = “spearman”)
> 0.6

Note that by default, R returns the Pearson correlation coefficient. One has to specify method =
“spearman” to get r,. Consider now what happens when we correlate, instead of rankings, the actual

subjective favorability scores corresponding to the respective ranks. When we plot the favorability
data, we obtain:

> bill.sub <- c(2.1, 7.6, 8.4, 9.5, 10.0)
> mary.sub <- c(7.6, 8.5, 9.0, 9.6, 9.7)
> plot (mary.sub, bill.sub)

10 °

bill.sub
o
I

T T T T
8.0 8.5 9.0 9.5
mary.sub

Note that though the relationship is not perfectly linear, each increase in Bill’s subjective score is

nonetheless associated with an increase in Mary’s subjective score. When we compute Pearson’s r on
this data, we obtain:

> cor (bill.sub, mary.sub)
[1] 0.9551578

However, when we compute r,, we get:

> cor (bill.sub, mary.sub, method = "spearman")
[1] 1
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Spearman’s ry is equal to 1.0 because the rankings of movie preferences are perfectly monotoni-
cally increasing (i.e., for each increase in movie preference along the abscissa corresponds an increase
in movie preference along the ordinate). In the case of Pearson’s, the correlation is less than 1.0 because
r captures the linear relationship among variables and not simply a monotonically increasing one.
Hence, a high magnitude coefficient for Spearman’s essentially tells us that two variables are “moving
together,” but it does not necessarily imply the relationship is a linear one. A similar test that measures
rank correlation is that of Kendall’s rank-order correlation. See Siegel and Castellan (1988, p. 245) for
details.

2.20 STUDENT’S ¢ DISTRIBUTION

The density for Student’s ¢ is given by (Shao, 2003):

v N\ —(v+1)/2
o= DDA 2

VveT(v/2) v

where I is the gamma function and v are degrees of freedom. For small degrees of freedom v, the ¢
distribution is quite distinct from the standard normal. However, as degrees of freedom increase,
the ¢ distribution converges to that of a normal density (Figure 2.11). That is, in the limit, f{f) —
f(z), or a bit more formally, limf(#) = f(z).

The fact that # converges to z for large degrees of freedom but is quite distinct from z for small
degrees of freedom is one reason why ¢ distributions are often used for small sample problems. When
sample size is large, and so consequently are degrees of freedom, whether one treats a random variable
as ¢ or z will make little difference in terms of computed p-values and decisions on respective null
hypotheses. This is a direct consequence of the convergence of the two distributions for large degrees
of freedom. For a historical overview of how t-distributions came to be, consult Zabell (2008).

2.20.1 t-Tests for One Sample

When we perform hypothesis testing using the z distribution, we assume we have knowledge of the
population variance o°. Having direct knowledge of ¢” is the most ideal and preferable of circum-
stances. When we know o7, we can compute the standard error of the mean directly as

o
oy =—
M

FIGURE 2.11 Student’s ¢ versus normal densities for 3 (left), 10 (middle), and 50 (right) degrees of freedom. As
degrees of freedom increase, the limiting form of the ¢ distribution is the z distribution.
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Recall that the form of the one-sample z test for the mean is given by

where the numerator y — y, represents the distance between the sample mean and the population mean
uo under the null hypothesis, and the denominator % is the standard error of the mean.

In most research contexts, from simple to complex, we usually do not have direct knowledge of o~.
When we do not have knowledge of it, we use the next best thing, an estimate of it. We can obtain an
unbiased estimate of 6> by computing s> on our sample. When we do so, however, and use s” in place of
o7, we can no longer pretend to “know” the standard error of the mean. Rather, we must concede that
all we are able to do is estimate it. Our estimate of the standard error of the mean is thus given by:

N
oy = ——

v

When we use s° (where v/s2 = s) in place of 62, our resulting statistic is no longer a z statistic. That is,
we say the ensuing statistic is no longer distributed as a standard normal variable (i.e., z). If it is not
distributed as z, then what is it distributed as? Thanks to William Sealy Gosset who in 1908 worked for
Guinness Breweries under the pseudonym “Student” (Zabell, 2008), the ratio

was found to be distributed as a ¢ statistic on n — 1 degrees of freedom. Again, the ¢ distribution is most
useful for when sample sizes are rather small. For larger samples, as mentioned, the 7 distribution con-
verges to that of the z distribution. If you are using rather large samples, say approximately 100 or more,
whether you evaluate your null hypothesis using a z or ¢ distribution will not matter much, because the
critical values for z and ¢ for such degrees of freedom (99 for the one-sample case) will be relatively
alike, that practically at least, the two test statistics can be considered more or less equal. For even larger
samples, the convergence is that much more fine-tuned.

The concept of convergence between z and ¢ can be easily illustrated by inspecting the variance of
the ¢ distribution. Unlike the z distribution where the variance is set at 1.0 as a constant, the variance of
the ¢ distribution is defined as:

where v are the degrees of freedom. For small degrees of freedom, such as v = 5, the variance of the ¢
distribution is equal to:

2 _ —
0,

5
= = - =~1.67
5-2

W | W

Note what happens as v increases, the ratio -*5 gets closer and closer to 1.0, which is the precise
variance of the z distribution. For example, v = 20 yields:
2 20 20

== -2
° 13

t20-2



STUDENT’S ¢ DISTRIBUTION 63

which is already quite close to the variance of a standardized normal variable z (i.e., 1.0). Hence, we can

say more formally
1%
tim (—2) =10
V—1>ngo v_2

That is, as v increases without bound, the variance of the ¢ distribution equals that of the z distribution,
which is equal to 1.0.

We demonstrate the use of the one-sample #-test using SPSS. Consider the following small, hypo-
thetical data on IQ scores on five individuals:

IQ

105
98
110
105
95

Suppose that the hypothesized mean IQ in the population is equal to 100. The question we want to
ask is—Is it reasonable to assume that our sampled data could have arisen from a population
with mean IQ equal to 100? We assume we have no knowledge of the population standard deviation,
and hence must estimate it from our sample data. To perform the one-sample #-test in SPSS, we
compute:

T-TEST
/TESTVAL=100
/MISSING=ANALYSIS
/VARIABLES=IQ
/CRITERIA=CI (.95) .

The line /TESTVAL = 100 inputs the test value for our hypothesis test, which for our null hypoth-
esis is equal to 100. We have also requested a 95% confidence interval for the mean difference.

One-Sample Statistics

N Mean SD SE Mean

IQ 5 102.6000 6.02495 2.69444

We confirm from the above that the size of our sample is equal to 5, and the mean IQ for our sample
is equal to 102.60 with standard deviation 6.02. The standard error of the mean reported by SPSS of
2.69 is actually not the true standard error of the mean. It is the estimated standard error of the mean,
since recall that we did not have knowledge of the population variance (otherwise we would have been
performing a z-test instead of a r-test).

One-Sample Test
Test Value = 100

95% Confidence Interval of the Difference

t Df  Sig. (2-tailed) = Mean Difference =~ Lower Upper
IQ 0965 4 0.389 2.60000 —-4.8810 10.0810
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We note from the above output:

* Our obtained #-statistic is equal to 0.965 and is evaluated on four degrees of freedom (i.e.,
n—1=5-1=4). We lose a degree of freedom because recall that in estimating the population
variance ¢” with s%, we had to compute a sample mean ¥ and hence this value is regarded as
“fixed” as we carry on with our #-test. Hence, we lose a single degree of freedom.

* The two-tailed p-value is equal to 0.389, which, assuming we had set our criteria for rejection at
a = 0.05, leads us to the decision to not reject the null hypothesis. The two-tailed (as opposed to
one-tailed or directional) nature of the statistical test in this example means that we allow for a
rejection of the null hypothesis in either direction from the value stated under the null. Since our
null hypothesis is uy = 100, it means we were prepared to reject the null hypothesis for observed
values of the sample mean that deviate “significantly” either greater than or less than 100. Since
our significance level was set at 0.05, this means that we have 0.05/2 = 0.025 area in each end of
the ¢ distribution to specify as our rejection region for the test. The question we are asking of our
sample mean is—What is the probability of observing a sample mean that falls much greater
OR much less than 100? Because the observed sample mean can only fall in one tail or the other
on any single trial (i.e., we are conducting a single “trial” when we run this experiment a single
time), this implies these two events are mutually exclusive, which by the addition rule for mutu-
ally exclusive events, we can add them. When we add their probabilities, we get 0.025 +
0.025 = 0.05, which, of course, is our significance level for the test.

* The actual mean difference observed is equal to 2.60, which was computed by taking the mean of
our sample, that of 102.6 and subtracting the mean hypothesized under the null hypothesis, that of
100 (i.e., 102.6 — 100 = 2.60).

* The 95% confidence interval of the difference is interpreted to mean that with 95% confidence, the
interval with lower bound —4.8810 and upper bound 10.0810 will capture the true parameter,
which in this case is the population mean difference. We can see that O lies within the limits
of the confidence interval, which again confirms why we were unable to reject the null hypothesis
at the 0.05 level of significance. Had zero lay outside of the confidence interval limits, this would
have been grounds to reject the null at a significance level of 0.05 (and consequently, we would
have also obtained a p-value of less than 0.05 for our significance test). Recall that the true mean
(i.e., parameter) is not the random component. Rather, the sample is the random component, on
which the interval is then computed. It is important to emphasize this distinction when interpreting
the confidence interval.

We can easily generate the same #-test in R. We first generate the vector of data then carry on with
the one-sample #-test, which we notice mirrors the findings obtained in SPSS:

> ig <- c(105, 98, 110, 105, 95)
> t.test(ig, mu = 100)

One Sample t-test

data: 1iqg
t = 0.965, df = 4, p-value = 0.3892
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
95.11904 110.08096

sample estimates:
mean of x

102.6
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2.20.2 t-Tests for Two Samples

Just as the #-test for one sample is a generalization of the z-test for one sample, for which we use s in

place of 6, the t-test for two independent samples is a generalization of the z-test for two independent
samples. Recall the z-test for two independent samples:

EG)-EY)  u—i

ZM: =
2 2 2 2
O O O O
%, % %, %
nom nom

where E(¥,) and E(y,) denote the expectations of the sample means y, and ¥, respectively (which are
equal to p; and p»).

When we do not know the population variances a% and a%, we shall, as before, obtain estimates
of them in the form of s} and s3. When we do so, because we are using these estimates instead of
the actual variances, our new ratio is no longer distributed as z. Just as in the one-sample case, it is
now distributed as #:

‘= E(y,)-E(),) _ M (2.6)

2 2 2 2
N S S S
51,5 51,5
noom noom

on degrees of freedomv=n;—1+n,—1 =ny+n,-2.

The formulization of ¢ in (2.6) assumes that n; = n,. If sample sizes are unequal, then pooling var-
iances is recommended. To pool, we weight the sample variances by their respective sample sizes and
obtain the following estimated standard error of the difference in means:

. . 1 1 (ny=1)s3 + (ny=1)s3 (ny +ny
2 1 2
e = 8 ooted | — + — ) =
Odiff \/ po [d<n1 nz) \/ n+n—2 niny

which can also be written as

~2 ~2
~ _ ~2 1 1 _ O pooled O pooled
Odiff = O pooled \ —— + — | = +
ni n ni np

(n —1)s? + (ny—1)s3
n+ny;—2
averaged weighted sum, each variance being weighted by its respective sample size. This idea of
weighting variances as to arrive at a pooled value is not unique to #-tests. Such a concept forms the
very fabric of how MS error is computed in the analysis of variance as we shall see further in

Chapter 3 when we discuss the ANOVA procedure in some depth.

Notice that the pooled estimate of the variance is nothing more than an

2.20.3 Two-Sample ¢-Tests in R

Consider the following hypothetical data on pass-fail grades (“0” is fail, “1” is pass) for a seminar
course with 10 attendees:
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grade studytime
30
25
59
42
31
140
90
95
170
120

H PP PP OOOOO

To conduct the two-sample #-test, we generate the relevant vectors in R then carry out the test:

> grade.0 <- c¢(30, 25, 59, 42, 31)
> grade.l <- c(140, 90, 95, 170, 120)
> t.test (grade.0, grade.1l)

Welch Two Sample t-test

data: grade.0 and grade.l
t = -5.3515, df = 5.309, p-value = 0.002549
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-126.00773 -45.19227
sample estimates:
mean of x mean of y
37.4 123.0

Using a Welch adjustment for unequal variances (Welch, 1947) automatically generated by R, we
conclude a statistically significant difference between means (p = 0.003). With 95% confidence, we can
say the true mean difference lies between the lower limit of approximately —126.0 and the upper limit
of approximately —45.2. As a quick test to verify the assumption of equal variances (and to confirm in a
sense whether the Welch adjustment was necessary), we can use var . test which will produce aratio
of variances and evaluate the null hypothesis that this ratio is equal to 1 (i.e., if the variances are equal,
the numerator of the ratio will be the same as the denominator):

> var.test (grade.0, grade.l)
F test to compare two variances

data: grade.0 and grade.l
F = 0.1683, num df = 4, denom df = 4, p-value = 0.1126
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.01752408 1.61654325
sample estimates:
ratio of variances
0.1683105

The var.test yields a p-value of 0.11, which under most circumstances would be considered
insufficient reason to doubt the null hypothesis of equal variances. Hence, the Welch adjustment
on the variances was probably not needed in this case as there was no evidence of an inequality of
variances to begin with.
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Carrying out the same test in SPSS is straightforward by requesting (output not shown):

t-test groups = grade(0 1)
/variables = studytime.

A classic nonparametric equivalent to the independent-samples #-test is the Wilcoxon rank-sum
test. It is a useful test to run when either distributional assumptions are known to be violated or when
they are unknown and sample size too small for the central limit theorem to come to the “rescue.” The
test compares rankings across the two samples instead of actual scores. For a brief overview of how the
test works, see Kirk (2008, Chapter 18) and Howell (2002, pp. 707-717), and for a more thorough
introduction to nonparametric tests in general, see the following chapter on ANOVA in this book,
or consult Denis (2020) for a succinct chapter and demonstrations using R. We can request the test
quite easily in R:

> wilcox.test (grade.0, grade.l)
Wilcoxon rank sum test

data: grade.0 and grade.l
W = 0, p-value = 0.007937
alternative hypothesis: true location shift is not equal to 0

We see that the obtained p-value still suggests we reject the null hypothesis, though the p-value is
slightly larger than for the Welch-corrected parametric test.

2.21 STATISTICAL POWER

Power, first and foremost, is a probability. Power is the probability of rejecting a null hypothesis given
that the null hypothesis is false. Itis equal to 1 — § (i.e., 1 minus the type II error rate). If the null hypoth-
esis were true, then regardless of how much power one has, one would still not be able to reject the null.
We may think of it somewhat in terms of the sensitivity of a statistical test for detecting the falsity of the
null hypothesis. If the test is not very sensitive to departures from the null (i.e., in terms of a particular
alternative hypothesis), we will not detect such departures. If the test is very sensitive to such depar-
tures, then we will correctly detect these departures and be able to infer the statistical alternative
hypothesis in question.

A useful analogy for understanding power is to think of a sign on a billboard that reads “H, is false.”
Are you able to detect such a sign with your current glasses or contact lenses that you are wearing? If
not, you lack sufficient power. That is, you lack the sensitivity in your instrument (your reading
glasses) to correctly detect the falsity of the null hypothesis, and in doing, be in a position to reject
it. Alternatively, if you have 20/20 vision, you will be able to detect the false null with ease, and reject
it with confidence. A key point to note here is that if H is false, it is false regardless of your ability to
detect it, analogous to a virus strain being present but biomedical engineers lacking a powerful enough
microscope to see it. If the null is false, the only question that remains is whether or not you will have a
powerful enough test to detect its falsity. If the null were not false on the other hand, then regardless of
your degree of power, you will not be able to detect its falsity (because it is not false to begin with).

Power is a function of four elements, all of which will be featured in our discussion of the p-value
toward the conclusion of this chapter:
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. The value hypothesized under the statistical alternative hypothesis, H;. All else equal, a greater

distance between H, and H; means greater power. Though “distance” in this regard is not a one-
to-one concept with effect size, the spirit of the two concepts is the same. The greater the sci-
entific effect, the more power you will have to detect that effect. This is true whether we are
dealing with mean differences in ANOV A-type models or testing a null hypothesis of the sort
Hy: R* = 0 in regression. In all such cases, we are seeking to detect a deviation from the null
hypothesis.

. The significance level, or type I error rate (a) at which you set your test. All else equal, a more

liberal setting such as 0.05 or 0.10 affords more statistical power than a more conservative setting
such as 0.01 or 0.001, for instance. It is easier to detect a false null if you allow yourself more of a
risk of committing a type I error. Since we usually want to minimize type I error, we typically
want to regard a as fixed at a nominal level (e.g., 0.05 or 0.01) and consider it not amenable to
adjustment for the purpose of increasing power. Hence, when it comes to boosting power,
researchers usually do not want to “mess with” the type I error rate.

. Population variability, >, often unknown but estimated by s*. All else equal, the greater the

variance of objects studied in the population, the less sensitive the statistical test, and the less
power you will have. Why is this so? As an analogy, consider a rock thrown into the water. The
rock will make a definitive particular “splash” in that it will displace a certain amount of water
when it hits the surface. This can be considered to be the “effect size” of the splash. If the water is
noisy with wind and waves (i.e., high population variability), it will be difficult to detect the
splash. If, on the other hand, the water is calm and serene (i.e., low population variability),
you will more easily detect the splash. Either way, the rock made a particular splash of a given
size. The magnitude of the splash is the same regardless of whether the waters are calm or tur-
bulent. Whether we can detect the splash or not is in part a function of the variance in the
population.

. Applying this concept to research settings, if you are sampling from “noisy” populations, it is

harder to see the effect of your independent variable than if you are sampling from less noisy and
thus, less variable, populations. This is why research using lab rats or other equally controllable
objects can usually detect effects with relatively few animals in a sample, whereas research
studying humans on variables such as intelligence, anxiety, attitudes, etc., usually requires many
more subjects in order to detect effects. A good way to boost power is to study populations that
have relatively low variability before your treatment is administered. If your treatment works,
you will be able to detect its efficacy with fewer subjects than if dealing with a highly variable
population. Another approach is to covary out one or two factors that are thought to be related to
the dependent variable through a technique such as the analysis of covariance (Keppel and
Wickens, 2004), discussed and demonstrated later in the book.

. Sample size, n. All else equal, the greater the sample size, the greater the statistical power. Boost-

ing sample size is a common strategy for increasing power. Indeed, as will be discussed at the
conclusion of this chapter, for any significance test in which there is at least some effect (i.e.,
some distance between the null and alternative), statistical significance is assured for a large-
enough sample size. Obtaining large samples is a good thing (since after all, the most ideal goal
would be to have the actual population), but as sample size increases, the p-value becomes an
increasingly poor indicator or measure of experimental effect. Effect sizes should always be
reported alongside any significance test.
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2.21.1 Visualizing Power

Figure 2.12, adapted from Bollen (1989), depicts statistical power under competing values for detect-
ing the population parameter 6. Note carefully in the figure that the critical value for the test remains
constant as a result of our desire to keep the type I error rate constant. It is the distance from 8 = 0 to
60 = C, or 6 = C, that determines power (the shaded region in distributions (b) and (c)).

Statistical power matters so long as we have the inferential goal of rejecting null hypotheses. A study
that is underpowered risks not being able to reject null hypotheses even if such null hypotheses are in
reality false. A failure to reject a null hypothesis under the condition of minimal power could either
mean a lack of inferential support for the obtained finding, or it could simply suggest an underpowered
(and consequently poorly designed) experiment or study. Ensuring adequate statistical power before
one engages in a research study or experiment is mandatory (Cohen, 1988).

2.22 POWER ESTIMATION USING R AND G*'POWER

To demonstrate the estimation of power using software, we first use pwr . r. test (Champely, 2014)
in R to estimate required sample size for a Pearson r correlation coefficient. As an example, we estimate
required sample size for a population correlation coefficient of p = 0.10 at a significance level set to
0.05, with desired power equal to 0.90. Note that in the code that follows, we purposely leave n empty
so R can estimate this figure for us:

> install.packages (“pwr”)
> library (pwr)

> pwr.r.test(n = , r = .10, sig.level = .05, power = .90)
(a) 9=0 i
|
|
| a
| T
1
Critical Test
value statistic
® 4o, ;
|
|
| Power
| |
i C,
Critical Test
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© s-c, |
|
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|
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FIGURE 2.12 Power curves for detecting parameters C; and C,. Source: Bollen (1989). Reproduced with
permission from John Wiley & Sons, Inc.
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approximate correlation power calculation

n
r

sig.level
power
alternative
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(arctangh transformation)
1046.423

0.1

0.05

0.9

two.sided

We see that to detect a correlation coefficient of 0.10 at a desired level of power equal to 0.9, a
sample size of 1046 is required. We could round up to 1047 for a slightly more conservative estimate.
It is a more conservative estimate because 1047 is slightly more “generous” of a sample than R is
reporting is necessary (1046). Now, in this case, the difference is extremely slight, but in general, when
you provide your analysis with more subjects than what may be necessary for a given level of power,
you are guarding against the possibility of obtaining smaller effects than what you believe are “out
there” in your population. If in doubt, larger samples are always preferable to smaller ones, and
thus rounding “up” on sample size requirements is usually a good idea.

Estimating in G*Power,'® we obtain that given in Figure 2.13.

Note that our power estimate using G*Power is identical to that using R (i.e., power of 0.90 requires a
sample size of 1046 for an effect size of p = 0.10). G*Power also allows us to draw the corresponding
power curve. A power curve is a simple depiction of required sample size as a function of power and
estimated effect size. What is nice about power curves is that they allow one to see how estimated sample
size requirements and power increase or decrease as a function of effect size. For the estimation of esti-
mated sample size for detecting p = 0.10, G*Power generates the curve in Figure 2.14 (top curve).

Central and noncentral distributions LProtocol of power analyses I
critical r = 0.0606181
4 atnn -
/, S
7 A Y
104 7 \
Vi \
7 \
1 b \
7/ \
. ’ \
5 y \
\
4 y. = N
P g B
o - e -~
0 - o T T - =
-0.05 0 0.05 0.1 0.15
Test family Statistical test
[Exu:t 'J [Cotreuﬂon: Bivariate normal model v]
Type of power analysis
[A priori: Compute required sample size - given o, power, and effect size vJ
Input Parameters Output Parameters
Tail(s) Lower critical r -0.0606181
[Deurmine => | Correlation p H1 0.1 Upper critical r 0.0606181
o err prob 0.05 Total sample size 1046
Power (1-§ err prob) 0.90 Actual power 0.9000744
Correlation p HO [+]

FIGURE 2.13 G"Power output for estimating required sample size for r = 0.10.

0 G*Power is a user-friendly statistical program that can be downloaded for free at: https://www.psychologie.hhu.de/
arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html.
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Exact - Correlation: Bivariate normal model
Tail(s) = Two, Correlation p HO = 0, « err prob = 0.05
Correlation p H1
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and lﬂ err prob 'I at 0.05

FIGURE 2.14 Power curves generated by G*Power for detecting correlation coefficients of p = 0.10 to 0.50.

Especially for small hypothesized values of p, the required sample size for even poor to modest
levels of statistical power is quite large. For example, reading off the plot in Figure 2.14, to detect
p =0.10, at even a relatively low power level of 0.60, one requires upward of almost 500 participants.
This might explain why many studies that yield relatively small effect sizes never get published. They
often have insufficient power to reject their null hypotheses. As effect size increases, required sam-
ple size drops substantially. For example, to attain a modest level of power such as 0.68 for a correlation
coefficient of 0.5, one requires only 21.5 participants, as can be more clearly observed from Table 2.6
which corresponds to the power curves in Figure 2.14 for power ranging from 0.60 to 0.69.

Hence, one general observation from this simple power analysis for detecting p is that size of effect
(in this case, p) plays a very important role in determining estimated sample size. As a general rule,
across virtually all statistical tests, if the effect you are studying is large, a much smaller sample size
is required than if the effect is weak. Drawing on our analogy of the billboard sign that reads “H|, is
false,” all else equal, if the sign is in large print (i.e., strong effect), you require less “power” in your
prescription glasses to detect such a large sign. If the sign is in small print (i.e., weak effect), you require
much more “power” in your lenses to detect it.

2.22.1 Estimating Sample Size and Power for Independent Samples #-Test

For an independent-samples #-test, required sample size can be estimated through R using pwr.
t.test:

> pwr.t.test (n =, d =, sig.level =, power =, type = c(“two.sample”, “one.
sample”, “paired”))

where, n = sample size per group, d = estimate of standardized statistical distance between means
(Cohen’s d), sig.level = desired significance level of the test, power = desired power level,
and type = designation of the kind of #-test you are performing (for our example, we are performing
a two-sample test).
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TABLE 2.6 Power Estimates as a Function of Sample Size and Estimated Magnitude Under Alternative
Hypothesis

Exact — Correlation: Bivariate Normal Model
Tail(s) = Two, Correlation p HO = 0, a err prob = 0.05

Correlation Correlation Correlation Correlation Correlation
p H1=0.1 pH1 =02 pHI=03 pHI =04 pHI=0.5
#  Power(1-p Total Sample Total Sample Total Sample Total Sample Total Sample
err prob) Size Size Size Size Size
1 0.600000 488.500 121.500 53.5000 29.5000 18.5000
2 0.610000 500.500 124.500 54.5000 30.5000 18.5000
3 0.620000 511.500 126.500 55.5000 30.5000 19.5000
4 0.630000 523.500 129.500 56.5000 31.5000 19.5000
5 0.640000 535.500 132.500 58.5000 32.5000 19.5000
6  0.650000 548.500 135.500 59.5000 32.5000 20.5000
7 0.660000 561.500 138.500 60.5000 33.5000 20.5000
8  0.670000 574.500 142.500 62.5000 34.5000 21.5000
9  0.680000 587.500 145.500 63.5000 34.5000 21.5000
10 0.690000 601.500 148500 64.5000 35.5000 22.5000

It would be helpful at this point to translate Cohen’s d values into R values to learn how much
variance is explained by differing d values. To convert the two, we apply the following transformation:

42

d=
1-72

Table 2.7 contains conversions for » increments of 0.10, 0.20, 0.30, etc.

To get a better feel for the relationship between Cohen’s d and 7, we obtain a plot of their values
(Figure 2.15).

As can be gleamed from Figure 2.15, the relationship between the two effect size measures is not
exactly linear and increases rather sharply for rather large values (the curve is somewhat exponential).

Suppose a researcher would like to estimate required sample size for a two-sample #-test, for a rel-
atively small effect size, d =0.41 (equal to r of 0.20), at a significance level of 0.05, with a desired
power level of 0.90. We compute:

> pwr.t.test (n =, d =0.41, sig.level =.05, power =.90, type = c(“two.sample”))
Two-sample t test power calculation
n = 125.9821
d = 0.41
sig.level = 0.05
power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

Thus, the researcher would require a sample size of approximately 126. As R emphasizes, this sam-
ple size is per group, so the total sample size required is 126(2) = 252.
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TABLE 2.7 Conversions for r — r*— d.'!

r P d

0.10 0.01 0.20
0.20 0.04 0.41
0.30 0.09 0.63
0.40 0.16 0.87
0.50 0.25 1.15
0.60 0.36 1.50
0.70 0.49 1.96
0.80 0.64 2.67
0.90 0.81 4.13
0.99 0.98 14.04

Cohen’s d as a function of R-squared
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2 o
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FIGURE 2.15 Relationship between Cohen’s d and R-squared.

2.23 PAIRED-SAMPLES #TEST: STATISTICAL TEST FOR MATCHED-PAIRS
(ELEMENTARY BLOCKING) DESIGNS

Oftentimes in research, we are able to sample observations that are matched on one or more variables
or characteristics. For instance, consider the hypothetical data in Table 2.8.

s r <- ¢(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99)

> r squared <- r’2
> r_squared
[1] 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600 0.4900 0.6400 0.8100 0.9801

> d <- sqgrt((4*r*2)/(1-r*2))

> d
[1] 0.2010076 0.4082483 0.6289709 0.8728716 1.1547005 1.5000000
[7] 1.9603921 2.6666667 4.1294832 14.0358479
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TABLE 2.8 Matched-Pairs Design

Treatment 1 Treatment 2
Block 1 10 8
Block 2 15 12
Block 3 20 14
Block 4 22 15
Block 5 25 24

About Table 2.8:

* In each block (1 through 5), participants within blocks are assumed to be more homogeneous on
one or more variables than participants between blocks.

Participants are randomly assigned to condition (i.e., treatment 1 versus treatment 2) within
each block.

Whether the blocks are naturally occurring or our sampling scheme is designed purposely to cre-
ate the blocks, we can exploit the homogeneity of participants within each block by including this
source in our statistical analysis as to potentially reduce the error term of our statistical test.

The matched-pairs design is a simpler version of the full-blown randomized block design in which
one can have more than justtwo levels of the independent variable (e.g., treatment 1 versus treatment 2
versus treatment 3). However, the principle behind the matched-pairs design and that of randomized
block designs is the same, that of exploiting the covariance between conditions and removing it from
the error term of the test statistic (# in matched-pairs, F in randomized block designs).

In more advanced analyses such as repeated measures, longitudinal, and mixed effects modeling,
we will say that subjects are nested within block. A nesting structure simply implies that sub-
jects within a block share similarity compared to subjects between blocks. Good statistical
analyses will attempt to account for this similarity, remove it from respective error terms for tests,
and hence make the statistical test for effects more sensitive (i.e., more powerful).

As an example of a matched-pairs situation, suppose we are interested in evaluating the effects of
melatonin'? dose on average hours of sleep. However, we know that due to age, some people will naturally
sleep longer than others irrespective of how much melatonin they receive. We do not want this natural sleep
tendency due to age to confound the effect we are actually interested in studying (i.e., that of melatonin
dose), and so we will match participants on their age level, or perhaps even crudely on age group (e.g.,
young, middle-aged, old), and carry out our study within each age group. Then, when we perform sta-
tistical analyses, we will be able to extract this variation due to age out of the error term of the analysis, and
hence boost statistical power for estimating the effect we are actually interested in (melatonin dosage).

When we sample observations in pairs, as was true for the independent samples #-test, the expec-
tation of the difference between sample means is given by:

E(y, =) =ty —Hy

However, because observations are sampled (or “matched”) in pairs, we naturally expect there to be a
covariance different from zero between pairs. We can exploit this covariance and remove it from the
error term of our statistical test. As given in Hays (1994, p. 339), the variance of the difference becomes

) 2 S
Ouiff = Om, T Opm, =2cov(y1,¥,)

12 Melatonin is sometimes used as a non-prescription sleep aid.
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with standard error equal to

Odiff =1/ (75,'ff = \/512\4. + Gzzviz —2cov(y1,¥,)

Notice that we have subtracted 2cov(y,, ¥, ) from the denominator of our statistic. Assuming the covar-
iance between pairs is unequal to 0, this will serve to lower the standard error of our statistic, and hence,
boost statistical power. In practice, this is accomplished by conducting a t-test on the difference scores
between samples. As Hays (1994, p. 339) notes, “the matching and the consequent dependence within
the pairs changes the standard error of the difference between the sample means.”

In the classic between-subjects design where participants are not matched, the expectation is that
covariance between treatments is equal to 0, and hence, we would have:

Ufﬁﬁ = "12141 + 0'12142 —2cov(y},,)
= (7%,,1 + 0'%,,2 -2(0)

_ 2 2
—(ﬂw]+'GM2

The matched-pairs design is a very important concept in statistics and design of experiments, because
this simple design is the starting point to understanding more complicated designs and modeling such
as mixed effects and hierarchical models.

We analyze the hypothetical data in Table 2.8 using a paired samples -test in R by requesting
paired = TRUE:

> treat <- c(10, 15, 20, 22, 25)
> control <- ¢ (8, 12, 14, 15, 24)
> t.test (treat, control, paired = TRUE)

Paired t-test

data: treat and control
t = 3.2827, df = 4, p-value = 0.03042
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

0.5860324 7.0139676
sample estimates:
mean of the differences

3.8

The obtained p-value of 0.03 is statistically significant at a 0.05 level of significance. We reject the
null hypothesis and conclude the population means for the treatment conditions to be different.

As a nonparametric test, the Wilcoxon rank-sum test featured earlier can be adapted to incorporate
paired observations. For our data, we have:

> wilcox.test (treat, control, paired = TRUE)
Wilcoxon signed rank test
data: treat and control

V = 15, p-value = 0.0625
alternative hypothesis: true location shift is not equal to 0
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TABLE 2.9 Randomized Block Design

Treatment 1 Treatment 2 Treatment 3

Block 1 10 9 8
Block 2 15 13 12
Block 3 20 18 14
Block 4 22 17 15
Block 5 25 25 24

We notice that the obtained p-value is somewhat greater for the nonparametric test than for the par-
ametric one. In terms of significance tests, this emphasizes the fact that there is usually a cost to not
being able to make parametric assumptions.

2.24 BLOCKING WITH SEVERAL CONDITIONS

We have said that in a blocking design, between treatment conditions we expect the covariance to be
unequal to 0. Now, consider a design in which, once again we block, but this time on more than two
treatment levels. The layout for such a design is given in Table 2.9.

Now, here is the trick to understanding advanced modeling, including a primary feature of mixed
effects modeling. We know that we expect the covariance between treatments to be unequal to 0. This
is analogous to what we expected in the simple matched-pairs design. It seems then that a reasonable
assumption to make for the data in Table 2.9 is that the covariances between treatments are equal, or at
minimum, follow some hypothesized correlational structure. In multilevel and hierarchical models,
attempts are made to account for the correlation between treatment levels instead of assuming these
correlations to equal O as is the case for classical between-subjects designs. In Chapter 6, we elaborate
on these ideas when we discuss randomized block and repeated measures models.

2.25 COMPOSITE VARIABLES: LINEAR COMBINATIONS

In many statistical techniques, especially multivariate ones, statistical analyses take place not on indi-
vidual variables, but rather on linear combinations of variables. A linear combination in linear algebra
can be denoted simply as:

li=aiy) +ay, + ... + apy,
= a'y
where a’ = (ay, ao, ..., a,). These values are scalars, and serve to weight the respective values of y,
through y,,, which are the variables.

Just as we did for “ordinary” variables, we can compute a number of central tendency and dispersion
statistics on linear combinations. For instance, we can compute the mean of a linear combination ¢; as

B (.
{=-) (;=ay
DI
We can also compute the sample variance of a linear combination:
(-7

1
=a'S
n_1 ada

2 _ i
Sy =
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for#;=a'y,i=1,2, ..., n, and where S is the sample covariance matrix. Though the form a’Sa for the
variance may be difficult to decipher at this point, it will become clearer when we consider techniques
such as principal components later in the book.
For two linear combinations,
li=aiy; + @y, + ... + apy, = ay
and
€2 = blyl + b2y2 + ...+ bpyp = b'y
we can obtain the sample covariance between such linear combinations as follows:
n - -
S (th=0)(ln-0)
i=1

Covy, ¢, = P =a'Sh

The correlation of these linear combinations (Rencher and Christensen, 2012, p. 76) is simply the stan-
dardized version of covy, ¢,:

_Covy g, a'Sh

ré)l’[ - - 1 U
’ \/s[?] 57, V/(a'Sa)(b'Sb)

As we will see later in the book, if 7y, ¢, is the maximum correlation between linear combinations on
the same variables, it is called the canonical correlation, discussed in Chapter 12. The correlation
between linear combinations plays a central role in multivariate analysis. Substantively, and geomet-
rically, linear combinations can be interpreted as “projections” of one or more variables onto new
dimensions. For instance, in simple linear regression, the fitting of a least-squares line is such a pro-
jection. It is the projection of points such that it guarantees that the sum of squared deviations from the
given projected line or “surface” (in the case of higher dimensions) is kept to a minimum.

If we can assume multivariate normality of a distribution, that is, Y ~ N[p, X], then we know linear
combinations of Y are also normally distributed, as well as a host of other useful statistical properties
(see Timm, 2002, pp. 86—88). In multivariate methods especially, we regularly need to make assump-
tions about such linear combinations, and it helps to know that so long as we can assume multivariate
normality, we have some idea of how such linear combinations will be distributed.

2.26 MODELS IN MATRIX FORM

Throughout the book, our general approach is to first present models in their simplest possible form
using only scalars. We then gently introduce the reader to the corresponding matrix counterparts and
extensions. The requirement of matrices for such models is to accommodate numerous variables and
dimensions. Matrix algebra is the vehicle by which multivariate analysis is communicated, though
most of the concepts of statistics can be communicated using simpler scalar algebra. Knowing matrix
algebra for its own sake will not necessarily equate to understanding statistical concepts. Indeed, hiding
behind the mathematics of statistics are the philosophically “sticky” issues that mathematics or statis-
tics cannot, on their own at least, claim to solve. These are often the problems confronted by researchers
and scientists in their empirical pursuits and attempts to draw conclusions from data. For instance, what
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is the nature of a “correct” model? Do latent variables exist, or are they only a consequence of gen-
erating linear combinations? The nature of a latent variable is not necessarily contingent on the linear
algebra that seeks to define it. Such questions are largely philosophical, and if such interest you, you are
strongly encouraged to familiarize yourself with the philosophy of statistics and mathematics (you
may not always find answers to your questions, but you will appreciate the complexity of such ques-
tions, as they are beyond our current study here). For a gentle introduction to the philosophy of sta-
tistics, see Lindley (2001).

As an example of how matrices will be used to develop more complete and general models, consider
the multivariate general linear model in matrix form:

Y=XB+E Q.7)

where Y is an n X m matrix of n observations on m response variables, X is the model or “design” matrix
whose columns contain k regressors which includes the intercept term, B is a matrix of regression coef-
ficients, and E is a matrix of errors. Many statistical models can be incorporated into the framework of
(2.7). As arelatively easy application of this general model, consider the simple linear regression model
(featured in Chapter 7) in matrix form:

Vi=1 (1 X1 ] €l
Yi=2 I xi=2 &
Vi=3 1 xi=3 €3
a
Y= X = B:[ :|e=
B
L Vi=n _1 Xi=n | L €n

where y; - | to y; - , are observed measurements on some dependent variable, X is the model matrix
containing a constant of 1 in the first column to represent the common intercept term (i.e., “common”
implying there is one intercept that represents all observations in our data), x; - | to x; - ,, are observed
values on a predictor variable, « is the fixed intercept parameter, /3 is the slope parameter, which we also
assume to be fixed, and € is a vector of errors €, to ¢, (we use € here instead of E).

Suppose now we want to add a second response variable. Because of the generality of (2.7), this can
be easily accommodated:

Yi=1,1-Yi=12
Yi=2,1-Yi=22
Yi=3,1:Yi=32

_yi=n,1’yi=n,2_
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where now, a second response variable is represented in Y by a second column. That is, y; - 1, » cor-
responds to individual 1 on response variable 2, y; - », » is individual 2 on response variable 2, etc. We
will at times refer to matrix representations throughout the book.

2.27 GRAPHICAL APPROACHES

Performing inferential tests to help draw conclusions about population parameters is useful, but ulti-
mately the findings of a statistical analysis should make their way into a graph or other visualization.
Data visualization is a field in itself, and with the advent of modern computing power, possibilities
exist today that could only be dreamt of in the past. Simple visualizations such a histograms, boxplots,
scatterplots, etc., can be useful in depicting findings but also in helping to verify assumptions that
underlay the statistical model one is using. For example, since many tests of normality and equality
of variances (and covariances) are relatively sensitive to the types of data to which they are applied,
oftentimes researchers will generate simple plots in order to detect potential gross violations of such
assumptions. We feature such techniques throughout the book.

For graphical displays meant to communicate findings (rather than test assumptions), Friendly
(2000) puts the field into context:

Designing good graphics is surely an art, but as surely, it is one that ought to be informed by science ...
In this view, an effective graphical display, like good writing, requires an understanding of its purpose
— what aspects of the data are to be communicated to the viewer. In writing, we communicate most
effectively when we know our audience and tailor the message appropriately. (p. 8)

In high-dimensional space, the challenge of graphical approaches is to summarize data into lower
dimensions, while still retaining most of the information in the original data. We feature some such
plots in later chapters. For a thorough account of data visualization, see datavis.ca (Friendly, 2020).
For sophisticated graphics using R, consult Wickham (2009).

For now, it is useful to briefly review some basic plots for which the reader is likely already familiar.

2.27.1 Box-and-Whisker Plots

The boxplot was a contribution of John Tukey (1977) in the spirit of what is called exploratory data
analysis, or “EDA” which encouraged scientists to spend more of their energy on descriptive techni-
ques instead of focusing exclusively on confirmatory statistical tests. Boxplots of parent heights from
Galton’s data appear below:

attach(Galton)
boxplot (parent)
library(lattice)
bwplot (parent)

vV V. V V
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The boxplot provides what is generally known as a five-number summary of a distribution, of
which we can obtain most of the numbers we need by the summary function in R:

> summary (parent)
Min. 1st Qu. Median Mean 3rd Qu. Max.
64.00 67.50 68.50 68.31 69.50 73.00

Recall that the median is the point in the ordered data that divides the data set into two equal parts.
The location of the median is computed by (n + 1)/2. In Galton’s data, there are 928 observations, and
so the location of the median is at 464.5" (i.e., (928 + 1)/2) point in the ordered data set. For parent, this
value is equal to 68.50. The first and third quartiles represent the 25th and 75th percentiles and are
67.50 and 69.50 respectively. We can also compute the range as

> range (parent)
[1] 64 73

We can also generate boxplots by category. Throughout the book, we use Fisher’s iris data (Fisher,
1936) in which flower characteristics such as sepal and petal length are categorized by species of
flower. We plot sepal length by species:

> library(lattice)
> attach(iris)
> bwplot (Sepal.Length ~ Species)
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Sepal.Length

setosa versicolor virginica

Data points falling beyond the whiskers of the plots may reveal the presence of outliers, and should
be investigated (though of course, not necessarily deleted, see Section 7.23 for a discussion). If you are
completely unfamiliar with boxplots, see Denis (2020) for an overview.

Stem-and-leaf plots are also easily produced. These visual displays are kind of “naked histograms,”
because they reveal the actual observations in the data while also providing information about their
frequency of occurrence. In 1710, John Arbuthnot analyzed data on the ratios of males to female births
in London from 1629 to 1710 and in so doing made an argument for these births being a function of a
“divine being” (Arbuthnot, 1710; Shoesmith, 1987). One of his variables was the number of male chris-
tenings (i.e., baptisms) over the period 1629-1710. We generate a stem-and-leaf plot in R of these male
christenings using package aplpack (Wolf and Bielefeld, 2014), for which the “leaves” are corre-
sponding hundreds. For example, in the following plot, the first value of 2|8 would appear to represent
a value of 2800 but is rounded down from the actual value in the data (which is also the minimum) of
2890. The maximum in the data is actually equal to 8426, but is represented by 8400 (i.e., 810012334):

install.packages (“aplpack”)
library (aplpack)

library (HistData)

attach (Arbuthnot)

stem.leaf (Males)

V V. V V V

1 | 2: represents 1200
leaf unit: 100
n: 82
1 2. | 8
10 3% | 011222334
15 3. | 66777
18 4% | 014
25 4. | 6777899
36 5% | 01112233444
38 5. | 56
(11) 6* | 00001122444
33 6. | 5555899
26 7% | 244
23 7. | 5555666666778999
7 8* | 0012334
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2.28 WHAT MAKES A p-VALUE SMALL? A CRITICAL OVERVIEW AND
PRACTICAL DEMONSTRATION OF NULL HYPOTHESIS SIGNIFICANCE TESTING

The workhorse for establishing statistical evidence in the social and natural sciences is the method of
null hypothesis significance testing (or, “NHST” for short). However, since its inception with R.A.
Fisher in the early 1900s, the significance test has been the topic of much debate, both statistical and
philosophical. Throughout much of this book, NHST is regularly used to evaluate null hypotheses in
methods such as the analysis of variance, regression, and various multivariate procedures. Indeed, the
procedure is universally used in most statistical methods.

It behooves us then, before embarking on all of these methodologies, to discuss the nature of the null
hypothesis significance test, and clearly demonstrate what it actually means, not only in a statistical
context but also in how it should be interpreted in a research or substantive context.

The purpose of this final section of the present chapter is to provide a clear and concise demonstra-
tion and summary of the factors that influence the size of a computed p-value in virtually every sta-
tistical significance test. Understanding why statements such as “p < 0.05” can be reflective of even the
smallest and trivial of effects is critical for the practitioner or researcher to appreciate if he or she is to
assess and appraise statistical evidence in an intelligent and thoughtful manner. It is not an exaggeration
to say that if one does not understand the make-up of a p-value and the factors that directly influ-
ence its size, one cannot properly evaluate statistical evidence, nor should one even make the
attempt to do so. Though these arguments are not new and have been put forth by even the very best
of methodologists (e.g., see Cohen, 1990; Meehl, 1978) there is evidence to suggest that many practi-
tioners and researchers do not understand the factors that determine the size of a p-value (Gigerenzer,
2004). To emphasize once again—understanding the determinants of a p-value and what makes p-
values distinct from effect sizes is not simply “fashionable.” Rather, it is absolutely mandatory for
any attempt to properly evaluate statistical evidence in a research report. Does the paper you’re reading
provide evidence of a successful treatment for cancer? If you do not understand the distinctions
between p-values and effect sizes, you will be unable to properly assess the evidence. It is that
important. As we will see, stating a result as “statistically significant” does not in itself tell you
whether the treatment works or does not work, and in some cases, tells you very little at all from a
scientific vantage point.

2.28.1 Null Hypothesis Significance Testing (NHST): A Legacy of Criticism

Criticisms targeted against null hypothesis significance testing have inundated the literature since at
least the time Berkson in 1938 brought to light how statistical significance can be easily achieved
by simple manipulations of sample size:

I believe that an observant statistician who has had any considerable experience with applying the
chi-square test repeatedly will agree with my statement that, as a matter of observation, when the
numbers in the data are quite large, the P’s tend to come out small. (p. 526)

Since Berkson, the very best and renown of methodologists have remarked that the significance test
is subject to gross misunderstanding and misinterpretation (e.g., see Bakan, 1966; Carver, 1993;
Cohen, 1990; Estes, 1997; Loftus, 1991; Meehl, 1978; Oakes, 1986; Shrout, 1997; Wilson, Miller,
and Lower, 1967). And though it can be difficult to assess or evaluate whether the situation has
improved, there is evidence to suggest that it has not. Few describe the problem better than Gigerenzer
in his article Mindless statistics (Gigerenzer, 2004), in which he discusses both the roots and truths of
hypothesis testing, as well as how its “statistical rituals” and practices have become far more of a soci-
ological phenomenon rather than anything related to good science and statistics.
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Other researchers have found that misinterpretations and misunderstandings about the significance
test are widespread not only among students but also among their instructors (Haller and Krauss, 2002).
What determines statistical significance and what is it a function of? This is an extremely important
question. An unawareness of the determinants of statistical significance leaves the door open to mis-
understanding and misinterpretation of the test, and the danger to potentially draw false conclusions
based on its results. Too often and for too many, the finding “p < 0.05” simply denotes a “good thing”
of sorts, without ever being able to pinpoint what is so “good” about it.

Recall the familiar one-sample z-test for a mean discussed earlier:

where the purpose of the test was to compare an obtained sample mean y to a population mean y under
the null hypothesis that 4 = po. Sigma, o, recall is the standard deviation of the population from which
the sample was presumably drawn. Recall that in practice, this value is rarely if ever known for certain,
which is why in most cases an estimate of it is obtained in the form of a sample standard deviation s.
What determines the size of z;,, and therefore, the smallness of p? There are three inputs that determine
the size of p, which we have already featured in our earlier discussion of statistical power. These three
factors are y — j4, o and n. We consider each of these once more, then provide simple arithmetic demon-
strations to emphasize how changing any one of these necessarily results in an arithmetical change in
Zu, and consequently, a change in the observed p-value.

As a first case, consider the distance y— . Given constant values of ¢ and r, the greater the
distance between y and y, the larger z,, will be. That is, as the numerator y—u, grows larger,
the resulting z,, also gets larger in size, which as a consequence, decreases p in size. As a simple exam-
ple, assume for a given research problem that ¢ is equal to 20 and # is equal to 100. This means that the
standard error is equal to 20/4/100, which is equal to 20/10 = 2. Suppose the obtained sample mean y
were equal to 20, and the mean under the null hypothesis, o, were equal to 18. The numerator of z,,
would thus be 20 — 18 =2. When 2 is divided by the standard error of 2, we obtain a value for z;, of 1.0,
which is not statistically significant at p <0.05.

Now, consider the scenario where the standard error of the mean remains the same at 2, but that
instead of the sample mean y being equal to 20, it is equal to 30. The difference between the sample
mean and the population mean is thus 30 — 18 = 12. This difference represents a greater distance
between means, and presumably, would be indicative of a more “successful” experiment or study.
Dividing 12 by the standard error of 2 yields a z,, value of 6.0, which is highly statistically significant
at p <0.05 (whether for a one- or two-tailed test).

Having the value of z;, increase as a result of the distance between y and pq increasing is of course
what we would expect from a test statistic if that test statistic is to be used in any sense to evaluate the
strength of the scientific evidence against the null. That is, if our obtained sample mean y turns out to
be very different than the population mean under the null hypothesis, po, we would hope that our test
statistic would measure this effect, and allow us to reject the null hypothesis at some preset significance
level (in our example, 0.05). If interpreting test statistics were always as easy as this, there would be no
misunderstandings about the meaning of statistical significance and the misguided decisions to auto-
matically attribute “worth” to the statement “p < 0.05.” However, as we discuss in the following cases,
there are other ways to make z,, big or small that do not depend so intimately on the distance between y
and o, and this is where interpretations of the significance test usually run awry.

Consider the case now for which the distance between means, y — y, is, as before, equal to 2.0 (i.e.,
20— 18 =2.0). As noted, with a standard error also equal to 2.0, our computed value of z,, came out to
be 1.0, which was not statistically significant. However, is it possible to increase the size of z,, without



84 INTRODUCTORY STATISTICS

changing the observed distance between means? Absolutely. Consider what happens to the size of z;,
as we change the magnitude of either ¢ or n, or both. First, we consider how z,, is defined in part as a
function of ¢. For convenience, we assume a sample size still of n = 100. Consider now three hypo-
thetical values for o: 2, 10, and 20. Performing the relevant computations, observe what happens to the
size of z;; in the case where ¢ = 2:

The resulting value for z,, is quite large at 10. Consider now what happens if we increase ¢ from 2 to 10:

y-Hy _20-18 2

M= g =7 =2
NG V100

Notice that the value of z), has decreased from 10 to 2. Consider now what happens if we increase o
even more to a value of 20 as we had originally:

Y—py 20-18 2

=" =5 =5=1
Vi V100

When ¢ = 20, the value of z,, is now equal to 1, which is no longer statistically significant at p <0.05.
Be sure to note that the distance between means y — u, has remained constant. In other words, and this is
important, z;, did not decrease in magnitude by altering the actual distance between the sample
mean and the population mean, but rather decreased in magnitude only by a change in o.

What this means is that given a constant distance between means y — y, whether or not z,, will or
will not be statistically significant can be manipulated by changing the value of o. Of course, a
researcher would never arbitrarily manipulate o directly. The way to decrease ¢ would be to sample
from a population with less variability. The point is that decisions regarding whether a “positive” result
occurred in an experiment or study should not be solely a function of whether one is sampling from a
population with small or large variance!

Suppose now we again assume the distance between means y — y, to be equal to 2. We again set the
value of ¢ at 2. With these values set and assumed constant, consider what happens to z,, as we increase
the sample size n from 16 to 49 to 100. We first compute z,, assuming a sample size of 16:

y- 20-18 2
ZM:yg'uO: 5 :E:Z‘,
NG Vie '

With a sample size of 16, the computed value for z,, is equal to 4. When we increase the sample size to
49, again, keeping the distance between means constant, as well as the population standard devi-
ation constant, we obtain:

y— 20-18 2
Zszo_uoz 3 =—=6.9

N 75 0.29

We see that the value of z,, has increased from 4 to 6.9 as a result of the larger sample size. If we
increase the sample size further, to 100, we get
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y—py 20-18 2
M = 3 = 3 :0—2:10
Vn V100 ’

and see that as a result of the even larger sample size, the value of z,, has increased once again, this time
to 10. Again, we need to emphasize that the observed increase in z;, is occurring not as a result of
changing values for y — y, or o, as these values remained constant in our above computations. Rather,
the magnitude of z,, increased as a direct result of an increase in sample size, n, alone. In many
research studies, the achievement of a statistically significant result may simply be indicative that
the researcher gathered a minimally sufficient sample size that resulted in z;, falling in the tail of
the z distribution. In other cases, the failure to reject the null may in reality simply indicate that the
investigator had insufficient sample size. The point is that unless one knows how n can directly increase
or decrease the size of a p-value, one cannot be in a position to understand, in a scientific sense, what
the p-value actually means, or intelligently evaluate the statistical evidence before them.

2.28.2 The Make-Up of a p-Value: A Brief Recap and Summary

The simplicity of these demonstrations is surpassed only by their profoundness. In our simple example
of the one-sample z-test for a mean, we have demonstrated that the size of z,, is a direct function of three
elements: (1) distance y — 1, (2) population standard deviation o, and (3) sample size n. A change in
any of these while holding the others constant will necessarily, through nothing more than the con-
sequences of how the significance test is constructed and functionally defined, result in a change in
the size of z,,. The implication of this is that one can make z,, as small or as large as one would like
by choosing to do a study or experiment such that the combination of y— i, o, and n results in a z,
value that meets or exceeds a pre-selected criteria of statistical significance.

The important point here is that a large value of z), does not necessarily mean something of any
practical or scientific significance occurred in the given study or experiment. This fact has been reit-
erated countless times by the best of methodologists, yet too often researchers fail to emphasize this
extremely important truth when discussing findings:

A p-value, no matter how small or large, does not necessarily equate to the success or failure of
a given experiment or study.

Too often a statement of “p < 0.05” is recited to an audience with the implication that somehow this
necessarily constitutes a “scientific finding” of sorts. This is entirely misleading, and the practice needs
to be avoided. The solution, as we will soon discuss, is to pair the p-value with a report of the effect size.

2.28.3 The Issue of Standardized Testing: Are Students in Your School Achieving More
Than the National Average?

To demonstrate how adjusting the inputs to z,, can have a direct impact on the obtained p-value, con-
sider the situation in which a school psychologist practitioner hypothesizes that as a result of an inten-
sified program implementation in her school, she believes that her school’s students, on average, will
have a higher achievement mean compared to the national average of students in the same grade. Sup-
pose that the national average on a given standardized performance test is equal to 100. If the school
psychologist is correct that her students are, on average, more advanced performance-wise than the
national average, then her students should, on average, score higher than the national mark of 100.
She decides to sample 100 students from her school and obtains a sample achievement mean of
y = 101. Thus, the distance between means is equal to 101 — 100 = 1. She computes the estimated
population standard deviation s equal to 10. Because she is estimating 6> with s°, she computes a
one-sample #-test rather than a z-test. Her computation of the ensuing ¢ is:
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y—py _ 101-100 1

1= s - 10 - =1
Vi V100

On degrees of freedom equal to n—1 =100 — 1 =99, for a two-tailed test, we require a ¢ statistic of =
1.984 for the result to be statistically significant at a level of significance of 0.05. Hence, the obtained
value of ¢ =1 is not statistically significant. That the result is not statistically significant is hardly sur-
prising, since the sample mean of the psychologist’s school is only 101, a single mean point higher than
the national average of 100. It would seem then that the computation of ¢ is telling us a story that is
consistent with our intuition, that there is no reason to believe that the school’s performance is higher
than that of the national average in the population from which these sample data were drawn.

Now, consider what would have happened had the psychologist collected a larger sample, suppose
n = 500. Using our new sample size, and still assuming an estimated population standard deviation s
equal to 10 and a distance between means equal to 1, we repeat the computation for #:

y—py _ 101-100 1

t= 3 10 % = 222
Vi /500 :

What happened? The obtained value of ¢ increased from 1 to 2.22 simply as a result of collecting a
larger sample, nothing more. The actual distance between means remained the same (101-100 = 1).
The degrees of freedom for the test have changed and are now equal to 499 (i.e., n — 1 =500 — 1 =499).
Since our obtained 7 of 2.22 exceeds critical ¢, our statistic is deemed statistically significant at p < 0.05.
What is important to realize is that we did not change the difference between the sample mean yand the
population mean u, it remained extremely small at only a single mean achievement point (i.e.,
101 — 100 = 1). Even with the same distance between means, the obtained ¢ of 2.22 and it being sta-
tistically significant at p < 0.05 now means we will reject the null hypothesis, and infer the alternative
hypothesis that u # uo. And because scientists have historically considered the infamous statement
“p <0.05” to be automatically and necessarily equivalent to something meaningful or important,
the obvious danger is that the rejection of the null hypothesis at p < 0.05 is considered by some (or
even most) a “positive” result. When in reality, the difference, in this case, is nothing short of trivial.

The problem is not that the significance test is not useful and therefore should be banned. The prob-
lem is that too few are aware that the statement “p < 0.05,” in itself, scientifically (as opposed to sta-
tistically) may have little meaning in a given research context, and at worst, may be entirely misleading
if automatically assigned any degree of scientific importance by the interpreter.

2.28.4 Other Test Statistics

The factors that influence the size of a p-value are, of course, not only relevant to z- and #-tests, but are at
work in essentially every test of statistical significance we might conduct. For instance, as we will see
in the following chapter, the size of the F-ratio in traditional one-way ANOVA is subject to the same
influences. Taken as the ratio of MS between to MS error, the three determining influences for the size
of p are (1) size of MS between, which is a reflection of the extent to which means are different from
group to group, (2) size of MS error, which is in part a reflection of the within-group variability, and (3)
sample size (when computing MS error, we divide the sum of squares for error by degrees of freedom,
in which the degrees of freedom are determined in large part by sample size). Hence, a large F-stat does
not necessarily imply that MS between is absolutely large, no more than a large ¢ necessarily implies the
size of y—p. A small p-value associated with a computed F could be a result of small within-
group variation and/or a large sample size. It does not necessarily mean that group-to-group
mean differences are substantial, which was presumably the goal of the study or experiment
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by the investigator. That is, the goal was not to simply obtain small within-group variation. The
goal was to demonstrate mean differences between groups.

These ideas for significance tests apply in even the most advanced of modeling techniques, such as
structural equation modeling (see Chapter 15). The typical measure of model fit is the chi-square sta-
tistic, %, which as reported by many (e.g., see Bollen, 1989; Hoelter, 1983) suffers the same interpre-
tational problems as ¢ and F regarding how its magnitude can be largely a function of sample size. That
is, one can achieve a small or large y* simply because one has used a small or large sample. If a
researcher is not aware of this fact, he or she may decide that a model is well-fitting or poor-fitting
based on a small or large chi-square value, without awareness of its connection with n. This is in part
why other measures, as we will see, have been proposed for interpreting the fit of SEM models (e.g., see
Browne and Cudeck, 1993).

2.28.5 The Solution

The solution to episodes of misunderstanding the significance test is not to drop or ban it, contrary to
what some have recommended (e.g., Hunter, 1997). Rather, the solution is to supplement it with a
measure that accounts for the actual distance between means and serves to convey the magnitude
of the actual scientific finding, as opposed to statistical finding, should there be one. Measures of
effect size, interpreted in conjunction with significance tests, help to communicate whether something
has “happened” or “not happened” in the given study or experiment. The reader interested in effect
sizes can turn to a multitude of sources (Cortina and Nouri, 1999; Rosenthal, Rosnow, and Rubin,
2000). For our purposes, it suffices to review the principle of an effect size measure rather than catalog
the wealth of possibilities for effect sizes available. Perhaps the easiest and most straightforward way of
conceptualizing an effect size is to consider a measure of standardized statistical distance, or Cohen’s
d, already featured in our computations of power.

2.28.6 Statistical Distance: Cohen’s d

For a one-sample z-test, Cohen’s d (Cohen, 1988) is defined as the absolute distance between the
observed sample mean and the population mean under the null hypothesis, divided by the population
standard deviation:

In the above, since y is serving as the estimate of u, the numerator can also be given as u — po.
However, using y instead of u above is a reminder of where this mean is coming from. It is coming
from our sample data, and we wish to compare that sample mean to the population mean y under the
null hypothesis.

As an example, where y = 20, yy = 18, and 6 = 2 Cohen’s d is computed as:

20-18
=

2
=1.0

Cohen offered the guidelines of 0.20, 0.50, and 0.80 as representing small, medium, and large effects
respectively (Cohen, 1988). However, relying on effect size guidelines to indicate the absolute size of
an experimental or nonexperimental effect should only be done in the complete and absolute absence of
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all other information for the research area. In the end, it is the researcher, armed with knowledge of
the history of the phenomenon under study, who must evaluate whether an effect is small or
large. For instance, referring to the achievement example discussed earlier, Cohen’s d would be equal
to:

101 - 100
d=|——
a
=0.1

The effect size of 0.1 is small according to Cohen’s guidelines, but more importantly, also small sub-
stantively, since a difference in means of 1 point is, by all accounts, likely trivial. In this case, both
Cohen’s guidelines and the actual substantive evaluation of the size of effect coincide. However, this is
not always the case. In physical or biological experiments, for instance, one can easily imagine exam-
ples for which an effect size of even 0.8 might be considered “small” relative to the research area under
investigation, since the degree of control the investigator can impose over his or her subjects is much
greater. In such cases, it may very well be that Cohen’s d values in the neighborhood of two or three
would be required for an effect to be considered “large.” The point is that only in the complete absence
of information regarding an area of investigation is it appropriate to use “rules of thumb” to evaluate the
size of effect. Cohen’s d, or effect size measures in general, should always be used in conjunction with
statements of statistical significance, since they tell the researcher what she is actually wanting to know,
that of the estimated separation between sample data (often in the form of a sample mean) and the null
hypothesis under investigation. Oftentimes meta-analysis, which is a study of the overall measure of
effect for a given phenomenon, can be helpful in comparing new research findings to the “status quo” in
a given field. For a thorough user-friendly overview of the methodology, consult Shelby and
Vaske (2008).

2.28.7 What Does Cohen’s d Actually Tell Us?

Writing out a formula and plugging in numbers, unfortunately, does not necessarily give us a feeling
for what the formula actually means. This is especially true with regard to Cohen’s d. We now discuss
the statistic in a bit more detail, pointing out why it is usually interpreted as the standardized differ-
ence between means.

Imagine you have two independent samples of laboratory rats. To one sample, you provide normal
feeding and observe their weight over the next 30 days. To the other sample, you also feed normally,
but also give them regular doses of a weight-loss drug. You are interested in learning whether your
weight-loss drug works or not. Suppose that after 30 days, on average, a mean difference of 0.2 pounds
is observed between groups. How big is a difference of 0.2 pounds for these groups? If the average
difference in weight among rats in the population were very large, say, 0.8 pounds, then a mean dif-
ference of 0.2 pounds is not that impressive. After all, if rats weigh very differently from one rat to the
next, then really, finding a mean difference of 0.2 between groups cannot be that exciting. However, if
the average weight difference between rats were equal to 0.1 pounds, then all of a sudden, a mean
difference of 0.2 pounds seems more impressive, because that size of difference is atypical relative
to the population. What is “typical?” This is exactly what the standard deviation reveals. Hence,
when we are computing Cohen’s d, we are in actuality producing a ratio of one deviation relative
to another, similar to how when we compute a z-score, we are comparing the deviation of y — u with
the standard deviation o. The extent to which observed differences are large relative to “average” dif-
ferences will be the extent to which d will be large in magnitude.
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2.28.8 Why and Where the Significance Test Still Makes Sense

At this point, the conscientious reader may very well be asking the following question: If the signif-
icance test is so misleading and subject to misunderstanding and misinterpretation, how does it
even make sense as a test of anything? It would appear to be a nonsensical test and should forever
be forgotten. The fact is that the significance test does make sense, only that the sense that it makes is
not necessarily always scientific. Rather, it is statistical. To a pure theoretical statistician or mathe-
matician, a decreasing p-value as a function of an increasing sample size makes perfect sense—as
we snoop a larger part of the population, the random error we expect typically decreases, because with
each increase in sample size we are obtaining a better estimate of the true population parameter. Hence,
that we achieve statistical significance with a sample size of 500 and not 100, for instance, is well
within that of statistical “good sense.” That is, the p-value is functioning as it should, and likewise
yielding the correct statistical information.

However, statistical truth does not equate to scientific truth (Bolles, 1962). Statistical conclu-
sions should never be automatically equated with scientific ones. They are different and distinct things.
When we arrive at a statistical conclusion (e.g., when deciding to reject the null hypothesis), one can
never assume that this represents anything that is necessarily or absolutely scientifically meaningful.
Rather, the statistical conclusion should be used as a potential indicator that something scientifically
interesting may have occurred, the evidence for which must be determined by other means, which
includes effect sizes, researcher judgment, and putting the obtained result into its proper interpretive
context.

2.29 CHAPTER SUMMARY AND HIGHLIGHTS

* To understand advanced statistical procedures, it is necessary to have a firm grasp on the
foundations of introductory statistics. Advanced procedures are typically extensions of first
principles.

Densities are theoretical probability distributions. The normal univariate density is an example.

The standard normal distribution has a mean y of 0 and a variance 6> of 1.

z-scores are useful for comparing raw scores emanating from different distributions. Standard-
ization transforms raw scores to a common scale, allowing for comparison between scores.

Binomial distributions are useful in modeling experiments in which the outcome can be concep-
tualized as a “success” or “failure.” The outcome of the experiment must be binary in nature for
the binomial distribution to apply.

The normal distribution can be used to approximate the binomial distribution. In this regard, we

say that the limiting form of the binomial distribution is the normal distribution.

 The bivariate normal density expresses the probability of the joint occurrence of two variables.

* The multivariate normal density expresses the probability of the joint occurrence of three or
more variables.

¢ The mean, variance, skewness, and kurtosis are all moments of a distribution.

e The mean (arithmetic), the first moment of a distribution, either of a mathematical variable or a
random variable, can be regarded as the center of gravity of the distribution such that the sum of
deviations from the mean for any distribution is equal to zero.

* The variance, the second moment of a distribution, can be computed for either a mathematical

variable or a random variable. It expresses the degree to which scores, on average, deviate from

the mean in squared units.
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The sample variance with n in the denominator is biased. To correct for the bias, a single degree
of freedom is subtracted so that the new denominator is n— 1.

The expectation of the uncorrected version of the sample variance is not equal to o>, That is,
E(S?) =+ o> However, the corrected version of the sample variance (with n — 1 in the denominator)
is equal to o2, That is, E(sz) = 6"

Skewness, the third moment of a distribution, reflects the extent to which a distribution lacks
symmetry.

Kurtosis, the fourth moment of a distribution, reflects the extent to which a distribution is peaked
or flat and also having much to do with a distribution’s tails.

Covariance and correlation are defined for both empirical variables and random variables. Both
measure the extent to which two variables are linearly related. Pearson r is the standardized ver-
sion of the covariance, and is dimensionless, meaning that its value is not dependent on the var-
iance in each variable. Pearson r ranges from —1 to +1 in value.

One popular use of correlation is in establishing reliability and validity of psychometric
measures.

In multivariable contexts, covariance and correlation matrices are used in place of single
coefficients.

There are numerous other correlation coefficients available other than Pearson r. One such coef-
ficient is Spearman’s ry, which captures monotonically increasing (or decreasing) relationships.
Monotonic relationships do not necessarily have to be linear.

The issue of measurement should be carefully considered before data is collected. S.S. Stevens
proposed four scales of measurement, nominal, ordinal, interval, and ratio. The most sophis-
ticated level of measurement is that of the ratio scale where a value of zero on the scale truly means
an absence of the attribute under study.

A random variable is a mathematical variable that is associated with a probability distribution.
More formally, it is a function from a sample space into the real numbers.

An estimator is a function of a sample used to estimate a parameter in the population.

An interval estimator provides a range of values within which the true parameter is hypothesized
to exist.

An unbiased estimator is one in which its expectation is equal to the corresponding population
parameter. That is, E(T) = 6.

An estimator is consistent if as sample size increases without bound, the variance of the estimator
approaches zero.

An estimator is efficient if it has a relatively low mean squared error.

An estimator is sufficient for a given parameter if the statistic tells us everything we need to know
about the parameter and our knowledge of it could not be improved if we considered additional
information (e.g., such as a secondary statistic).

The concept of a sampling distribution is at the heart of statistical inference. A sampling distri-
bution of a statistic is a theoretical probability distribution of that statistic. It is idealized, and
hence not ordinarily empirically derived.

The sampling distribution of the mean is of great importance because so many of our inferences
feature means.

As aresult of E(¥) = p, we can say that y; = y, that is, the mean of all possible sample means we
could draw from some specified population is equal to the mean of that population.
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The variance of the sampling distribution of the mean is equal to % of the original population
variance. That is, it is equal to ‘j—l

The square root of the sampling variance for the mean is equal to the standard error, \/% = \/i-
n

The central limit theorem is perhaps the most important theorem in all of statistics. Though there
are different forms of the theorem, in general, it states that the sum of random variables approx-
imates a normal distribution as the size upon which each sample is based increases without bound.

Confidence intervals provide a range of values for which we can be relatively certain to lay the
true parameter we are seeking to estimate. Key to understanding confidence intervals is to rec-
ognize that it is the sample upon which the interval is computed that is the random component,
and not the parameter we are seeking to estimate. The parameter is typically assumed to be fixed.

Student’s ¢ distribution, derived by William Gosset (or “Student”) in 1908, is useful when o~ is
unknown and must be estimated from the sample. Because in the limit f{r) = fiz) (i.e.,
limf() = f(z)), for large samples, whether one uses z or # will make little difference in terms

of whether or not the null hypothesis is rejected.

The ¢-test for one sample compares an obtained sample mean to a population mean and evaluates
the null hypothesis that the sample mean could have reasonably been drawn from the given
population.

As degrees of freedom increase, the variance of the ¢-distribution approaches 1, which is the
same as that for a standardized normal variable. That is, ]im (—2) =1.0.

v
V-

The ¢-test for two samples tests the null hypothesis that both samples were selected from the same
population. A rejection of the null hypothesis suggests the samples arose from populations with
different means.

Power is the probability of rejecting a null hypothesis given that it is false. Itis equal to 1 — f (i.e.,
1 — type Il error rate). Power is a function of four elements: (1) hypothesized value under Hy, (2)
significance level, or type I error rate, a, (3) variance, 67, in the population, and (4) sample size.
Experiments or studies suffering from insufficient power make it difficult to ascertain why the
null hypothesis failed to be rejected.

The paired-samples z-test is useful for matched-pairs (elementary blocking) designs.

The paired-samples #-test usually results in an increase in statistical power because the covar-
iance between measurements is subtracted from the error term. In general, anything that makes the
error term smaller helps to boost statistical power.

The paired-samples #-test and the matched design which it serves provides a good entry point into
the discussion of the randomized block design, the topic of Chapter 6.

In multivariable contexts, linear combinations of variables are generated of the form ¢; = a,y, +
axy, + ... +a,y,. Means and variances of linear combinations can be obtained, as well as the
covariance and correlation between linear combinations.

Representing statistical models in matrix form is required in statistical analyses of higher dimen-
sions than 1 (e.g., multiple regression, multivariate analysis of variance, principal components
analysis, etc.). The fundamental general linear model can be given by Y = XB + E.
Understanding what makes a p-value small or large is essential if a researcher is to intelligently
interpret statistical evidence is his or her field. The history of null hypothesis significance testing
(NHST) is plagued with controversy, and a solid understanding of the difference between statis-
tical significance and effect size (e.g., Cohen’s d) is necessary before one attempts to interpret
any research findings.
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INTRODUCTORY STATISTICS

REVIEW EXERCISES

2.1.  Distinguish between a density and an empirical distribution. How are they different? How are
they similar?

2.2.  Consider the univariate normal density:

2 2
flxip 6%) = ’_Zlmﬂ e~ Wi=n) /20
Show that for a standard normal distribution, the above becomes f(x;, u, 6) = ¢ [.
V2
2.3. Explain the nature of a z-score, z = Nk Why is it also called a standardized score?
o

2.4. Using R, compute the probability of observing a standardized score of 1.0 or greater. What is
then the probability of observing a score less than 1.0 from such a distribution?

2.5.  Think up aresearch example in which the binomial distribution would be useful in evaluating
a null hypothesis.

2.6. Rafael Nadal, a professional tennis player, as of 2020 had won the French Open tennis cham-
pionship a total of 13 times in the past 16 tournaments. If we set the probability of him winning
each time at 0.5, determine the probability of winning 13 times out of 16. Make a statistical
argument that Nadal is an exceptional tennis player at the French Open. What if we set the
probability of a win at 0.1?7 Does this make Nadal’s achievements less or more impressive?
Why? Explain.

2.7. Give an example using the binomial distribution in which the null hypothesis would not be
rejected even if observing 9 out of 10 heads on flips of a coin.

2.8.  On a fair coin, what is the probability of observing 0 heads or 5 heads? How did you arrive at
this probability, and which rules of probability did you use in your computation?

2.9. Discuss what a limiting form of a distribution means, and how the limiting form of the binomial
distribution is that of the normal distribution.

2.10. Consider the multivariate density:

o) = 1 e—(x—u)’f‘(x—u)/z
! ( /—2ﬂ)p‘2|1/2
All else constant, what effect does an increasing value of the determinant (|X|) have on the
density, and how does this translate when using real variables?

2.11. What is meant by the expectation of a random variable?

2.12. Compare these two products, and explain how and why they are different from one another
when taking expectations: y,;p(y;) versus y;p(y;)dy

2.13. Why is it reasonable that the arithmetic mean is the center of gravity of a distribution?

2.14. What is an unbiased estimator of a population mean vector?

2.15. Discuss what it means to say that E(S%) #02, and the implications of this. What is E(5?)

equal to?
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2.16.

2.17.

2.18.
2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.

2.26.
2.27.

2.28.
2.29.
2.30.
2.31.
2.32.

2.33.

2.34.

Even though E(S%) # ¢, how can it be true nonetheless that lim E(S?) = ¢°? Explain.

n— oo

Explain why the following form of the sample variance is considered to be an unbiased esti-
mator of the population variance:

n

Draw a distribution that is positively skewed. Now draw one that is negatively skewed.

Compare and contrast the covariance of arandom variable: cov(x;, y;) = 6y, = E[(x; — pt.)) (v; — py)]

DB -

with that of the sample covariance: cov = =——; . How are they similar? How are they

different? What in their definitions makes them different from one another?

What effect (if any) does increasing sample size n have on the magnitude of the covariance? If
it does not have any effect, explain why it does not.

Explain or show how the variance of a variable can be conceptualized as the covariance of a
variable with itself.

Cite three reasons why the covariance is not a pure or dimensionless measure of relationship
between two variables.

Why is Pearson r not suitable for measuring relationships that are nonlinear? What is an alter-
native coefficient (one of many) that may be computed that is more appropriate for relationships
that are nonlinear?

What does it mean to say the relationship between two variables is monotonically increasing?

What does a correlation matrix have along its main diagonal that a covariance matrix does
not? What is along the main diagonal of a covariance matrix?

Define, in general, what it means to measure something.

Explain why it is that something measurable at the ratio level of measurement is also meas-
urable at the interval, ordinal, and nominal levels as well.

Is something such as intelligence measurable on a ratio scale? Why or why not?
Distinguish between a mathematical variable and a random variable.
Distinguish between an estimator and an estimate.

Define what is meant by an interval estimator.

Define what is meant by the consistency of an estimator and what

lim 5% =0

n— oo

means in this context.

Compare the concepts of efficiency versus sufficiency with regard to estimators. How are they
different?

The sampling distribution of the mean is an idealized distribution. However, discuss how one
would generate the sampling distribution of the mean empirically.
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2.35.

2.36.
2.37.

2.38.
2.39.

2.40.
241.

2.42.
2.43.

2.44.
2.45.

2.46.
2.47.
2.48.
2.49.

2.50.

2.51.

INTRODUCTORY STATISTICS
Discuss why for a higher level of confidence, all else equal, a confidence interval widens rather
than narrows.
Define what is meant by a maximum-likelihood estimator.

Discuss the behavior of the ¢ distribution for increasing degrees of freedom. What is the lim-
iting form of the ¢ distribution?

In a research setting, under what condition(s) is a ¢-test usually preferred over a z-test?

Verbally interpret the nature of pooling in the independent-samples #-test. Under what
condition(s) do we pool variances? Under what condition(s) should we not pool?

Discuss why an estimate of effect size is required for estimating power.

Using R, estimate required sample size for detecting a population correlation coefficient of
0.30 at a significance level of 0.01, with power equal to 0.80.

Repeat exercise 2.41, this time using G*Power.

Using R, estimate power for an independent samples ¢-test for a sample size of 100 per group
and Cohen’s d equal to 0.20.

For a value of 7 = 0.70, compute the corresponding value for d.

Discuss how the paired-samples #-test can be considered a special case of the wider and more
general blocking design.

Define what is meant by a linear combination.
Define and describe each term in the multivariate general linear model Y = XB + E.
Discuss the key determinants of the p-value in a significance test.

A researcher collects a sample of n = 10, 000 observations and tells you that with such a large
sample size, he is guaranteed to reject the null hypothesis. Explain why the researcher’s claim
is false.

A researcher collects a sample size of n =5, computes z,, and rejects the null hypothesis. Argue
on the one hand for why this might be impressive scientifically, then argue why it may not be.

Consider once more Galton’s data on heights (only the first 10 observations are shown):

> library (HistData)
> attach(Galton)

> Galton

parent child
1 70.5 61.7
2 68.5 61.7
3 65.5 61.7
4 64.5 61.7
5 64.0 61.7
6 67.5 62.2
7 67.5 62.2
8 67.5 62.2
9 66.5 62.2
10 66.5 62.2
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2.52.

2.53.

(a) Compute a histogram of parent height, as well as an index of skewness and kurtosis.
What do your measures of skewness and kurtosis suggest about the distribution?

(b) Transform the distribution of child heights to z-scores. What effect did such a transfor-
mation have on the mean and variance of the original distribution? Second, did it change
its shape at all? Why or why not?

(¢) Compute the covariance between parent height and child height. Does the sign of the
covariance suggest a positive or negative relationship?

(d) Standardize the covariance by computing Pearson r. Interpret the obtained correlation
coefficient, and test it for statistical significance using either SPSS or R.

Consider the following data on whether a student passed or failed a mathematics course
(grade = 0 is “failed” and grade = 1 is “passed”), along with that student’s study time for
the course, in average minutes per day for the duration of the course:

grade studytime
0 30
25
59
42
31
140
90
95
170
120

R RrPRPLROOOO

Conduct an independent-samples #-test on this data using SPSS and R. Verify that the assump-
tion of homogeneity of variances is met in SPSS.

A researcher is interested in conducting a two-sample #-test between a treatment group and a
control group. The researcher anticipates an effect size of approximately d = 1.5 and wishes to
test the null hypothesis p; = u, at a significance level of 0.05. Estimate required sample size
assuming the researcher wishes to attain power of at least 0.90 for her test of the null
hypothesis.

Further Discussion and Activities

2.54.

As discussed in this chapter, null hypothesis significance testing (NHST) has been critically
evaluated and dissected as a means for drawing scientific inferences in the social and natural
sciences. Rozeboom (1960) quite nicely summarized the main criticisms in The Fallacy of the
Null-Hypothesis Significance Test. Read the article and discuss Rozeboom’s distinction
between decisions versus degrees of belief. Why is such a distinction important for a scientist
to understand the difference between statistical versus scientific inference? Rozeboom’s arti-
cle can be downloaded from Christopher D. Green’s Classics in the History of Psychology
website: http://psychclassics.yorku.ca/Rozeboom/
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2.55. R.A. Fisher, the modern “father of statistics” wrote in 1956:

... no scientific worker has a fixed level of significance at which from year to
year, and in all circumstances, he rejects hypotheses; he rather gives his mind to
each particular case in the light of his evidence and his ideas.”

Many writers and researchers, however, have found that since the inception of the significance
test in the early 1900s, scientists, both social and otherwise, routinely employ the 0.05 level of
significance in rejecting null hypotheses. Read Mindless Statistics by Gigerenzer (2004), and
discuss the dangers and risks, both practical and theoretical, of allowing the “null ritual” to dom-
inate in science.



ANALYSIS OF VARIANCE: FIXED
EFFECTS MODELS

The prime objective of this book is to put into the hands of researchworkers, [sic] and especially of
biologists, the means of applying statistical tests accurately to numerical data accumulated in their own
laboratories or available in the literature. Such tests are the result of solutions of problems of distribution,
most of which are but recent additions to our knowledge and have so far only appeared in specialised [sic]
mathematical papers.

(Fisher, 1925, p. 4, Statistical Methods for Research Workers)

Suppose a researcher is interested in knowing whether melatonin, a popular sleep aid, is effective at
helping individuals fall asleep at night. The researcher samples 75 individuals at random, and assigns
25 to a control group receiving no melatonin, 25 to a treatment group receiving 1 mg of melatonin, and
25 to another treatment group receiving 3 mg of melatonin nightly. These specific doses of 1 and 3 mg
are of interest to the researcher, since it is hypothesized that the greater dose of 3 mg will be more
effective at promoting sleep compared to the lesser dose of 1 mg, which will, in turn, be more effective
than receiving no melatonin at all.

Monitoring EEG levels of all participants in a sleep lab, the researcher measures the time it takes
from ingestion of the melatonin to the time the participant reaches NREM (“non-rapid eye movement”)
sleep. The “time until NREM,” measured in minutes, is generally known as sleep onset latency. To
assess whether the melatonin has an effect on sleep onset, the researcher wishes to compare mean sleep
latencies across groups to discern any treatment effect that may be present (see Figure 3.1). Such a
research design calls for a one-way fixed effects analysis of variance.

Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.

© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/denis/appliedstatistics2e
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FIGURE 3.1 Sleep onset as a function of melatonin dose (hypothetical). Circles represent means for each
dose. Dotted line suggests a negative relationship between sleep onset and dose.

3.1 WHAT IS ANALYSIS OF VARIANCE? FIXED VERSUS RANDOM EFFECTS

The analysis of variance (ANOVA) is the workhorse of experimental research across the social and
natural sciences. The methodology is generally attributed to R.A. Fisher who wrote in 1925 Statistical
Methods for Research Workers, which provided scientists with a novel quantitative method for
partitioning sources of variance in a set of data and making inferences about effects in the population
from which sample data were drawn. Estimation of parameters in the analysis of variance usually boils
down to obtaining least-squares solutions analogous to what is done in regression (see Chapter 7), but
as remarked by Eisenhart (1947), Fisher’s primary contribution was in how he packaged the analysis
of variance procedure:

With respect to the problems of estimation belonging to this class [class of estimating fixed effects], analysis
of variance is simply a form of the method of least squares: the analysis-of-variance solutions are the least-
squares solutions. The cardinal contribution of analysis of variance to the actual procedure is the analysis-
of-variance table devised by R.A. Fisher, which serves to simplify the arithmetical steps and to bring out
more clearly the significance of the results obtained. (p. 3)

Fisher also published in 1935 Design of Experiments in which he elucidated principles of research
methodology that continue to this day to be the bedrock of modern experimental design. The type of
analysis of variance model one specifies depends in large part on the assumptions that go into the model
and what conclusions one wishes to make regarding observed effects. In a fixed effects analysis of
variance, the investigator is interested in testing null hypotheses of the sort:

Ho :py = py =3 =

where the particular, exact levels of the independent variable chosen by the experimenter are of
specific interest. That is, the investigator would like to draw conclusions about those particular levels
chosen for the study and is not interested in generalizing conclusions to a wider population of levels.
The levels of the independent variable are fixed in advance of performing the analysis, and conclusions
drawn are about those levels and those levels alone in the fixed effects model.

In a random effects model, the investigator is interested in generalizing his findings not only to the
levels chosen for the experiment but also to the population of levels from which the experimental
levels were drawn. In this model, the researcher is not specifically interested in the particular levels
of the independent level chosen for the given study. He is most interested in what these randomly
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chosen levels might suggest about the population of levels from which he randomly sampled the ones
appearing in the given experiment. In the random effects model, the investigator is interested not in
mean population differences, but rather in the extent to which variance in the dependent variable
can be explained or accounted for by changing levels of the independent variable. When both fixed
and random effects are present in the same model, we have the mixed model analysis of variance.
We discuss random effects and mixed models in Chapter 5.

Note carefully that in all of these models under discussion we seek to infer conclusions drawn from
samples to respective population parameters. This is not what distinguishes one model from the other.
What does distinguish models is the extent to which conclusions about sampled factor levels are gen-
eralizable to the population of factor levels. Many times, students, attempting to distinguish fixed
versus random effects, mistakenly conclude that fixed effects are somehow not as “inferential” as ran-
dom effects, in the sense that if we are dealing with a fixed effect that somehow we are no longer inter-
ested in inferential statistics. But this is entirely incorrect. In fixed effects models, we do make
inferences, only the inferences of treatment effects are specific to the levels actually chosen by the
researcher, and not to the population of levels of which the chosen ones are but a random sample,
as one would have in a random effects models.

Hays (1994), Kirk (1995), and Winer, Brown, and Michels (1991) are all classic resources on
ANOVA. Maxwell and Delaney (2004) also provide a very readable overview of ANOVA models.
A more technical and advanced treatment that assumes a grounding in matrix algebra is Scheffé
(1999). Federer (1955), Snedecor and Cochran (1967), and Edwards (1985) are also excellent sources.

3.1.1 Small Sample Example: Achievement as a Function of Teacher

A motivating example will help set the stage for discussing the one-way fixed effects ANOVA and will
be extended to two-way models in the following chapter. We also refer to this example when we dis-
cuss random effects and mixed models in Chapter 5.

Consider Table 3.1, featuring hypothetical data for students’ standardized mathematics achievement
scores as a function of teacher. In this design, students were assigned, at random, one of four math-
ematics teachers for the course of a full school year. At the end of the year, students were evaluated on
their mathematics achievement (scores range from 0 to 100) through standardized testing. Students
were screened beforehand to ensure they possessed an approximately equivalent degree of mathemat-
ical skill before being randomly assigned.

Some features of the data include:

* There are a total of six observations per group for a total of 24 data points. It is a balanced design,
meaning that in each group there are an equal number of data points (when we study factorial
ANOVA in the following chapter, a design will be balanced if there are an equal number of data
points in each cell).

TABLE 3.1 Achievement as a Function of Teacher

Teacher

1 2 3 4
70 69 85 95
67 68 86 94
65 70 85 89
75 76 76 94
76 77 75 93
73 75 73 91

M =71.00 M=1725 M =280.0 M =92.67
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» The dependent or response variable is student achievement score on a standardized test (range
from 0 to 100).

* The last row of the table contains the means for each group (71.00, 72.50, 80.00, 92.67).

3.1.2 Is Achievement a Function of Teacher?

We would like to know whether a student’s mathematics achievement score is dependent on what
teacher they were randomly assigned to for the school year. Recall what we mean in general by a
function statement. When we ask the question “Is achievement a function of teacher?” what
we are essentially asking is if I tell you one’s teacher, are you able to predict, with some degree
of certainty, their achievement score? Even if the assignment of teacher is related to achievement,
we should not expect it to be a function of the kind f{x) = x. Such would imply that given one’s
teacher, we could predict their mathematics achievement perfectly. That is, it would imply we
are working with a deterministic rather than a probabilistic or stochastic model. Most models
in the social, medical, and other sciences are not deterministic. Rarely can we ever expect a perfect
functional relation between two or more variables. This very idea, historically, of prediction but with
a measure of uncertainty, is what set into motion the evolution (and revolution) of probability and of
statistical modeling in the sciences.
The following is a subset of our data:

> achiev <- read.table("achievement.txt", header = T)
> library(car)
> gome (achiev)

ac teach
1 70 1
2 67 1
7 69 2

We visualize the data to get a better sense of whether mean differences may exist:

> achiev$teach
[1] 1 1 1 1112222223333 3344444 4
> with (achiev, boxplot (ac ~ teach))

95_ ——
] —_
85 —
75_ ——
L
N —
65 — —
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Though boxplots feature the median as a measure of central tendency, they still help us get a first-
glance visualization both regarding potential mean differences as well as whether the assumption of
homogeneity of variance (to be discussed) is satisfied. As we can see from the boxplots, it would
appear that achievement, in general, increases across teachers. We will address the assumption of
homogeneity of variance later, but for now, it would appear that the dispersion of scores within each
“teacher group” is approximately similar, though there appears to be noticeably less variability of
scores for the 4™ teacher compared to the others. Observing boxplots such as these is useful as an
exploratory aid before conducting more formal inferential statistics. As a general rule, always explore
your data before conducting formal analyses. Get to ‘“know” your data very well.

If achievement is (at least imperfectly) a function of teacher, then we would expect achievement
means to differ by teacher. Our sample averages definitely do differ. There is no doubt that sample
means 71.00 versus 72.50 versus 80.0 versus 92.67 are numerically different from one another. How-
ever, these are only sample means. They are not population means. Why are they not population
means? Because presumably, we are not specifically interested in only these sample data points when
discerning whether teacher is related to student achievement. More likely we are interested in using this
sample data to draw inferences to the population from which these data were drawn. If we were only
interested in drawing descriptive conclusions about the data in Table 3.1 and making no inferences to a
wider population, then these data could indeed constitute population data. Remember, one researcher’s
sample is another researcher’s population. We must always ask ourselves whether the data in front of us
are considered the complete set of observations or whether they are considered a subset of a larger set.

Hence, we wish to evaluate a null hypothesis that the population means are equal across teacher. We
can state this null hypothesis as:

Ho:py=py=p3=py

Our statistical alternative hypothesis is that somewhere in the set of population means there is at
least one difference in means. Of course, even if we end up rejecting the null hypothesis, we do
not immediately know where the difference(s) lie. A couple of possibilities for statistical alternatives
include:

Hy:py # py =3 = py
Hy:py = py 7 13 = py

Note that for convenience and ease of visualization of mean differences, we are notating possible
alternatives as Hy : ;1 # pu» = u3 = pq and Hy @ py = pp # u3 = p4 to indicate equality or differences
between group means, where in the case of H, : u; 7 pp = 3 = ji4 is meant to read “mean 1 is different
from mean 2, but mean 2 is equal to means 3 and 4.” Though this makes for a convenient visual for
looking at the alternative hypothesis, to be more formal about it, it would be more correct to write H :
1 7 Ho, fo = i3 = jia. No harm is done in writing it as Hy : jt; 7 pio = ji3 = ji4 S0 long as one understands
what is being communicated.

We will use procedures such as contrasts and post-hoc tests to help in discerning where mean dif-
ferences may lie given a rejected null hypothesis. We discuss contrasts and post-hocs later in the
chapter.

3.2 HOW ANALYSIS OF VARIANCE WORKS: A BIG PICTURE OVERVIEW

How do we go about testing a null hypothesis of the kind in our example, that of Hy : ) = ptp = pz = pi4?
We could compare the sample means directly, those of 71.00 versus 72.50 versus 80.00 versus 92.67,
and since they are not identical, conclude that mean differences in the population exist. But as men-
tioned, this would be a grossly incorrect way of proceeding. Since these are only sample means, any
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relatively small differences between means can most likely be explained by sampling error or chance.
That is, we must ask the question:

Do sample mean differences of the kind 71.00 versus 72.50 versus 80.00 versus 92.67 actually reflect a
mean difference in the population? Or, are these sample differences small enough to be simply attrib-
utable to differences generated by the simple process of sampling (i.e., “sampling error” or
“chance’)?

To begin to address the above question, we must ask ourselves a related question:

If we sampled repeatedly an infinite number of times from this population, what is the probability of
observing differences of the kind 71.00 versus 72.50 versus 80.00 versus 92.67 if the null hypothesis H,
were actually true? Thatis, if H : 4| = u, = p5 = u4 really does represent reality, what is the probability
of obtaining mean differences of the magnitude that we have in our current sample?

If mean differences of the magnitude that we are observing happen frequently in repeated sampling
under the null model of equal population means (i.e., Hy : pt1 = pp = 13 = f4), then it is probably safe to at
least tentatively conclude that the observed mean difference is most easily explained by sampling error
or chance. In other words, since these kinds of differences happen so often in repeated sampling even
when the null is true, we would have no reason to start believing the null is false and to start inferring
the alternative hypothesis.

However, if mean differences of the kind we are observing in our sample turn out to be unlikely
under the null hypothesis, then we might start thinking the null hypothesis does not represent reality
after all. At that point, if the probability of the observed data under the null hypothesis is low enough,
then we have reason to reject the null hypothesis and make an inference toward the statistical alternative
hypothesis, that at least somewhere among means, there are mean differences in the population. This is
the essence of how hypothesis-testing works in ANOVA.

3.2.1 Is the Observed Difference Likely? ANOVA as a Comparison (Ratio) of Variances

The next question becomes one of asking how to determine whether the observed mean difference is
likely or unlikely under the null hypothesis. To help better appreciate this question, imagine if the data
turned out to be as in Table 3.2 instead of how they actually are in Table 3.1.

Notice that under this idealized (and quite unrealistic) situation, every observation within its respec-
tive group is equal to the sample mean for that group. Notice that between groups, we still have the
same mean differences. However, within groups, there is no variation. We ask the question we posed
earlier—What is the probability of obtaining mean differences of the kind 71.00 versus 72.50 ver-
sus 80.00 versus 92.67 if the null hypothesis were true?

It seems intuitive that the probability of obtaining the mean differences we observed is much lower
for the data in Table 3.2 (condition of no within-group variability) than it is for the data in Table 3.1
(condition of within-group variability) if the null hypothesis were actually true. In other words, in
Table 3.2, all of the variation occurring is attributable to between-group differences. In Table 3.1, all of
the variation occurring is attributable to not only between-group differences but also within-group dif-
ferences. What we need now is a way to compare these sources of variation in some systematic and
statistically correct fashion.

Suppose we could obtain a measure of just how much variance in a data set is attributable to
between-group differences and how much is attributable to within-group differences. If most of
the variance were attributable to within-group differences, then it would suggest that any between-
group differences we are observing could probably be best explained by random variation in the
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TABLE 3.2 Hypothetical Achievement Data

Teacher
1 2 3 4
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
71.00 72.50 80.00 92.67
M=171.00 M =172.50 M = 80.00 M= 92.67

Between-group variation but no within-group variation.

data, that is, of the same kind that is happening within groups. However, if most of the variance is
attributable to between-group differences, then it would suggest that any between-group differences
we are observing is not easily explained by within-group variation. That is, the between-group differ-
ences we are observing might actually represent a real difference of population means in the popu-
lation that generated the sample data, and not simply sampling error or chance, the very type of
variation we are witnessing within groups.

Our goal then is to make the following comparison in the form of a ratio:

2
O Between

o? Within

where 6°gonveen represents “variance between groups” and 6 Within represents “variance within
groups.” If e Berween > e winin tO such an extent that we can exclude sampling error as being “respon-
sible” for this inequality, then we will reject the null hypothesis Hy : 1 = p» = 3 = p4 in favor of the
statistical alternative hypothesis, H;. If, on the other hand, 6 Borveen 1S MoOTE O less equal to O Withins
then it would suggest that any observed mean differences in our sample are most easily explained by
chance or sampling error. In other words, we have no evidence to conclude or argue that H is actu-
ally false. This ratio that compares 6% Berween 10 G wimmin is called the F-ratio (or F statistic), named in
honor of R.A. Fisher, and constitutes the overall omnibus test of significance in the analysis of
variance model.

3.3 LOGIC AND THEORY OF ANOVA: A DEEPER LOOK

Having presented a brief overview of how ANOVA works, we now develop the theory at a
slightly deeper level, essentially “unpacking” and elaborating on the brief discussion aforemen-
tioned. We begin first by drawing on previous exposure to the independent-samples #-test. In this
respect, we present ANOVA as an extension of the independent-samples #-test where we are inter-
ested now in testing null hypotheses on more than two independent samples (i.e., Hy : y1 = ). We
wish to generalize the null hypothesis to reflect a test of J population means, Hy : py = pir = pz = py.
After presenting the parallels between independent-samples #-tests and ANOVA, we go into a
more thorough discussion of how the ANOVA model itself is built and conceptualized, starting
with the idea of modeling a randomly chosen observation in observed data, right up to the der-
ivation of the sums of squares. We then take expectations of mean squares (i.e., expected values of
sums of squares divided by their respective degrees of freedom) which lead us to generating the
F ratio.
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3.3.1 Independent-Samples #-Tests Versus Analysis of Variance

Most statistical methods are usually based on the same fundamental principles learned in a first course

on statistics. The advanced methods simply constitute different and many times more complex ways

of arranging these fundamental tools. If you truly understand the logic of how an independent-samples

t-test works (see Chapter 2), then understanding the nuts and bolts of ANOVA will not be that difficult.
Recall that we have said we would like to test a null hypothesis of the kind:

Ho:py = py =3 =

To help us appreciate just how we will go about testing the null hypothesis for ANOVA, let us briefly
review the form of the independent samples #-test, searching for some insight or ideas on how we might
tackle our ANOVA problem. Recall the independent samples ¢ of Chapter 2 (2.7):

EG)-EY)  pi—t

2 2 2 2
s s s s

1,5 )
ni n ny na

where E(y,) and E(y,), the expectations of y; and ¥,, are equal to u; and p,, s3 and s3 are unbiased
estimators of their population counterparts o7 and 63, and n; and n, are the sample sizes in each group.
Recall that (2.7) essentially has two parts to it. In the numerator is expressed a difference in means of
the kind p; — p». In the denominator is a sum of sample variances, each weighted by the sample size n
on which it was computed:

2 2
02 (3.1)
ny ny

Collectively, (3.1) formed an estimate of the standard error of the difference in means. That is,
the denominator of the #-test gave us an idea of how much variance in sample mean differences y, —y,
we could expect to see if we sampled infinitely from the given population under consideration. The job
of (2.7) was to compare an observed mean difference to the variability we might expect to see if we
were able to sample mean differences an infinite number of times from the population. When n; # n,,
we used a pooled estimator of the population variance,

> (1= 1)st + (n2 = 1)s3

Ky =
pooled ny +ny— 2

making the independent-samples #-test equal to

E(y,)-E®M)
(m=1)s? + (na—1)s3 (n +nmy
ng+n,—-2 niny
In the analysis of variance, we will arrive at a ratio quite similar to that of the independent-samples
t-test, one which effectively compares a numerator term expressing mean difference to a denominator
term that effectively represents an estimate of population variability. If mean differences in the

numerator are large relative to expected overall variability in the denominator, then it will suggest
that the mean difference in the sample may not be due simply to chance or sampling error alone. In

=
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other words, it will be grounds for establishing statistical significance and rejecting the null
hypothesis.

The question for us right now is how to conceptualize ANOVA so that we can actually run a similar
test as we did for the independent-samples 7-test but with more than two means. How do we conceive of
our numerator and denominator for our test? For this, we need to focus our attention on how the analysis
of variance model is conceptualized through a model equation. That is, we need to consider how the
ANOVA model arises. We start at the beginning with fundamental ideas concerning what constitutes
a statistical model. These ideas will not only be useful for understanding the current model we are dealing
with but will also be helpful in understanding other statistical models presented in this book and else-
where. Taking the time to learn and understand the material to follow will pay dividends when extending
your knowledge base to more complex models such as repeated-measures, random effects, and mul-
tilevel or hierarchical modeling. It is well worth your time to understand the ANOVA model very well.

3.3.2 The ANOVA Model: Explaining Variation

Recall the concept of a model introduced in Chapter 1. The idea of a model is to think up an equation
that best accounts for how observed data were generated.' For our achievement example, we ask ques-
tions of the kind—Why was the score for a randomly drawn observation in our data equal to y;?
Why was another observation equal to y; , ; (i.e., a different y; in our data?). To “explain” these obser-
vations, we need to come up with a theory as to why they are what they are. This is the essence of most
traditional statistical model-building, to come up with a mathematical equation that best accounts
for observed data, and to use that equation for making inferences toward the population. The
search is for an equation to account for observed data. In psychology, theoreticians seek out narratives
to explain human behavior. In medicine, researchers theorize causes to cancer. In finance, investors
theorize predictors of stock growth. In statistics, these narratives go by the name of statistical models.

For instance, Sigmund Freud (1856-1939) used a model for the id, ego, and superego to help
explain human behavior, to explain the data he observed. His predictions based on his theory were
not always correct. Even with what Freudians would argue was a solid theory to draw upon, he could
still not explain all behavior (some would even argue, very little of it), and had to admit that sometimes,
his theory failed, it was in error. As another example, recall that B.F. Skinner was able to predict
behavior in the pigeon, he had a theory as to why the pigeon responded as it did. It predicted a lot
of observations successfully, but others it did not predict so well. Sometimes, his theory failed too
in its predictions of behavior.

In ANOVA, just as in virtually all statistical modeling, we will put forth a theory that attempts to
explain observed data, and likewise, sometimes the theory will predict accurately, but other times, it
will not. The times it does not predict accurately we will denote as errors of prediction. How the
technique of analysis of variance partitions variability into predictable versus unpredictable compo-
nents is the topic of this chapter. Indeed, most statistical models do something strikingly similar, that of
attempting to separate the “signal” from the “noise.”

Referring again to our data in Table 3.1, we notice that there exists variability in the sample achieve-
ment data, that is, s*>0. We will define the grand mean of all the data as equal to

n
y= o

i=1

'Kirk (1995) calls the model equation an experimental design model equation (p. 32). Though the current text is not about
experimental design per se, the fields of applied statistics and experimental design are necessarily intimately (and historically)
linked. One cannot make intelligent selections of statistical analyses without a keen awareness of experimental design issues.
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or, since these data are balanced (i.e., equal numbers per group), we can calculate the grand mean as
the “mean of means,” where J designates the number of groups:

=37

g‘l'\<|

The grand mean for this data is equal to

=79.04

Z’: ¥, _ 71.00 + 7250 + 80.00 + 92.67
J 4

Given that we have at least some variability in the data, we can express each observation y;; as being
somewhat “off” from the grand mean, and calculate a deviation score for each observation. If we let any
given observation i in a given group j be represented by y;;, and the mean of all observations to equal y.,
then we can express the deviation for any given score as y; — .. For instance, we observe the following
deviations for the first few data points in each teacher group (70, 69, 85, 95):

Yi=3-=yiy —¥. = 70.00-79.04 = —9.04
Yi—F- = V2 —¥. = 69.00-79.04 = —10.04
V=3 = yi3—¥. = 85.00~79.04 = 5.96
Yi=F- = yia—¥. = 95.00-79.04 = 15.96

To give more examples of what we are doing, consider the deviations for the last observations in each
age group (73, 75, 73, 91):

V=¥ = Vo1 —3. = 13.00=79.04 = —6.04
Vi=3- = Vg =¥ = 75.00~79.04 = —4.04
Vi=F = Yea —- = 713.00=79.04 = —6.04
Vi3 = Vo4 =¥ = 91.00~79.04 = 11.96

We could continue to do this for the entire data set. The important point to note (so far) is that each
observed score in the data set can be expressed as a deviation from the grand mean.

3.3.3 Breaking Down a Deviation

Now that we have reasoned that we can represent any single score as a deviation from the mean (even if
the score is equal to the mean, the deviation is then equal to 0), our next point of interest is to break
down the deviation further. That is, we are interested in the following important question:

Why does any given score in our data deviate from the overall mean?

We need to think about the possible reasons why a given deviation, of the kind y; —y., might
exist in a set of data. This is an equivalent question to asking why a given score in our data is what it
actually is, only now, we are asking this question in terms of the given score’s deviation from the
overall mean.
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Consider again the first observation, that of y; = y;; = 70.00. What “explanations” or “reasons” can
you come up with for why this observation is not equal to the overall mean of 79.04? One reason you
might come up with is that quite simply, even if the grand mean is equal to 79.04, it does not imply that
all scores are going to be equal to the mean, and for no particular good reason. That is, you might
theorize that 70.00 is different from the overall mean of 79.04 as a simple artifact of the data, out of pure
and simple variability, nothing more. However, is this explanation enough to account for the given
observation? Maybe not. For one, we have a grouping factor in our data, which is the teacher assigned
to that particular individual. We must reason that it is possible that a given data point differs from the
overall mean not only because of an artifact of the data (or chance, random variability), but because it is
in a particular group (i.e., teacher) and not another group. When we hypothesize that scores are the
way they are because they are in one group and not another, we reflect this by the deviation:

Y=y

which represents “between group” variability. That is, if the data point 70.00 differs from the overall
mean because it received the 1% teacher rather than the other three teachers, then it would seem of interest
to calculate the sample mean for this group and subtract the overall mean to reflect this deviation. If there
is an “effect” of being assigned the 1%, an, 3rd, or 4™ teacher, then this should be reflected in the deviation
¥; =Y. We can express the deviation y; —y.as being “made up” or “composed” of two parts. In fact, we
can say further that the deviation y;; — . is equal to the sum of two parts, a part representing variability
within a given group, (y; —;). and a part representing variability between groups, (y; —y.). The entire
sum is thus:

y=5) = (v =3;) + (5;-5.) (3.2)

Equation (3.2) is a fundamental identity in the analysis of variance. It expresses the make-up or
composition of any randomly chosen observation in a one-way layout as a sum of two parts. The over-
riding goal of the analysis of variance is to learn whether the deviations in a set of data are better
explained or accounted for by within-group deviations of the kind (y,»j -y j), or between-group
deviations of the kind (y = y‘). You may be able to foresee where this discussion is headed. If it turns
out that deviations of the kind (yij - y.) are better explained by between-group deviations than they are
by within-group deviations, it would suggest that our samples may have been drawn from distinct and
unique populations. Experimentally, this would make good sense, since this is presumably why we did
the study in the first place, to seek out mean differences between such treatment groups. In other words,
if we found, overall, that deviations of the kind y; —y. were large relative to deviations of the kind
y;i = then it might suggest our treatment was effective. We will return to this point later after we
have more fully developed the logic behind ANOVA. Before we do anything more, we need to give
names to each of the deviations in our fundamental identity of (3.2).

3.3.4 Naming the Deviations

Let us consider the first deviation of (3.2), that of (y,;j —yj) to the immediate right of the equal sign.
Why might such a deviation arise? That is, why would your data exhibit a deviation of the form,
(yij -y j)? They are all in the same group, are they not? Therefore, it cannot be due to a “grouping”
effect of any kind. After all, they were all collected and treated the same way. The best we can do
to explain this deviation is to call it “error,” or to say that the score y;; deviates from y; due simply
to “chance,” or to “random factors” that we cannot immediately account for or explain. In brief, we
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do not know why one score deviates from another within a given group. Hence, we will call the
term (yl-j -y j) by the name of error and denote it as e;;, which represents the error for any given indi-
vidual i in a given group j. Substituting e;; for (yij -y j) we rewrite the identity in (3.2) as:

(y=7.) = e+ (5,-7.)

Now, we ask the following question—Why would the second deviation, that of the form, (y ; —y.),
exist? That is, why would one group’s mean differ from the overall mean of all the observations?
A sensible explanation is that there is some kind of “effect” of being in that particular group versus
being in another group, and that is why a given group mean is different from the overall mean. We
will name this deviation by “a;” and let it represent the sample effect or treatment effect of being
in a particular group. Hence, when we further substitute a; for (yi —y.), we can write our equation

for the deviation (y;—.) in (3.2) as,
(yl:i—y.) =e¢jtaj

or, more commonly, we will reorder a; before the error effect:
(vj=3)=a;+e; (3.3)

In summary then, what we have done thus far is to reason that a given deviation of the kind
(y,-j —y.) can be composed of two “things.” Either it is due to an effect of being in one sample versus
another, which we call by the name of sample effect, a;, or, it is due simply to “error” which we
designate as e;;.

The analysis of variance partitions variability in this way such that we can eventually test (through
an F ratio) the assumption that deviations are due to “error” alone, or equivalently, that the sample
effects we have observed in our sample are not large enough to begin to doubt that the population
effects (which we will denote by «;, the population counterparts to a;) are actually equal to zero.

3.3.5 The Sums of Squares of ANOVA

We have concluded that any deviation from the grand mean can be said to be represented by, or “com-
posed of”’ (yij —y.) = a; + e;. However, when summing any deviations about a mean, we know that the
sum of the deviations will equal zero. That is, if we did take the sum of deviations (y,j —y.), we know
that > (y,j —y.) = 0 would be true for any data set we deal with, real or hypothetical. Though calcu-
lating the sum of absolute deviations of the form }_ | y;—¥. | is a possibility for avoiding the sum of
zero, the solution historically adopted for this problem has been to square the deviations, then sum
them up. We will apply the same principle of squaring deviations to our model equation
(y,»j—y.) =aj;+ ej.

We omit here the actual derivation of the sums of squares. For details, see Hays (1994) or Kirk
(1995). After deriving the sums of squares, we arrive at the following identity:

J n J J n
SN 0=5) = Y- DS (- (3.4)
j=1 1 J j=1 1

Equation (3.4) is referred to as the partition of the sums of squares for a one-way fixed effects
between-subjects analysis of variance. Notice that it is made up of three parts, which we detail now:
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J n
SStotal: > > (yij —y.)z—This is the total sum of squares for the entire data set. It is the sum of
j=17i

squared deviations of every individual value in a sample of data from the grand mean of all observa-
tions. This term is also equal to calculating NS* (see Hays, 1994, for details).

J
SS between: ) n; (y j —y.)z—This is the sum of squares representing variation due to a potential
J

treatment effect. Notice that in our derivation, we picked up the “multiplier” n;. This is simply equal to
the number of observations per group, which for balanced designs, we assume to be equal.

J n
cr s —\2 .. . .
SS within: Zl Z (y,-j -y j) —This is the sum of squares representing error or within-group var-
j=1i
iation. It is the sum of squared deviations for all observations in each group from its respective group
mean. It is a measure of error because if all observations are in the same group (i.e., they were all treated
the same way), we would expect scores to be more or less the same, and would attribute any differences
to chance or unexplainable variability (which we call error).

3.4 FROM SUMS OF SQUARES TO UNBIASED VARIANCE ESTIMATORS:
DIVIDING BY DEGREES OF FREEDOM

Recall how we calculated a variance—we produced a sum of squares, and then divided this sum of
squares by an appropriate denominator:

L A— e 3.5)

The denominator for the uncorrected variance was simply &, and for the corrected variance, N — 1. The
reason for dividing by N — 1 was to obtain an unbiased estimator of the population variance ¢>. When
we divide by either denominator, we are in essence producing a “mean” of the squares, only that in one
case, we are basing the mean on N pieces of information, and in the other case, basing it on N — 1 pieces
of information. However, the concept of generating an “average” is the same in both contexts.

The important element then is the selection of appropriate denominators for our various sums of
squares. We do the exact same thing in ANOVA, only that now, instead of having only one sum
of squares to be concerned about, we have three, SS total, SS between, and SS within. The question
boils down to deciding what degrees of freedom are appropriate for each sum of squares in generating
suitable variances.

J
We saw that SS between is calculated as Y n;(y j —y.)z. Notice that we are subtracting the grand
J

mean from group means. The degrees of freedom for SS between are equal to one less than the number
of groups we have. This is because in our calculation of the sums of squares, y. is implicitly serving as
an estimate of 4. What this means is that this value can be considered fixed, and implies that one of the
group means is not free to vary (recall the “Beautiful Triangle” of Chapter 2). Hence, we lose one
degree of freedom. For instance, for three treatment groups, the degrees of freedom are equal to J
— 1, which, in this case, is 3—1 = 2.

J n
Recall that SS within is calculated as > > (y,-j -y j)z. Notice that we are subtracting the group
j=1i

mean from individual scores within the given group. In this case, we are fixing the given group mean,
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since the group mean y; is implicitly being used as an estimate of 4;, so we lose one degree of freedom
per group. For example, for three treatment groups of n = 10 observations per group, the degrees of
freedom for SS within are (10— 1)+ (10— 1)+ (10— 1) =9+ 9 + 9 = 27. Alternatively, we could have
also computed these degrees of freedom as N —J, that is, the total number of observations minus the
number of groups. Losing one degree of freedom per group or computing N —J on the entire sample
amounts to the same thing for a balanced design.

Finally, although we will not be deriving any mean square estimates using SS total, it is nonetheless
useful to know that the degrees of freedom for SS total are equal to one less than the total number of
observations in the entire data. For instance, if there are N = 30 observations, then since each deviation
for SS total consists of subtracting the grand mean (and hence, we are constrained by it), we will lose 1
degree of freedom, giving us 30 — 1, or more generally, N — 1 degrees of freedom for SS total. Notice
that this is simply the “ordinary” corrected variance we started out with.

In dividing by appropriate degrees of freedom, we transform our sums of squares into mean squares,
one for between-group variance,

MS Between =

and one for within-group variance,
n

J
I3DY (5=7,)"
MS Within = 2=

1 i

N-J

Note that while the sums of squares are additive in that SS total = SS between + SS within, the mean
squares are generally not. Because we are dividing by degrees of freedom, mean squares vary
depending on the given experiment and on such things as the operationalization of levels of the
independent variable. The “breakdown” is simply not the same as for the sums of squares. This is
why you will not typically find MS total figures in an ANOVA table.

Having developed the necessary mean squares for computing variances, our next task is to learn
what these mean squares actually estimate in the population. That is, we need to take expectations
of these mean squares.

3.5 EXPECTED MEAN SQUARES FOR ONE-WAY FIXED EFFECTS MODEL:
DERIVING THE F-RATIO

As arecap, we have seen how a given deviation from the grand mean of the form y;; —y. can be said to
be made up of two parts. The first part reflects deviations between sample means and the grand mean,
¥; =Y. The second part reflects deviations between single observations in each group from their respec-
tive group means, y; —y;. We also saw how to produce sums of squares to account for the various
sources of variation, and how to divide by appropriate degrees of freedom to obtain unbiased estimators
of variance, the so-called “mean squares.” We obtained a mean squares between (MS between) and a
mean squares within (MS within).

What are the expectations of these mean squares? Recall that when we derived the sample var-
iance, we were interested in its expectation. We found that the expectation of the corrected version of
the sample variance was equal to the population variance 6. That is, E(s?) = 6°. We were interested in
the expected value because we wanted to know that over an infinite number of potential samples, and
by the algebra and rules of expectations, the value of the sample variance would equal that of the
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population variance. That is, we wanted some comfort and assurance in knowing that s* was actually
estimating the correct quantity, that of 6. If a statistic we have computed is not estimating the pop-
ulation parameter we are actually interested in knowing about, it usually does us little good (though
biased estimators at times are useful, such as in ridge regression). We are just as curious about the
values of MS between and MS within. We would like to know their expectations. The reason why
we need to know what quantities they are estimating is so we know how to generate appropriate
and relevant F-ratios.”

Expectations for MS between and MS within can be found in Hays (1994) or Kirk (1995). For our
purposes, we cut to the chase without derivation. Based on the exercise of taking expected mean
squares, it can be shown that for between and within, respectively, they are equal to:

> ()

E(MS BCtWeen) = ]‘]71

+ 62 and E(MS Within) = ¢

When we take a ratio of MS between to MS within, we find that under the circumstance where there
is a complete absence of sample effects, the ratio should equal approximately

~1.0

o

‘Q
aonto

When sample effects are present, we expect the ratio to be greater than 1.0.
We summarize this partition of the sums of squares in what is known as the Analysis of Variance
Summary Table, given in Table 3.3.

TABLE 3.3 Summary Table for One-Way Fixed Effects Analysis of Variance

Source Sum of Squares df Mean Squares F-Ratio p-Value
Between 02 J-1 J 2 J _ Evaluate
Zj:”./’(y_i_y') Xj:”j(yj_y') E ni(; - ) /J-1) obtained
-1 7 n ratio as F-
le(y,, ) /(N=J) statonJ—1
s and N —-J
degrees of
freedom
Within =~ J_ = ., N-J I 5 — _
ZIZ@U y/) le(ylj yl)
Jj= i j= i
N-J
Total J n _\2 N-1 J n 2 — —
> X (y-y) > 2 (=)
j=tli=1 o J=li=1

2 Though we are computing the F statistic as a ratio of aZBe,Wm,/ozw,-,h,-,,, the actual F density distribution (i.e., the actual F statistic
that we compare the F-ratio to) is given by

2
_ X / Vi
-2
X 2/ V2
where 7 and y3 are independently distributed chi-square variables on v, and v, degrees of freedom. For details, see Hays (1994)
or Kirk (1995).
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3.6 THE NULL HYPOTHESIS IN ANOVA

Having conceptualized the ANOV A model and computed expected mean squares, the next task is to geton
with testing null hypotheses. There are two common ways we can state the null hypothesis in the one-way
fixed effects ANOVA. The test of both hypotheses will suggest the same decision on Hy. If MS between
is equal to MS within, then this suggests they are each estimating the same variance. That is, each
term is measuring error variance, o>. Recall that the expected mean square for MS between is equal to
>on %

J

J-1

E(MS between) = 6> +

If there are no sample effects present in a given analysis, then it suggests that all corresponding
population effects a; of the form a; = y; — p. are equal. If they are all equal, then the sum of n jai must
be 0, giving us the following for the expected mean squares for between:

>n,(0);
2,
¢ J-1
240
2

o-e
= O-g

E(MS between) = o, +

Notice that under the condition that all effects a; are equal to 0, the mean squares between is estimating
the same as the mean squares within, that of simply unexplainable or unaccounted for deviation of
scores within their respective groups, that is, ag. When both MS between and MS within are estimating
the same quantity, the expectation for F is approximately 1.0.> Recall that while it is true that the
expectation for F' is equal to approximately 1.0, we will rarely if ever obtain this in practice in our
sample even if the null hypothesis were true. Sampling error always makes its way into things,
so we will usually deviate slightly from expectation even under a true null hypothesis. The question
is always whether our deviation from expectation is enough to cause us to reject the null
hypothesis of equal population means.

Hence, one way of positing the null hypothesis for the one-way ANOVA is that all population
effects are equal to 0. More formally, we could state the null as

Hy : aj = 0, for all populations j.
If at least one of the group means does differ from the grand mean, then we have a sample effect for the

given group. We are interested in knowing whether the sample effect is large enough to suggest an
effect unequal to zero in the population. The alternative hypothesis, H;, can be stated as

H; : a; # 0, for atleast some populations j.

If there are no population effects in a one-way ANOVA, then this implies that all population means are
equal. Because of this, we can also state the null hypothesis as:

Hy : pj = p. for all populations ;. (3.6)

The null hypothesis in (3.6) reads that all population means are equal to the grand mean of all the
populations. If this is true, then it implies that there cannot be any differences in means between

3 The expectation of F turns out to not equal 1.0 exactly. Under the null hypothesis of equal population means, as noted in Howell

df error
2002, p. 331), E(F) = —2 20
(2002, p- 330 E(F) = o7 rror—2
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populations. The alternative hypothesis would be that for at least one population, its mean does not
equal the grand mean of all the populations. That is,

Hi : p; # p. for atleast some j populations.

We see then that whether we state the null in terms of population effects or population means, it
amounts to the same null hypothesis under test. Usually, however, the null hypothesis is expressed
as simply the equality of population means. The hypothesis Hy : y; = p. for all populations j, however,
gives us an actual idea of how this former hypothesis is being evaluated.

Remember always that the null and alternative hypotheses are about parameters, and not sample
statistics, which is why we are using the notation a; and p. or p; to represent respective population
effects and population means. Recall also that in our sample, we fully expect inequality to some degree,
for instance, y; # ¥, # y5. That our sample means are not exactly equal to one another is hardly a
shocking result or momentous finding. What we are really interested in, is in knowing whether such
deviations are large enough relative to what we would expect simply to due sampling error. Generally,
in research, we are usually not all that interested in sample statistics. We are most interested in para-
meters. Statistics usually simply serve as a means of estimating these parameters.

3.7 FIXED EFFECTS ANOVA: MODEL ASSUMPTIONS

Any mathematical model, whether statistical or otherwise, comes with it a set of assumptions on which
the model is based. If these assumptions are not satisfied, especially to a substantial degree, it could cast
into doubt the very correctness and utility of the model you are fitting to your data. It should be noted as
well at the outset that when one does not engage in the process of estimating parameters, that is, of
statistical inference, the analysis of variance itself is, as Fisher put it, simply a way of “arranging
the arithmetic.” One does not require assumptions for arranging this arithmetic. Eisenhart described
this very idea quite eloquently as well:

... when the formulas and procedures of analysis of variance are used merely to summarize properties of
the data in hand, no assumptions are needed to validate them. On the other hand, when analysis of var-
iance is used as a method of statistical inference, for inferring properties of the “population” from which
the data in hand were drawn, then certain assumptions, about the “population” and the sampling proce-
dure by means of which the data were obtained, must be fulfilled if the inferences are to be valid.
(Eisenhart, 1947, p. 8)

Hence, when we use the arithmetic of ANOVA to make inferences, we require assumptions. The
assumptions for the one-way fixed effects ANOVA can be summarized into the following:

* E(gy) =0, the expectation of the error term is equal to 0. We use ¢;; here in place of e;; to denote the
population parameter.

* g;are NI (0, of), the errors are normally distributed (N) and independent () of one another having
amean equal to 0 and variance equal to 62. In general, if one can assume that the errors within each
population are normally distributed, then this implies that the observations on the dependent var-
iable in each of the populations are also normally distributed (Kirk, 1995). Normality can be tested
using graphical methods such as histograms, residual plots, and Q—Q plots, whereas independ-
ence of error, a much more difficult assumption to verify, can be investigated at least somewhat
via residual plots, but is usually ensured by the method of data collection and random assignment
for the given experiment.
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. agﬁ < o0, the variance of the errors is some finite number (which simply implies that it is less than
infinity).

* Cov(e;, &) = 0, the covariance between errors is equal to 0. If errors are indeed independent,
then this assumption is already implied. Independence and an absence of covariance are not equiv-
alent properties, however. As we will see when we study block designs, these assumptions will

typically be violated.

2].2 L= azjz ) = 62j: ;» the variances across populations as operationalized by the independent
variable are equal (often called the homogeneity assumption). This can be tested using a variance
ratio test in R where the largest variance is compared to the smallest. Levene’s test or Bartlett’s

test is also useful in verifying this assumption.

* 0

* Measurements on the dependent variable are observed values of a random variable that are dis-
tributed about true mean values that are fixed constants. This assumption (adapted from Eisenhart,
1947, p. 9) is equivalent to the assumption that the levels of the independent variable used for the
given experiment constitute the only levels the researcher wishes to generalize to in the popula-
tion. This is precisely what defines the fixed effects model as fixed. Recall that if this is not the
case, and the experimenter wishes to generalize these levels to a population of levels of which the
levels appearing in the experiment are but a random sample, then the correct model is not that of a
fixed effects model, but rather that of a random effects model.

When we perform an analysis of variance in R and SPSS toward the end of this chapter, we will
briefly demonstrate how one can go about verifying some of these assumptions using inferential tests
and graphical displays. Light to moderate departures from these assumptions is usually not a major
concern (other than that for independence of errors, which is a serious concern if violated) since
ANOVA is quite robust against violations (generally implying the type I error rate and power will
remain relatively stable even in the face of violations). However, there are remedies for violations
if they get to be severe. For instance, one can perform power transformations to help establish a sense
of normality in the dependent variable. These often take the form of square root or logarithmic trans-
formations or others. We do not cover transformations in any detail here, because usually, they are
not required except for rather extreme violations. In the event that you do wish to transform to near
normality, you are encouraged to consult any of the excellent resources on this topic. Fox (1997) is
especially good. The function boxcox (named for Box-Cox transformations) in the MASS package
(Venables and Ripley, 2002) in R offers some options in helping one decide on the most optimal trans-
formation for a set of data.

If you suspect a violation of the assumption of equal variances, so-called heterogeneity of vari-
ance, options such as the Brown-Forsythe test (see Kirk, 1995) or the Welch procedure (1951)
can be used for adjusting the obtained F from ANOVA so it better incorporates a possible violation.
These tests will typically be more conservative than the omnibus ANOVA test. Since ANOVA is quite
robust to violations of this assumption, we do not cover these tests to any extent in this book (though we
do demonstrate the Welch test in SPSS in our ANOVA example). Howell (2002) does an excellent job
at summarizing their contributions and is highly recommended. In cases where either sample sizes are
very small or even the prospect of satisfying assumptions in ANOVA seems impossible, a nonpara-
metric test may be a better choice. Nonparametric tests make fewer assumptions about the population
from which the sample data were drawn. The counterpart to the one-way fixed effects analysis of var-
iance is the Kruskal-Wallis one-way analysis of variance test and is available in most statistical
software packages. For details, see Rice (1995, p. 453).

Another assumption that is more or less implicit in the ANOVA model is that the model equation

yij://l+aj+€jj
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of which the sample equivalent is given by
yi=y. tajte;

contains all the relevant sources of variation for the given experiment. That is, we assume the model is
correctly specified. Of course, no model is ever completely perfectly specified, but the point of this
assumption is to say that there are no obvious sources of variation that were omitted from the model.
For example, since it is generally known that there are gender differences in depression rates (e.g., see
Salk, Hyde, and Abramson, 2017), if one did not include gender in a model of predicting mean differ-
ences on depression, one could easily argue that the model is misspecified. Detecting specification
errors is sometimes a skill more honed by experience in a given research area than anything else,
in that experienced researchers are often well-familiar with the “big player” predictors in their respec-
tive fields. If those predictors are for some reason left out of an analysis, such folks will surely be the
first to call you out on a specification error. We revisit this topic when we discuss the regression model
in Chapter 7.

3.8 A WORD ON EXPERIMENTAL DESIGN AND RANDOMIZATION

Up to now, we have not commented much on the actual process of experimentation or the randomi-
zation of subjects to treatment groups. The process of randomization is that of administering subjects
randomly to levels of the treatment factor, with the goal of eliminating as much as possible any source
of bias that could potentially confound findings. For instance, in our melatonin example discussed at
the start of the chapter, randomly assigning subjects to dosage levels (control, 1 mg, 3 mg) is our best
assurance (though by no means guarantee) that the infinite number of “nuisance factors” are evenly
dispersed among our treatment groups.

Nuisance factors are all those things that could theoretically be acting on the dependent variable but
that we have not accounted for or measured in our experiment or study. For example, again referring to
the melatonin study, surely some people are more predisposed to falling asleep with ease compared to
other people. If we do not account for this in our design (e.g., through blocking or analysis of covar-
iance, for example), then we are relegated to hoping that randomization “balances things out” and that
there will not be any systematic bias built up in any group on the said nuisance factor.

Randomization is the ideal “gold standard” for experimental design. In many studies, however, it is
either impossible or unethical to randomly assign participants to treatment conditions. For instance, if
we wanted to learn whether mammography screening reduces the risk of death from breast cancer, it
would be somewhat unethical to randomly assign some participants to mammography screening while
others to a control group, especially if we have prior knowledge that screening is effective. Likewise, it
would be unethical to randomly assign some participants to a “smoking group” and others to a “non-
smoking” group to observe the effects of cigarette consumption over time. The experimenter simply
cannot have such a level of control over his or her subjects. In many cases, we have to take subjects as
they come. The best we can do often is record whether a subject has or has not received mammography
screening and associate that with their later cancer risk or survival. Likewise, we often have to take
smokers as they come, and compare them to nonsmokers. But this means we are no longer randomly
assigning participants to treatments. Designs such as this where we are unable, for whatever reason,
ethical or otherwise, to randomly assign participants to treatment conditions are generally known as
quasi-experimental designs (e.g., see Eliopoulos et al., 2005). If there is absolutely no control
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imposed at any level, these designs can sometimes be considered similar to correlational designs
(Campbell and Stanley, 1963).

As a guideline, whenever you do an experiment or study, it is usually best to try for randomization at
least at some level. If such is not attainable, then resorting to a quasi-experimental design might be
considered as a second option. A randomized design should usually be your first attempt or choice,
however.

3.9 A PREVIEW OF THE CONCEPT OF NESTING

The curious reader may have noticed an important element in our discussion of mammography screen-
ing (and that of smoking behavior) just mentioned. Women who receive mammographies may be more
likely to be alike than women who do not receive them. That is, they may share characteristics (other
than mammography screening) that women who do not receive mammographies do not share. Perhaps
those who receive mammographies are more concerned with their health than those who do not. Per-
haps they are more educated, have better health insurance, or share numerous other similarities. This
idea, which we briefly introduced in the previous chapter in the context of the matched-samples design,
generally goes by the name of nesting.

In many designs, observations are naturally nested within a given group. A classic example is that of
school children nested within classrooms, and classrooms nested within schools. That is, children shar-
ing the same classroom (and thus, the same teacher) may be similar in ways compared to children in
another classroom (and thus, with another teacher). Likewise, classrooms in the same school may be
more similar than classrooms in different schools. We only briefly mention the topic here as a preview
to our further discussion of it when we consider random effects and randomized block designs in chap-
ters to follow. The concept of nesting in this manner forms the basis for such modeling as hierarchical
modeling and multilevel modeling, topics that are well beyond the scope of the current text, but have
gained popularity in the social and behavioral sciences in the last 30 years or so. We will recap and
extend this discussion of nesting when we consider randomized block and repeated-measures models
in Chapter 5.

3.10 BALANCED VERSUS UNBALANCED DATA IN ANOVA MODELS

In all of our discussion of ANOVA thus far, we have assumed that group sizes have an equal number of
subjects. These data layouts are referred to as balanced. Layouts in which groups do not have the same
number of measured objects per group (or cell, in the case of factorial ANOVA, the topic of the fol-
lowing chapter) are referred to as unbalanced. Balanced data are generally preferred to unbalanced
data for the reason that effects in a balanced design are orthogonal, which typically implies that asso-
ciated tests are independent of one another. That is, when data are unbalanced, the possibility arises that
main effects and interactions will no longer be independent of one another, which also translates to the
fact that sums of squares may not be additive. As Tabachnick and Fidell (2007) note, the problem of
unequal sample sizes is more relevant if the groups with small sample size also exhibit relatively high
variance. This could potentially lead to an inflated type I error rate. Orthogonality of factors also helps
to ensure that comparisons of one factor at levels of the other factor will not be unduly influenced by
groups on one factor having more “information” (i.e., in terms of objects studied) than another. For a
brief discussion of unbalanced designs, see Steinhorst (1982). As mentioned, in most of our examples
of ANOVA and beyond, for convenience, we generally assume balanced designs.
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3.11 MEASURES OF ASSOCIATION AND EFFECT SIZE IN ANOVA:
MEASURES OF VARIANCE EXPLAINED

Obtaining a statistically significant F statistic literally means that the statistic we have obtained is rel-
atively rare assuming that it arose from an F sampling distribution specified by J — 1 and N — J degrees
of freedom. However, as we have already discussed in relation to z and #-tests, statistically significant
statistics do not necessarily suggest a large difference between means. That is, statistical significance
does not necessarily imply a large or meaningful effect size. This is because, as summarized in
Chapter 2, there are other things in a test statistic’s “DNA” that influence its magnitude, such as sample
size, variance, and, considered jointly, its standard error. Note that when we produce the F statistic by
dividing MS between by MS within, we risk getting a large F simply as a result of MS within being
small. The smaller MS within is, the larger will be our resulting F statistic, all else equal. Similarly, one
can see that by simply increasing sample size, N — J, the degrees of freedom for SS within will get larger
and larger. As we increase the degrees of freedom, MS within necessarily gets smaller, since we are
dividing SS within by a larger and larger number.

Do not misunderstand. Having a small MS within is always a good thing statistically. The infer-
ential statistic is doing its job. A small error term suggests we have a good degree of precision in our
estimation. But scientifically, the small error term does not in itself guarantee that anything important
or practical has happened in the experiment or study. The distinction between statistical significance
and effect size is one you must understand in order to evaluate scientific evidence in an intelligent
manner. A misunderstanding of this distinction can lead to serious misunderstandings in the
global interpretation of evidence.

The F-test then, or any inferential test statistic for that matter, will not reflect a pure measure of the
obtained sample effects. How do we solve this problem? One option is to take a ratio of SS between to
SS total before these sums get converted into mean squares. That way, we are not having our F statistic
unduly influenced by sample size since we are not yet dividing by N — J in the denominator. This ratio
of SS between to SS total goes by the name of Eta-Squared, symbolized as 7. We now discuss this
important statistic.

3.11.1 #* Eta-Squared

As discussed, it seems intuitive that if we wanted a more pure measure of the difference in means, we
should consider further the magnitude of the sample effects, without necessarily requiring an inferen-
tial statement about them. Recall that any potential sample effects are included in SS between:

> (-3

whereas deviations of the kind y;—y. grow larger and larger, this is indicative of an increasingly

larger difference between sample means. And since SS total is a measure of total variation in a set
of data, it seems sensible to take the ratio of SS between to SS total as our measure of effect size:

%:”j@j‘y)
;72 = J n 2
> X -y
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where #° can range from O to 1. A value of 0 suggests that sample effects are accounting for no variance
in the dependent variable and the only source of variation that is “at work™ in our data is random error.
A proportion of 1 suggests that the total variation in our data is accounted for entirely by our obtained
sample effects. Otherwise said, a measure of 1 suggests that all variation in our data is attributable to
between-group differences (i.e., which are in effect, the obtained sample effects).

To reiterate then, ;> represents the proportion of variance in the dependent variable that is
accounted for by the independent variable. In the case of a one-way fixed effects ANOVA, that
independent variable is the grouping factor.

3.11.2 Omega-Squared

It is well known that values of »” tend to report an overly “optimistic” picture of the magnitude of effect.
This is in part because 5 is a descriptive measure of effect size in the particular sample on which it is
computed and assumes that the population regression line (if we were to know it) passes through the
group means on the independent variable (Howell, 2002, p. 353). It does not accurately estimate what
the actual true effect might be in the population from which data were drawn.

Omega-squared, w?, is a less-biased estimate of effect size and serves as an estimate of the actual
population effect size. An estimate of w” for the one-way fixed effects analysis of variance can be
obtained by:

> _ SSbetween — (J— 1) MS within
“ = 7SS total + MS within

where the values of SS between and MS within are obtained from the analysis of variance table. As
noted by Kirk (1995, p. 178), @* can also be computed as

o (U-D(F-1)
S J=1)(F=1)+nJ

where F is that obtained from the overall ANOVA, n is the sample size per group (we assume equal n
per group), and J is the number of levels on the independent variable. This formulation is especially
useful for situations in which you wish to compute omega but do not have access to a researcher’s
ANOVA summary table (and are only provided with F).

n” and w” are by far the most popular effect size measures used to contextualize findings in the
analysis of variance. However, relatively recently, attention has been drawn to the fact that these mea-
sures do not incorporate the potential influence that design features might have on the effect size esti-
mate, especially for the factorial designs of the following chapter. One recommendation given to
overcome these deficiencies is to compute generalized eta squared and generalized omega squared
statistics. These statistics, in part, incorporate the influence of design features into their estimates.
Though we do not discuss these effect size measures here, the interested reader is encouraged to consult
Olejnik and Algina (2003) for a discussion of such measures.

3.12 THE F-TEST AND THE INDEPENDENT SAMPLES ¢TEST

Recall that ANOVA can be conceptualized as an extension of the independent samples #-test. Given
this, it stands that we should be able to conduct an ANOVA on a two-sample problem and translate
obtained F into a  statistic.
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TABLE 3.4 Hypothetical Data on Two Independent Samples

Sample 1 Sample 2

2 7

1 6

3 8

2 9
Mean = 2.0 Mean = 7.5

Consider the small hypothetical data set in Table 3.4. Suppose we wished to test the null hypothesis
that 1 = u,. Both ANOVA and the independent samples 7-test can be used to evaluate the tenability of
this null.

An independent samples #-test on these data yields a #-statistic of |7.20|. Evaluated on (n; — 1) +
(ny — 1) degrees of freedom, we find 7 to be statistically significant at the 0.05 level of significance.

Suppose now that instead of the #-test, we wish to perform a one-way fixed effects ANOVA on these
same data. If we square our obtained ¢ statistic, it will equal the obtained F' that we get in the ANOVA.
That is, (7.20)* = 51.84 = F. Likewise, we can go the other way. The square root of F will equal 7, that
is,/F=+51.84=72=1.

Hence, if an F statistic is statistically significant at a given significance level e onJ -1 and N —J
degrees of freedom, then the corresponding value of r = v/F will be statistically significant at the same
a level on degrees of freedom (n; — 1) + (n, — 1) in a two-tailed test. If the statistical alternative to the
null hypothesis is one-sided (also known as “directional”), then the sign of the ¢ statistic must be taken
into consideration.

3.13 CONTRASTS AND POST-HOCS

The overall F statistic computed in the analysis of variance tests the general null hypothesis of equality
among population means. It is the so-called omnibus test of equality among population means. Often-
times in research, however, we have planned hypotheses that we would like to test that reduce the
omnibus null hypothesis to a series of two-group comparisons. Each comparison uses up a single
degree of freedom, and so they are sometimes called single-degree-of-freedom contrasts.

For example, referring once again to the achievement data of Table 3.1, suppose the researcher was
interested in specifically comparing achievement means on teachers 1 and 2 taken together with the
achievement means on teachers 3 and 4, also considered simultaneously. Notice that, in this case, we
are not so much interested in a general mean difference as much as we are interested in a specific mean
difference between the first and second and the third and fourth teachers.

Such a hypothesis calls for a population comparison among means. We can define a population
comparison as the following linear combination:

J
Ci=cipp+copy + - +cju; = Zc_,-uj 3.7
j=1

where c; is a set of real numbers, not all zero, and y; is the relevant population means. For an example in
which we have three means, the population comparison would be defined as:

Ci =C1i + Cofy + C3l3
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For our example, since we are interested in comparing y; and y, taken as a set with y3 and py4, we will
weight the first two population means with an identical weight compared to the last two population
means. The following assignment of weights would work:

Ci=cip; + cofty + C3pi3 + Caply
=(Dpy + (Mpp + (= Dps + (= 1y

Note carefully how we assigned the weights. The first two means received weights of “1”” while the last
two means received weights of “—1.” Weighting the means this way has the effect of comparing p; + u»
to u3 + p14. Because our linear combination has weights that sum to zero, that is,

J
ZCj:O

Jj=1

the linear combination C; is given a special name. It is called a contrast. A contrast is simply a linear

J
combination of the form (3.7) for which ) ¢; =0.
j=1
Of course, as usual, we rarely if ever have population means at our disposal. When we reject the null
hypothesis in the ANOVA F-test, we are implying that there is at least one statistically significant com-
parison of the type

Ci=cyy+ oy, +- -+
7
= chyj

where C; is the estimate for the population comparison C;. When we take the expectation of C;, we
find that

E(C)=E (ZC.& ,-)
= Ej:c;E(y i)
e

That is, C ; 1s an unbiased estimator of C;.

Recall that we do not immediately know the nature of the comparison when we reject an omnibus
null hypothesis in ANOVA. For instance, the population comparison could be y versus py,, p3 or it
could be p1, u, versus us, etc. There are a variety of possible comparisons one could make. As noted
by Hsu (1996), “to consider multiple comparisons as to be performed only if the F-test for homogeneity
[i.e., equality of population means] rejects is a mistake” (Hsu, 1996, p. 178). Hence, it behooves us to
consider contrasts quite carefully, since we may wish to make them even without a rejection of
omnibus F.

It is very important to also note that whether C; or C;, when computing a comparison, we are com-
puting a weighted sum of means. That is, when we speak of a value for C; or C;, we are speaking of
one and only one value which is equal to the weighted sum of means we are computing. Oftentimes
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comparisons can seem confusing until it is realized that they are, in the end, reduced to a single number,
C;. They are linear combinations (see Chapter 2), and even for the most complex of linear combina-
tions, in the end, they still boil down to a single number. Concepts of linear combinations preview the
study of multivariate methods in later chapters in this book.

An appropriate null hypothesis for a population comparison is the following:

Ho:Ci=0

since as mentioned, F (C‘,) = 0. A two-sided alternative would be: H; : C; # 0.

There are many types of “canned” contrasts available in software. These include simple contrasts
and Helmert contrasts, among others. Each contrast-type differs in the comparisons of means it tests.
For example, Helmert contrasts feature the comparison of each level of a factor against the average of
subsequent levels. That is, in a three-population ANOV A, Helmert contrasts would compare the first
mean with a combination of the second and third means, then the second mean with the combination of
the third and successive means (of which, in this case, there are none). One should be aware that
depending on how software defines the Helmert contrast, the output may differ somewhat from
how we have defined them. For instance, the function contr.helmert () in R contrasts the second
level with the first, the third with the average of the first two, and so forth.

We demonstrate a very simple comparison using the achievement data of Table 3.1. Again, suppose
we wished to contrast teachers 1 and 2 with 3 and 4. That is, we wish to estimate values for the fol-
lowing population contrast:

C,’ = CiHy + Colty + C3z + Caliy

Recall that to make it a legitimate contrast, we must select ¢y, c,, ¢3 and ¢4 such that their sum is equal to
0. To set up the contrast, we can use weights 1, 1 and —1, —1, giving us the estimated contrast value
of —29.17:

Ci=c1y) + Yy + €3Y3 + C4)y
= 1(71.00) + 1(72.50) + (= 1)(80.0) + (= 1)(92.67)
=71.00 + 72.50-80.00-92.67
= -29.17

We notice immediately that the value of our estimated comparison C;is not equal to 0, which 0 is what
we would have expected under the null hypothesis Hy : C; = 0. How might we interpret this contrast,
even before testing it for statistical significance? Since we chose to compare teachers 1 and 2 with 3 and
4 and obtained a negative value for our estimated contrast, we can say, without even making an infer-
ential statement yet, that the sum of average achievement for the first two teachers in the sample is
29.17 units less than the achievement of students assigned to teachers 3 and 4. We can conclude this
by how we assigned the weights (i.e., the two “positive” means came before the negative ones). Note,
however, that we have concluded nothing yet about population parameters. We are merely observing
our descriptive linear combination. The task of gambling whether these sample results suggest a rejec-
tion of the null that Hy : C; = 0 is the task of statistical inference. But to test such a null, we will need, as
is true for any inferential test statistic, an estimated standard error.

We can write the estimated variance for a sample comparison C; by

2
c4
Ci Ez:
! T I’lj
J
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Of course, we do not know the population variance 2, but we can obtain an unbiased estimate of it,
&g, in the form of MS error. That is, upon making the relevant substitution, we get

2
~2 ¢
65 = MS error —

C; .
— 1
J j

We know that to get a standard deviation from a variance, it is a simple matter to take the square root of
the variance. Likewise, to get the standard error from 62, we take the square root of &2@ :

_ /2
O Ci = O Ci
Now that we have obtained a standard error for our statistic, we are now in a position to test C,- for

statistical significance. Recall that we are testing Hj : C; = 0 against the alternative hypothesis that
H, : C;#0. For this, we can use a t-test,

evaluated on N — J degrees of freedom.
In SPSS, we compute the contrast for the achievement data, comparing teachers 1 and 2 to 3 and 4:

ONEWAY ac BY teach
/CONTRASTS=1 1-1-1

Contrast Coefficients
Contrast Teach
1 1.00 2.00 3.00 4.00
1 1 -1 -1

Contrast Tests

Contrast Value of Contrast Std. Error t daf Sig. (2-tailed)
ac Assume equal variances 1 -29.1667 3.54417 -8.229 20 0.000
Does not assume equal variances 1 -29.1667 3.54417 -8.229 15.034 0.000

The contrast, both for equal variances and unequal variances assumed, suggests we reject the null
hypothesis.

3.13.1 Independence of Contrasts

When we speak of the pairwise independence of contrasts, we are speaking, substantively, of whether

each comparison provides independent and unique information. To determine the independence of

two contrasts, we need simply to verify the product of respective weights for the two contrasts, that

is, > ~cijcoj = 0. This requirement holds if sample sizes are equal (for the case of unequal sample sizes,
J
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see Hays, 1994, p. 435), and also generally assumes samples come from normal populations with typ-
ically equal variances (Hays, 1994, p. 434). C, and C; are considered to be orthogonal contrasts. The
number of orthogonal contrasts for a set of groups is always equal to J— 1.

Note carefully that when considering comparisons, “orthogonal” and “independent” mean the same
thing only when populations are normal with preferably homogeneous variances (Hays, 1994, p. 434).
Be sure to note as well that when speaking of independence or orthogonality of comparisons, we are
usually referring to a very specific set of comparisons, and to ensure orthogonality among the set, we
require that all pairwise comparisons be orthogonal to one another. It needs to be noted as well that
simply because two or more comparisons are independent does not necessarily guarantee that the #-
or F-tests on these comparisons are likewise independent. It simply means that each contrast is pro-
viding us with unique information with regards to tested hypotheses. For a discussion of this issue, see
Hays (1994).

3.13.2 Independent Samples ¢-Test as a Linear Contrast

The observant reader may have noticed at this point that an independent-samples #-test is actually a
special case of a more general linear contrast. This intuition is correct. To demonstrate such, we per-
form a t-test and a linear contrast on the hypothetical data featured in Table 3.5.

The contrast of interest to us in an independent-samples #-test is to compare group 1 (coded as 0) on
X to group 2 (coded as 1). Our contrast is thus of the kind, C; = (¥, —7,), where the corresponding
weights we will assign to these means are 1 and —1 respectively. Any other positive and negative
balance of weight coefficients would have worked as well such as 2, -2, 3, -3, etc. We compute the
mean for group 1 to be 3.2 and the mean for group 2 to be 12.4. Weighting the two means, we obtain:

J
C,'=C1y1 + ... +ijj = Zijj
j=1

(1)(3.2) + (- 1)(12.4)
=-9.2.

Our obtained value of the contrast is —=9.2. We next evaluate as t:

Ci-C;
=

Ga_

TABLE 3.5 Hypothetical Data on Dependent
Variable Y and Independent Variable X

0 W N A~ N~
—_——— e OO O OO | A
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for which 620 and 64 are equal to:

=29/5=58
G¢, =58
= 2.408.

and where

SS error = ZZ(ylj —y.)z
J i

=116.0

and so

11
MS error = SOl _ o 16
N-J ¢ 8

To compare the above contrast to ¢, we now compute a # statistic, for which our estimated standard error
of the difference, 64, once computed, is equal to 2.408. Our ¢ statistic is therefore equal to

(1 =)
6d,ﬁ"
(3.2-12.4)

2.408
t=-3.82.

=

We evaluate f on N — J degrees of freedom, which for this problem are equal to 10 — 2 = 8. The critical
value for ¢ at a significance level of 0.05 is 2.306 (two-tailed test). Since we do not care about the sign of
the mean difference for the purpose of the contrast (our ordering of coefficients was arbitrary, we could
have just as easily reordered our coefficients as —1 and 1), we consider the absolute value of our
obtained ¢, which is equal to 3.82. Since obtained ¢ exceeds the critical value, we reject the null hypoth-
esis and conclude a statistically significant difference between the sample means. In other words, we
have evidence to suggest that in the population from which these means were drawn, we indeed have a
mean difference.

3.14 POST-HOC TESTS

The contrasts that we have briefly studied are typically useful in situations in which you have strong a
priori suspicion of where mean differences may lay in your data or a theory guiding you on which
contrasts to perform. However, oftentimes, we do not have theory guiding us regarding which contrasts
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to perform and would like to run as many as we can in order to “snoop” the data to see where pairwise
differences may lie.

Recall, however, that with each comparison or contrast we undertake, there is a risk of committing a
type I error. This error rate is known generally as the per comparison type I error rate, generally
denoted as apc. Obviously, when we perform many comparisons on the same data, the per comparison
error rate will add up. The total error rate for a family of comparisons then is known as the family-wise
error rate, generally denoted as ayy. As given in Howell (2002, p. 371), assuming comparisons are
independent, the relationship between apc and agy is the following:

arw = 1- (1 —(){pc)k

where k is the number of comparisons we are carrying out. The relationship is not quite equal to a direct
sum but is still relatively high. For instance, for the situation in which we are carrying out k =10
comparisons, each at apc = 0.05, aFy is estimated to be

apw = 1= (1—apc)*
=1-(1-0.05)"
=0.40

What the number of 0.40 is telling us is that across 10 comparisons, each performed at apc = 0.05, the
probability of committing at least one type I error in this family is equal to 0.40. Clearly, this error rate
is unacceptably high.

What we would like to be able to do is run our 10 comparisons, but keep @y at a nominal level such
as 0.05. How can this be done? One easy way to ensure this is to simply perform each pairwise test at a
lower level of significance by simply dividing azy by the number of comparisons ¢ we wish to per-
form. That is:

arw

Notice that what we have done is slice up axy into ¢ component parts. For instance, for the case in
which we are performing 10 comparisons, our computation would be

arw 0.05
— = —— =0.005
c 10

This would mean that we would be testing each comparison at 0.005. This adjustment to ap¢ in which
we divide a nominal azy by the number of comparisons is known as the Bonferroni correction.

Note that for our example at least, our corrected apc yields an extremely small  level, and hence for
each comparison, we have very little power to reject a null hypothesis under this modification. If the
number of comparisons were much smaller, say 3, then applying a Bonferroni correction would still
keep oy at anominal level yet not at the expense of that significant of a decrease in power to reject null
hypotheses for each comparison, since,

0.05
aw _ 220 0.0167
c 3
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Hence, it is clear that this intuitive way of keeping ary at a nominal level by dividing by c is probably
best applied in situations where the number of comparisons is relatively small or one desires setting apc
at a very low and conservative level in the case of many comparisons. For this reason, the Bonferroni
correction should be used judiciously and with some judgment.

3.14.1 Newman-Keuls and Tukey HSD

There exist a significant number of post-hoc tests one may use as data snooping procedures following
the analysis of variance. We certainly cannot discuss all of them, nor is doing so a productive use of our
time unless we aspire ourselves to be post-hoc experts. What is useful, however, is to survey a few
post-hocs for the purpose of learning how these procedures generally work.

The next post-hoc test we survey is known as the Newman—Keuls method. The Newman—Keuls
generally does not keep the family-wise error rate at a nominal level, and though the test is recom-
mended by very few and there are generally better post-hocs available, we survey it anyway because
in it is the general logic of how many post-hoc tests function. Also, as we will see, a test that is
recommended by many is the Tukey HSD (Honestly Significant Difference), which is related to
the Newman—Keuls procedure.

To illustrate the Newman—Keuls, consider the analysis of variance summary table for the achieve-
ment data, obtained by fit <- aov (ac ~ £.teach, data = achiev), where we generate a factor
for teach by £.teach <- factor (teach), and summary (fit) gives us:

Analysis of Variance Table

Response: ac

Df Sum Sg Mean Sq F value Pr (>F)
f.teach 3 1764.13 588.04 31.21 9.677e-08 **x*
Residuals 20 376.83 18.84

Suppose now we produced a table of ordered pairwise differences between means on the teacher
factor. These are listed in Table 3.6.
Table 3.6 is read as follows:

* Contained in each cell are the pairwise mean differences between groups. For instance, in the cell
representing the joint occurrence of teacher 1 and teacher 2, the number 1.5 is the mean absolute
difference between teacher 1 and teacher 2 (i.e., 72.50-71.00).

* We note that the largest pairwise difference occurs between teacher 1 and teacher 4 (i.e., a mean
difference of 21.67)

TABLE 3.6 Pairwise Differences Between Achievement Means for Respective Teacher Assignments

Teacher 1 Teacher 2 Teacher 3 Teacher 4
71.00 72.50 80.00 92.67 Layer
Teacher 1 (71.00) 0 1.5 9.0 21.67 Layer 3; k=4
Teacher 2 (72.50) 0 7.5 20.17 Layer 2; k=3
Teacher 3 (80.00) 0 12.67 Layer 1; k=2

Teacher 4 (92.67) 0
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» “Layer 1” represents a mean difference of two steps (i.e., k =2), from teacher 3 to teacher 4 (each
level is counted as a step).

» “Layer 2” represents a mean difference of three steps (i.e., k = 3) from teacher 2 to teacher 4 (again,
each level is counted as a step, which is why there are 3 steps here, teacher 2 (step 1) to teacher 3
(step 2) to teacher 4 (step 3).

The logic of the Newman—Keuls test is that pairwise mean differences that are greater steps
apart should be tested against a more stringent significance level than mean differences that
are lesser steps apart. In the opinion of the Newman—Keuls test, if means are more steps apart
than less, their comparison needs to “pay the price” in terms of being harder to claim as statis-
tically significant. That is, they need to be tested against a more stringent significance level than
means that are less distant. For each layer of the test, a different critical value is computed. These
critical values are computed from the studentized range distribution (a statistic called “¢”) and
also incorporates a and degrees of freedom. The critical value for a given layer of the test is

computed:
IMS
layer k=1 = q(g) T ot
ks n

where g, «. v) 1s the critical value for ¢ at significance level o, number of steps k, and degrees of free-
dom for the ANOVA MS error v. All means that are a given number of steps apart are tested at the
critical value for the given layer. One moves diagonally across the table to locate these pairwise differ-
ences that are k steps apart. For example, pairwise differences for teacher 3 versus 4, 2 versus 3, and 1
versus 2 would all be tested against the same critical value at layer 1. Likewise, pairwise differences for
teacher 2 versus 4 and 1 versus 3 would also be tested against the same critical value, this time at
layer 2.
To demonstrate the computation of the critical value for layer 1, we have:

IMS error /18.84
layer 2-1= q(a,k,v) T = q(0.05,2,20) T = 2950(1772) =5.23

The critical value for g for the above is 2.950 (which was found by seeking it out in a sampling dis-
tribution of ¢, available in many introductory statistics texts). The value for the layer is equal to 5.23. If
our obtained pairwise difference meets or exceeds a value of 5.23, we may deem it statistically signif-
icant at the 0.05 level. From our table, we see that 12.67 does exceed 5.23, and hence, the pairwise
difference between teacher 3 and teacher 4 is considered statistically significant. Moving up the table
diagonally, we note as well that the pairwise difference between teacher 2 and teacher 3 (7.5) is also
statistically significant, but that the pairwise difference between teacher 1 and teacher 2 is not (1.5 does
not exceed 5.23).

3.14.2 Tukey HSD

We have seen that the Newman—Keuls test specifies a different critical value dependent on the number
of steps means are apart. Tukey HSD tests each mean comparison as though they were the maximum
steps apart. This produces a much more conservative test than the Newman—Keuls, but as many would
argue, is a better test. For the data in Table 3.6, the Tukey HSD tests each difference at layer =3 (k=4).
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We demonstrate the Tukey test in R for the achievement data:

> TukeyHSD (fit)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = ac ~ f.teach)
Sf.teach

diff lwr upr p adj
2-1 1.50000 -5.5144241 8.514424 0.9313130
3-1 9.00000 1.9855759 16.014424 0.0090868
4-1 21.66667 14.6522425 28.681091 0.0000002
3-2 7.50000 0.4855759 14.514424 0.0334428
4-2 20.16667 13.1522425 27.181091 0.0000006
4-3 12.66667 5.6522425 19.681091 0.0003278

We can see that the mean difference between teacher 2 and teacher 1 is 1.5, which is not statistically
significant (p =0.93) at a conventional level. All other mean differences between teachers are statis-
tically significant at p <0.05. For a detailed discussion of the Tukey test, see Montgomery (2005).

3.14.3 Scheffé Test

The Scheffé test is one of the more stringent, conservative tests of the post-hoc family. Recall what it
means for a test to be conservative. Pragmatically, it means that if you are able to find statistical sig-
nificance using the Scheffé, there is a good bet a difference in means truly exists in the population. It is
definitely the test for hardliners. However, along with its stringent quality comes lower statistical
power. As noted by Kirk (1995), Scheffé controls the type I error rate at or less than agy across all
number of contrasts, not only pairwise.

We demonstrate the Scheffé test in SPSS on the teacher factor:

ONEWAY ac BY teach
/MISSING ANALYSIS
/POSTHOC=SCHEFFE ALPHA (0.05) .

Multiple Comparisons
Dependent Variable: ac Scheffé

(D) f.teach 1 Mean Difference Std. Sig. 95% Confidence Interval
Teach (123)) Error Lower Upper
Bound Bound
1.00 2.00 —-1.50000 2.50610 0.948 -9.1406 6.1406
3.00 -9.00000* 2.50610 0.017 -16.6406 -1.3594
4.00 -21.66667¢ 2.50610 0.000 -29.3073 -14.0261
2.00 1.00 1.50000 2.50610 0.948 —-6.1406 9.1406
3.00 —7.50000 2.50610 0.056 —15.1406 0.1406
4.00 -20.16667¢ 2.50610 0.000 -27.8073 -12.5261
3.00 1.00 9.00000“ 2.50610 0.017 1.3594 16.6406
2.00 7.50000 2.50610 0.056 —0.1406 15.1406
4.00 -12.66667¢ 2.50610 0.001 -20.3073 -5.0261
4.00 1.00 21.66667¢ 2.50610 0.000 14.0261 29.3073
2.00 20.16667¢ 2.50610 0.000 12.5261 27.8073
3.00 12.66667¢ 2.50610 0.001 5.0261 20.3073

“The mean difference is significant at the 0.05 level.
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We see that by the Scheffé, the mean difference between teacher 2 and 3, which was found to be
statistically significant using the Tukey, is no longer statistically significant at 0.05 (p = 0.056). This is
a consequence of Scheffé being a more conservative test.

3.14.4 Other Post-Hoc Tests

In addition to the Newman—Keuls, Tukey, and Scheffé tests discussed, there are a host of other
post-hocs available to researchers. A distinguishing feature of these tests is their power for pairwise
and linear contrasts and their ability to minimize type I error rates across numerous comparisons. Other
relatively popular tests include the Holm test, the Ryan test (REGWQ), and Dunnett’s test. We do not
review these tests here, though the interested reader is encouraged to consult Howell (2002) for a
succinct discussion of the benefits and drawbacks to using these tests. Montgomery (2005) also
provides further discussion. If you understand the logic of post-hoc procedures such as the
Newman—Keuls and Tukey HSD, what is meant by a more conservative versus more liberal test,
and what it means to protect an error rate against a multitude of comparison possibilities, then you
are in a good position to confront any post-hoc test you may come across and know which types
of questions to ask of it. An understanding of post-hoc tests is more important than memorizing a
catalog of them. For the reader interested in a much more thorough and deeper discussion of post-hocs,
consult Hsu (1996) or Miller (1981).

3.14.5 Contrast versus Post-Hoc? Which Should I Be Doing?

After learning about contrasts and post-hocs, students are often still unsure why contrasts are generally
recommended if one has a theoretical planned prediction about a mean difference, but that post-hocs
should be resorted to if one does not have such strong predictions. To help clarify, consider the fol-
lowing three hypothetical sample means:

Now, after seeing these sample means, if I gave you the opportunity to test one pairwise mean differ-
ence such that you wished to maximize your chance of finding statistical significance, which would it
be? You would probably choose the comparisony; = 10 versus y; = 41 since these are the most distant
means. However, did you really make just this comparison? No. Cognitively, when viewing the means,
you made a lot more than just one comparison. Implicitly, you compared y, to y,, ¥; to s, etc. So when
you decided to test y; = 10 versus y; = 41, it would be incorrect to assume this is the only comparison
you would be making. You undoubtedly mentally made a lot more comparisons. The job of post-hoc
tests is to help guard against these many comparisons you have made, even “below the radar” that could
unduly increase the family-wise type I error rate.

Now, pretend for a moment that you had not yet collected the above data, yet based on your the-
oretical prediction and experience in the research area, decided that once the data became available,
you would like to compare y, to ¥,. Note that this is an informed comparison, it is based on your
expertise in predicting which means will be different. In such a comparison, the type I error rate is
equal to whatever significance level you set for the comparison. This is because you are making
the prediction without first looking at the means and so you are not “punished” for snooping the data
and potentially inflating the type I error rate.

To summarize, the critical distinction between a priori contrasts and post-hocs is that if you are able
to make strong theoretical predictions before looking at the data, then contrasts are a suitable option,
so long as you are not exhausting the number of contrasts you do on the same data (otherwise, you are
more of a “snooper” than a prediction-focused scientist). If you look at the data first, then it must be
assumed that you are making a whole lot more comparisons than any specific comparison that you do
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choose to make. In such a case, post-hoc tests are needed to hold you “accountable” for making so many
comparisons and help regulate, or keep, the type I error rate under control. Note that the key distinction is
not when the data are collected. The key feature is whether the data were observed before comparisons
were made or predicted. If one collected data ten years ago but did not look at the data, then performing a
contrast on such data s still acceptable if it is governed by theoretical prediction. As soon as one looks at
the means, however, then one has to assume that virtually all (or at least, many) comparisons have been
made (mentally), and thus enter post-hoc tests to help control the type I error rate.

The issue of a priori versus post-hoc comparisons is a general theme of scientific credibility. If one is
able to predict an outcome before seeing that outcome, the finding is quite impressive. This is the idea
of a priori comparisons and contrasts. On the other hand, if one observes an outcome and then simply
remarks that it occurred, the skill of the scientist is not as apparent. If I hold an apple in my hand and
have a theory that if I let it go mid-air it will drop to the floor, that is one thing. If I let go of the apple in
mid-air and simply record that it fell, without having any a priori prediction that it would fall, that is
quite another.

3.15 SAMPLE SIZE AND POWER FOR ANOVA: ESTIMATION WITH R
AND G*POWER

The concept of power was briefly introduced in Chapter 2. Recall that power is the probability of reject-
ing a null hypothesis given that it is false. In general, increasing sample size per cell (i.e., replicating
units) serves to increase statistical power since it increases degrees of freedom for error (pause for a
moment to consider why this statement is true). We now consider how to estimate statistical power
using software for the one-way fixed effects analysis of variance model. We demonstrate using
R and G*Power.

3.15.1 Power for ANOVA in R and G*Power

Suppose a researcher is interested in testing a balanced one-way fixed effects analysis of variance. The
dependent variable is a continuous variable. The independent variable has five levels. The researcher
sets the type I error rate at 0.05 and desires a minimal level of power equal to 0.90. In R, we can use
pwr.anova.test to estimate power for this situation:

> library (pwr)
> pwr.anova.test (k= , n= , f= , sig.level= , power= )

where, k = number of levels on the independent variable (in the current case, equal to 5), n = sample
size per group; recall for a balanced design, there are an equal number of observations per cell, £ =
expected or minimally-desired effect size, sig.level =significance level for the omnibus F-test,
and power =desired or computed power level for the test.

3.15.2 Computing f

Interpreting f values is awkward and unintuitive. Much more intuitive is to convert these to R* values.
The following is the conversion we need (see Table 3.7):
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TABLE 3.7 R> —f* — f Conversions*

R f? f

0.10 0.11 0.33
0.20 0.25 0.50
0.30 0.43 0.65
0.40 0.67 0.82
0.50 1.00 1.00
0.60 1.50 1.22
0.70 2.33 1.53
0.80 4.00 2.00
0.90 9.00 3.00
0.99 99.00 9.95

“These conversion values were computed in R by the author as follows:

> r_squared <- c¢(.10, .20, .30, .40, .50, .60, .70, .80, .90, .99)
> f squared <- (r_squared)/ (1 - r squared)

> f squared

[1] 0.1111111 0.2500000 0.4285714 0.6666667 1.0000000 1.5000000

[7] 2.3333333 4.0000000 9.0000000 99.0000000

> £ <- sqgrt(f_squared)

> £

[1] 0.3333333 0.5000000 0.6546537 0.8164966 1.0000000 1.2247449 1.5275252
[8] 2.0000000 3.0000000 9.9498744

Suppose for our example that the researcher specifies a minimal effect of interest of R* = 0.10, which
enters pwr . anova. test as an f of 0.33. The computation for sample size is the following:

> pwr.anova.test(k =5, n =, £ = .33, sig.level = .05, power = .90)

Balanced one-way analysis of variance power calculation

k=5
n = 29.25818
£ =10.33

sig.level = 0.05
power = 0.9
NOTE: n is number in each group

The required sample size per group is equal to 29.26. Of course, obtaining “fractions” of partici-
pants or subjects can be somewhat difficult, so we will round up (not down) for an estimated sample
size of 30 participants per group. Even though customarily the rounding of 0.25818 would suggest we
settle on 29 participants per group, recall it is good practice to always round up when estimating
sample size. It is the more conservative estimate for the desired level of power (i.e., it will give
you slightly more power than you have requested if the effect size does turn out as you have estimated).

We perform the same computations in G*Power (Figure 3.2). Notice the identical entries of f, a,
desired power and number of groups on the left-hand side. On the right-hand side, G¥Power computes
the representative noncentrality parameter, along with the critical F statistic required for rejection of the
null hypothesis. A total sample size of 150 is the output, which is, within rounding error, equal to our
computation using R for 30 participants per group (150 = 5(30)). G¥*Power also computes for us the
representative degrees of freedom, 4 for numerator (/ -/ =5-1=4) and N - J =150-5 = 145.

For demonstration, we generate power curves for effect size, f, values of 0.33, 0.63, 0.93, 1.23, and
1.53 (see Figure 3.3).
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Notice also that we requested power estimates from 0.6 to 0.95 in increments of 0.01, and effect size
fvalues beginning at 0.33 in increments of 0.30. For relatively large effect sizes of f=1.23 and 1.53 and
higher, sample size requirements for a given level of power are relatively constant, though still increas-
ing. For a more moderate effect size of f=0.63, sample size requirements increase slightly more steeply
for higher levels of desired power than for lower levels. For a relatively small effect size of f=0.33, a
much larger sample size is required for even low levels of power (e.g., 0.6), and the curve increases
rather dramatically as increased power is desired. Linearity of the curve is sometimes implicitly
assumed when researchers are considering increasing sample size from say, 30 participants to 60. It
is often mistakenly believed that such a doubling of sample size equates to a doubling of power for
a given effect size. But as power curves demonstrate, this is generally not the case.

Recall that anything that significantly lowers MS error usually results in an increase in statistical
power. Hence, in addition to increasing sample size or decreasing the variance of the population
under study, one might also adopt the strategy of including additional factors in the design in an effort
to reduce MS error. Variables that are added into the model for the sole purpose of boosting power and
reducing MS error are generally known as covariates. The analysis of covariance (ANCOVA) is an
extension of the ANOV A model in which covariates are included in an effort to boost statistical power
rather than in specifically studying their effect on the dependent variable. We delay our discussion of
ANCOVA until Chapter 9, where it will be seen that ANOVA and ANCOVA are both best
conceptualized as special cases of the more general linear regression model.

3.16 FIXED EFFECTS ONE-WAY ANALYSIS OF VARIANCE IN R:
MATHEMATICS ACHIEVEMENT AS A FUNCTION OF TEACHER

We now conduct a full fixed effects ANOVA on the achievement data of Table 3.1. We designate
teacher as a factor having levels 1 through 4:

> achiev <- read.table("achievement.txt", header = T)
> f.teach <- factor(teach)
> f.teach

[11] 111 1122222323333 444214A14
Levels: 1 2 3 4

We obtain the mean achievement scores for each of the four teachers:

> tapply(ac, f.teach, mean)
1 2 3 4
71.00000 72.50000 80.00000 92.66667

The grand mean of the data, or, equivalently, because this is a balanced design, the mean of all
means, is computed as:

> mean (ac)
[1] 79.04167

We next obtain the summary table for our ANOVA using aov:

> fit <- aov(ac ~ f.teach, data = achiev)
> summary (fit)

Df Sum Sq Mean Sq F wvalue Pr (>F)

f.teach 3 1764.1 588.0 31.21 9.68e-08 ***
Residuals 20 376.8 18.8

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The above summary table was built under the assumption that population variances are equal. With
areported F stat of 31.21 evaluated on 3 and 20 degrees of freedom yielding a p-value of 9.68e—08, we
reject the null hypothesis of equal population means.

We can obtain sample (or treatment) effects from model . tables in R:

> model.tables (fit)
Tables of effects
f.teach
f.teach
1 2 3 4

-8.042 -6.542 0.958 13.625

We can also use the plot .design function (see Crawley, 2013, p. 238) to visualize the means
relative to the overall grand mean:

> plot.design(ac ~ f.teach)
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We can see from the plot that the means for teachers 1 and 2 are relatively close, whereas the means
for teachers 3 and 4 are quite distant. The horizontal bar just below the 3™ mean is the grand mean of all
observations, which recall is equal to 79.04.

3.16.1 Evaluating Assumptions

Since we have very small numbers per group, it would be very difficult to even attempt to test the
assumption of normality within each level of teacher in any formal way. We will instead generate a
Q-Q plot (Teetor, 2011) for the entire sample to get a rough idea as to whether achievement appears
to be at least approximately normally distributed:

> ggnorm (ac)
> ggline (ac)



FIXED EFFECTS ONE-WAY ANALYSIS OF VARIANCE IN R 135

Normal Q-Q plot Histogram of ac
95 S 6
(]
2 5
€ >
S 85+ g 4
3 )
o - S 3
3 g
g 754 I 2
B - 1
n
65 ¢ 0
T T T T T T T 1
2 1 0 1 2 65 70 75 80 85 90 95

Theoretical quantiles ac

Next to the Q—Q plot is also a histogram (right), obtained using hist (ac). As we can see from
both plots, a perfect normal distribution is not evidenced by any means, though the deviation from
normality, in this case, is likely nothing to be too concerned about as it relates to pushing forward with
the ANOVA (recall again that in a true evaluation of normality, we would have to evaluate each group,
or the residuals of the model; our evaluation here on the total sample is simply for demonstration).
Though graphical displays are often sufficient for detecting gross violations, we could have also per-
formed the Shapiro—Wilk test to evaluate the tenability of the null hypothesis that these sample data
arose from a normal population:

> shapiro.test (ac)
Shapiro-Wilk normality test

data: ac
W = 0.9057, p-value = 0.02842

The test yields a p-value of 0.028, which is statistically significant tested at 0.05, but not statistically
significant when tested at a more stringent significance level, such as 0.01. Since ANOVA is relatively
robust to violations of normality, we carry on with the analysis.

R provides several options for verifying the homogeneity of variances assumption. One can use the
Fligner—Killeen test, Bartlett’s test, or Levene’s test. The Fligner—Killeen, which is a nonparametric
test, is recommended by some (e.g., Crawley, 2013) over Bartlett’s and Levene’s because it is quite
robust against departures of normality:

> fligner.test (ac ~ f.teach, data = achiev)
Fligner-Killeen test of homogeneity of variances

data: ac by f.teach
Fligner-Killeen:med chi-squared = 10.8128, df = 3, p-value = 0.01278

The test rejects the null hypothesis that population variances are equal, which would suggest an
inequality of population variances.
In comparison, we now proceed with Bartlett’s test:

> bartlett.test(ac ~ f.teach, data = achiev)
Bartlett test of homogeneity of variances

data: ac by f.teach
Bartlett's K-squared = 3.8962, df = 3, p-value = 0.2729
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A p-value of 0.2729 indicates insufficient evidence against the null hypothesis of equal population
variances. Consequently, we would not reject the null and could tentatively assume equality of vari-
ance, or at minimum, proceed with our ANOVA.

Next is Levene’s test where we specify center = mean to denote the fact that we want the test
based on means rather than another measure of central tendency (such as medians):

> leveneTest (ac, f.teach, center = mean)

Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr (>F)

group 3 7.671 0.001327 **
20

Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

A p-value of 0.0013 leads us to reject the null hypothesis of equal variances. Hence, two of the three
tests performed suggest we may have a problem with variances. As mentioned, since ANOVA is quite
robust to such a violation, we will proceed with performing the ANOVA with the assumption that the
condition of variances is satisfied, and then will compare results to a model in which we assume var-
iances are unequal. Even under cases where homogeneity of variance is questionable, R gives us the
option of carrying on with the ANOVA by requesting var.equal = FALSE in the oneway . test
function. To demonstrate, we first run the test under the assumption that variances are equal by spe-
cifying var.equal = TRUE:

> oneway.test (ac ~ f.teach, var.equal = TRUE)
One-way analysis of means

data: ac and f.teach
F = 31.2096, num df = 3, denom df = 20, p-value = 9.677e-08

The observed p-value for the analysis is extremely small (i.e., 9.677e-08). We now run the
same ANOVA, but this time, under the assumption that the equality of variance assumption is
not satisfied:

> oneway.test (ac ~ f.teach, var.equal = FALSE)
One-way analysis of means (not assuming equal variances)

data: ac and f.teach
F = 57.3175, num df = 3.000, denom df = 10.419, p-value = 8.982e-07

Notice that for these data, the p-value increased slightly as a result of the assumption not being
recognized (i.e., it rose from 9.677e—08 to 8.982e—07). Hence, even when incorporating a violation
in variances, because we have such a large effect, our ANOVA is still reporting an extremely small
p-value.
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3.16.2 Post-Hoc Tests on Teacher

We already performed the Tukey earlier on these data in our discussion of post-hoc tests
(see Section 3.14.2). For convenience, we reproduce the results of the Tukey HSD test on the teacher
factor:

> fit <- aov(ac ~ f.teach)
> TukeyHSD (fit)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = ac ~ f.teach)

sf.teach

diff lwr upr p adj
2-1 1.50000 -5.5144241 8.514424 0.9313130
3-1 9.00000 1.9855759 16.014424 0.0090868
4-1 21.66667 14.6522425 28.681091 0.0000002
3-2 7.50000 0.4855759 14.514424 0.0334428
4-2 20.16667 13.1522425 27.181091 0.0000006
4-3 12.66667 5.6522425 19.681091 0.0003278

The above results reveal that virtually all pairwise differences may be of interest (i.e., they are asso-
ciated with relatively low p-values) except for teacher 2 versus teacher 1 which yields a value of
p =0.93.

We can easily observe mean differences by plotting our TukeyHSD post-hoc findings through 95%
confidence intervals, where we see the confidence interval for teacher 2 versus 1 (i.e., the first interval
below) includes 0, indicating the null hypothesis should not be rejected, which is consistent with the p-
value we obtained above.

> plot (TukeyHSD (fit))

95% family-wise confidence level
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3.17 ANALYSIS OF VARIANCE VIA R’s Im

We could have also analyzed the achievement data using R’s 1m (“linear model”) function:

> fit.Im <- lm(ac ~ f.teach)
> summary (fit.1m)

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 71.000 1.772 40.066 < 2e-16 **%*
f.teach2 1.500 2.506 0.599 0.55620
f.teach3 9.000 2.506 3.591 0.00183 *=*
f.teach4 21.667 2.506 8.646 3.44e-08 ***
Signif. codes: 0 '***' 0.001 '**' Q.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.341 on 20 degrees of freedom
Multiple R-squared: 0.824, Adjusted R-squared: 0.7976
F-statistic: 31.21 on 3 and 20 DF, p-value: 9.677e-08

The output supplies us with all of the information provided by aov but also much more, including
mean contrasts of interest:

* The intercept value of 71.00 is the mean achievement for students assigned to the first teacher.
R takes this to be the “baseline” group since it is the first category of teacher.

* f£.teach2 represents a mean difference between the first teacher and the second teacher, of 72.5
—71.00 = 1.50.

* f.teach.3 represents a mean difference between the first teacher and the third teacher, of
80.00 - 71.00 = 9.00.

* f.teach.4 represents a mean difference between the first teacher and the fourth teacher, of
92.67-71.00 = 21.67.

* The obtained p-value for the model is identical to that obtained using aov (both are equal to
9.677e - 08).

* R-squared for the model, which for ANOVA, in this case, amounts to ;72, is equal to 0.824, indi-
cating that a whopping 82.4% of the variance in achievement can be explained by mean differ-
ences between these particular teachers (recall it’s a fixed effects model) chosen for the
experiment. We postpone a discussion of Adjusted R-squared until Chapter 7.

3.18 KRUSKAL-WALLIS TEST IN R AND THE MOTIVATION BEHIND
NONPARAMETRIC TESTS

Most of the statistical models surveyed in this book, in one way or another, make distributional
assumptions. For example, in the prior chapter featuring t-tests, as well as this chapter discussing
ANOVA, it has been generally assumed that population distributions and sampling distributions have
been at least approximately normally distributed with no serious violations. As we have seen, the cen-
tral limit theorem aids in assuring in most cases the normality of sampling distributions, and often the
assumption of normality of populations is at least feasible for 7-tests and ANOVA. We have also had to
assume such things as equality of variances, and later in the book, we will learn that regression models
come with them their own set of parametric assumptions that need to verified and satisfied for infer-
ences on parameters to be justified.
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There are situations, however, where we can be fairly confident parametric assumptions are not sat-
isfied, which could, in turn, cause problems for drawing inferences from samples to populations. For
example, sometimes distributions of sample data may be severely abnormal, or have heavy tails that
stretch out to extremes, generating highly skewed data. In such cases, even data transformations may
be hopeless in helping ensure assumptions are met. In other cases, sample size may be exceedingly
small, such as having 5-10 subjects in a #-test, in which case it becomes virtually impossible to assure
ourselves with any kind of certainty that the assumptions underlying the parametric test could ever be
justified, unless of course, we have a priori intimate knowledge of the underlying population distribu-
tions. In most cases, especially with small samples in particular, we do not have this knowledge,
and hence we are left conducting inferences on the parametric model with a high degree of skepticism
that all is in place for inferences to be valid.

There is, however, a potential solution out of this dilemma, and that is to employ in place of a par-
ametric test, a nonparametric method. Nonparametric tests carry with them the advantage of making
virtually no assumptions about the underlying population, and thus are especially useful for sample
data that is severely misbehaving, or data that are very small in number such that we could never know
anyway whether parametric assumptions are satisfied. And though nonparametric tests are themselves
unique in their own way, many parametric tests have nonparametric “equivalents” for which research-
ers can employ either alongside or in replacement of the parametric test. Nonparametric tests can be
especially useful in situations where data (especially for small samples) are in the from of ranks, and in
many cases, nonparametric tests actually work by first translating measurement data into simpler ranks
as part of its procedure.

Though nonparametric tests are useful and we feature demonstrations of a few of them in this book,
it should be recognized that if assumptions of the test are satisfied, then parametric tests will typically
have more power over nonparametric ones, and are usually, therefore, preferred over nonparametric
methods in most, though certainly not all cases (Howell, 2002). Nonparametric tests are also a bit more
“crude” in that, as mentioned, they usually convert continuous data into such things as ranks, which
necessarily causes a loss of information in the data. As an example, if we consider two temperature
ratings of 30 degrees and 20, that distance of 10 degrees between values may be extremely important
for data analysis and be of primary interest to the investigator. However, many nonparametric tests will
simply treat the value of 30 as “first” and 20 as “second” and assign an ordinal ranking to the values
instead of appreciating and recognizing the magnitude of their difference. This is one potential draw-
back to using nonparametric tests, and so before using one, a researcher should seriously contemplate
whether the (pseudo) continuity in one’s data is especially valuable, or whether a more crude ranking
of values is sufficient (or even preferable).

As a quick example of how a nonparametric alternative test can be applied to the achievement data,
we test whether ac is a function of f.teach using the Kruskal-Wallis test, which can be considered the
nonparametric equivalent to the parametric ANOVA featured in this chapter. For details of the test, see
Howell (2002). We conduct the test using kruskal.test:

> kruskal.test (ac ~ f.teach)
Kruskal-Wallis rank sum test

data: ac by f.teach
Kruskal-Wallis chi-squared = 16.2665, df = 3, p-value = 0.0009999

Though reporting a larger p-value than the parametric ANOVA run earlier, clearly, we still have
evidence to reject the null hypothesis that the samples arose from the same population (p = 0.00099).

We can perform a nonparametric post-hoc using the Tukey and Kramer (Nemenyi) test to follow
up on the Kruskal-Wallis. We use the PMCMR package (Pohlert, 2014) in R to conduct the test:
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> library (PMCMR)
> posthoc.kruskal .nemenyi.test (ac, f.teach, method = "Tukey")

Pairwise comparisons using Tukey and Kramer (Nemenyi) test
with Tukey-Dist approximation for independent samples

data: ac and f.teach

1 2 3
2 0.9658 - -
3 0.3054 0.5849 -
4 0.0014 0.0074 0.2117

P value adjustment method: none

Warning message:

In posthoc.kruskal.nemenyi.test (ac, f.teach, method = "Tukey")
Ties are present, p-values are not corrected.

What appears in the above table are p-values, not mean differences. Comparisons between teachers 1
versus 4 and 2 versus 4 yield small p-values (0.0014 and 0.0074, respectively). These represent more
conservative findings when compared to the parametric counterpart post-hoc (Tukey) performed earlier.

3.19 ANOVA IN SPSS: ACHIEVEMENT AS A FUNCTION OF TEACHER

We now present select output for the analysis performed in SPSS. We only briefly discuss the results, as
they for the most part parallel those generated by R. Entered into SPSS, our data file appears as:

ac teach

1 70.00 1.00
2 67.00 1.00
3 65.00 1.00
4 75.00 1.00
5 76.00 1.00
6 73.00 1.00
7 69.00 2.00
8 68.00 2.00
9 70.00 2.00
10 76.00 2.00
11 77.00 2.00
12 75.00 2.00
13 85.00 3.00
14 86.00 3.00
15 85.00 3.00
16 76.00 3.00
17 75.00 3.00
18 73.00 3.00
19 95.00 4.00
20 94.00 4.00
21 89.00 4.00
22 94.00 4.00
23 93.00 4.00
24 91.00 4.00
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We perform the analysis using the following syntax:

UNIANOVA ac BY teach

/METHOD=SSTYPE (2) * requests Type II sums of squares (Type III, the
default in SPSS, would have produced the same output for this analysis)

/POSTHOC=teach (TUKEY SCHEFFE)

/EMMEANS=TABLES (teach) * requests estimated marginal means (i.e.,
the means of each group, in this case)

/PRINT=ETASQ HOMOGENEITY * requests Eta-squared and a test of
homogeneity of variance (Levene's test)

/CRITERIA=ALPHA (.05) * sets the significance level for the F-test at 0.05

Levene’s test suggests the same finding as that found in R, that there is a difference in variances in the
population:

Levene’s Test of Equality of Error Variances”
Dependent Variable: ac
F dfl dr Sig.
7.671 3 20 0.001

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
“Design: Intercept + teach

Tests of Between-Subjects Effects
Dependent Variable: ac

Source Type I Sum of Squares Df Mean Square F Sig.  Partial Eta-Squared
Corrected model 1764.125¢ 3 588.042 31.210  0.000 0.824
Intercept 149 942.042 1 149942.042  7958.003  0.000 0.997
teach 1764.125 3 588.042 31.210  0.000 0.824
Error 376.833 20 18.842

Total 152083.000 24

Corrected total 2140.958 23

“R-Squared = 0.824 (Adjusted R-Squared = 0.798)

The resulting ANOVA table parallels that generated by R (we do not reproduce the Tukey and
Scheffé tests here).

To run a more robust test of means, one less sensitive to model assumptions, we could have run the
Welch test (1951):

ONEWAY ac BY teach
/STATISTICS WELCH
/MISSING ANALYSIS.

Robust Tests of Equality of Means ac
Statistic” dfl df2 Sig.
Welch 57.318 3 10.419 0.000

“Asymptotically F distributed.

Just as we found in R, the null hypothesis is rejected even under the more robust test.
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3.20 CHAPTER SUMMARY AND HIGHLIGHTS

The analysis of variance, or ANOVA for short, is a statistical method useful for partitioning var-
iability in a sample for the purpose of testing null hypotheses about the equality of population
means (fixed effects) or null hypotheses about the extent to which one or more factors account
for variance in a dependent variable (random effects).

The one-way analysis of variance is defined to have a single categorical independent variable
and a single continuous dependent (or “response’) variable.

ANOVA models are usually distinguished between fixed effects, random effects, and mixed
models.

In fixed effects models, the researcher is specifically interested in the levels of the independent
variable chosen for the particular experiment. The specific levels were deliberately chosen.

In random effects models, the researcher is not specifically interested in the levels of the inde-
pendent variable chosen for the particular experiment but is rather most interested in generalizing
these levels to the population of levels from which the sample levels were drawn.

Mixed models contain a blend of both fixed and random effects.

The fact that sample means may differ in a data set is not itself evidence against the null hypoth-
esis. What we ask of the data is the likelihood of such differences in the sample under the null
hypothesis. If such differences are unlikely under the null, then we have reason to reject the null
hypothesis and conclude there to be population mean differences.

The inferential test for ANOVA essentially boils down to a comparison of variances in terms of a
ratio. If between-group variance is large relative to within-group variance, then this may be
taken as evidence against the null hypothesis. The expectation for F under the null hypothesis
is approximately equal to 1.0.

Fixed effects analysis of variance can be understood as an extension of the independent-samples
t-test, or, the independent-samples #-test can be understood as a special case of the wider
ANOVA model.

When we break down a deviation into its constituent parts, the essential goal of ANOVA is obtain-
ing an answer to the question—Why does any given score in our data deviate from the overall
mean? The extent to which these deviations are due to between-group effects rather than within-
group variability is the extent to which we gather evidence against the null hypothesis.

When we square respective deviations, we find that SS total can be partitioned into SS between +
SS within.

The expected mean squares for both between and within suggest that when squared population
effects equal O (i.e., ai. = (), the appropriate denominator for the F-test is that of MS within.

The ANOVA summary table is a convenient way of representing the results of the analysis of
variance.

The assumptions of fixed effects ANOVA, in addition to the fixed nature of the levels chosen for

the experiment, include E(e;) = 0, &; are NI(0,02), "3,, < o0, Cov(eyj, &) = 0, and
2

05 = 02j= 5 = sz: ;- An additional assumption is that the model is correctly specified, which
means that the model at least reasonably accounts for the major sources of variation in the

response variable.

In an experimental design featuring random assignment of subjects to groups, individuals within
each group are not expected to be similar a priori the randomization. However, in nonexperimen-
tal studies, individuals in existent groups usually share characteristics that are similar. That is,
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individuals within groups are usually more alike compared to individuals across groups. This con-
cept generally goes by the name of nesting and is the motivation behind such relatively advanced
techniques as hierarchical and multilevel modeling.

Obtaining a statistically significant ' in ANOVA in no way guarantees a meaningful scientific
finding. Effect size measures are required to assess the degree to which the independent variable
explains variance in the response variable.

Eta-squared is a traditional effect size computed by taking the ratio of SS between to SS total.
A value of 0 indicates zero variance explained. A value of 1.0 indicates 100% of variance
explained.

Omega-squared is an effect size measure used to help correct the overly optimistic estimates
typically provided by Eta-squared. Omega-squared attempts to better estimate the corresponding
effect size in the population, and thus is typically less than Eta-squared.

Computing a t-test via ANOVA is a useful exercise to appreciate the similarities between the two
procedures by noting the relation # = v/F.

Contrasts are useful in providing custom hypothesis tests between pairs of population means.
The independent-samples #-test can be interpreted as an example of a linear contrast.

Post-hoc tests are used to snoop the data following a statistically significant F'in ANOVA. The
objective of a post-hoc test is to help control the family-wise error rate, that is, the error rate
generated by successive tests across the “family” of comparisons. Good post-hoc tests are gen-
erally those that keep the error rate at a nominal level but not at the expense of a significant loss
of power.

The Bonferroni correction divides the family-wise error rate across the number of pairwise com-
parisons one wishes to make. The test quickly loses power as the number of means (and thus com-
parisons) increases.

The Newman-Keuls method, though somewhat unpopular because of its failure to protect fam-
ily-wise error, is nonetheless useful for describing the general logic of a layered test. The Tukey
HSD test is a more common test than the Newman—Keuls and is also more conservative. It is
highly recommended for most cases.

The Scheffé test is a very conservative post-hoc test that protects not only against pairwise com-
parisons but also against all linear contrasts. If one finds a sample difference with the Scheff€, one
can be relatively confident that the difference exists in the population.

Sample size and power can be estimated with relative ease using R or G*Power.

REVIEW EXERCISES

3.1. Give a definition for the fixed effects analysis of variance.

3.2. Compare and contrast a fixed effect versus a random effect.

3.3.  Explain how models in virtually all sciences are not deterministic but rather probabilistic. In
the achievement example discussed in the chapter, what would it mean to say that mathematics
achievement is a true function of teacher? Why is such an ideal likely virtually impossible in
practice?

3.4. Explain why observing differences in sample means does not alone constitute evidence

against a null hypothesis tested in ANOVA. What more information do we require?
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3.5.

3.6.

3.7.
3.8.

3.9.

3.10.

3.11.
3.12.
3.13.
3.14.

3.15.
3.16.

3.17.

3.18.
3.19.
3.20.
3.21.

3.22.
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Compare the equation for an independent-samples #-test to that of an F-test in ANOVA, and
comment on their similarities and differences. How do they both essentially answer a similar
question?

Discuss the importance and significance of the identity
Oy=5.) = (=3;) + (5;-5.)
as it pertains to the logic of ANOVA. Identify each component.
Discuss the effect of squaring deviations in the identity (y;-y.) = (y;-¥,) + (,-5.).

Verbally interpret and discuss the following identity:
J

J n J n
2 _\2 _ 2
D2 =) = D0 =)+ D omi-v)
=1 =1 j
Briefly discuss what role dividing by degrees of freedom has on the sums of squares of
ANOVA. What is the purpose of dividing by degrees of freedom?

Explain why sums of squares are generally additive for balanced designs, but means squares
are not.

What is the approximate expectation of F under a true null hypothesis? Why is this so?
State two ways in which the null hypothesis for ANOVA can be operationalized.
List the assumptions of the ANOVA model.

Define what is meant by a nuisance factor and comment on why randomization does not
guarantee that nuisance factors will be evenly dispersed among treatment groups.

Distinguish between an experimental design versus a quasi-experimental design.

For an experiment in which virtually all variance is accounted for by the treatment effect,
what value of 5 would you expect to obtain? Why?

For an experiment in which virtually none of the variance is accounted for by the treatment
effect, what value of > would you expect to obtain? Why?

Discuss the difference between 7° and »”.
Discuss the purpose of contrasts in ANOVA.
Distinguish between a linear combination and a contrast.

Derive a data set for which the dependent variable is continuous and the independent variable
consists of a three-level grouping variable. Generate the data for which there is much within-
group variability, but very little between-group variability. In such a case, what decision on
the null hypothesis Hy : uy = > = p3 would likely result? Why? Explain.

The analysis of variance was developed primarily to address problems in agriculture, genetics,
and biology. Consider data from R.A. Fisher’s Statistical Methods for Research Workers
published in 1925, the book credited with the first comprehensive introduction to the analysis
of variance. In Table 41, p. 217 (1934 edition), Fisher presents data on soil bacteria in which
soil data was separated into four samples. On each sample, seven plates were inoculated, and
the number of colonies recorded on each plate. The data are reproduced in Table 3.8.
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TABLE 3.8 Number of Bacteria Colonies by Plate and Sample (Fisher, 1925/1934)

Plate Sample Number of Colonies
1 1 72
1 2 74
| 3 78
1 4 69
2 1 69
2 2 72
2 3 74
2 4 67
3 1 63
3 2 70
3 3 70
3 4 66
4 1 59
4 2 69
4 3 58
4 4 64
5 1 59
5 2 66
5 3 58
5 4 62
6 1 53
6 2 58
6 3 56
6 4 58
7 1 51
7 2 52
7 3 56
7 4 54

Source: Fisher (1925, 1934).

Answer the following questions with regards to Fisher’s data:

(a) Is there evidence to suggest that the mean number of colonies differs by plate?
Conduct a one-way fixed effects analysis of variance.

(b) Is there evidence to suggest that the mean number of colonies differs by sample?
Conduct a one-way fixed effects analysis of variance.

Further Discussion and Activities

3.23.

The majority of statistical procedures can be represented through concepts of covariance and
correlation. The analysis of variance, though focusing on mean differences, can nonetheless be
expressed through simple correlational analysis. An excellent and relatively easy read that
describes these ideas is given in Levin et al. (1989). Read the paper and summarize the essential
ideas of how ANOVA can be conceptualized in terms of correlational theory.



FACTORIAL ANALYSIS OF VARIANCE:
MODELING INTERACTIONS

The assignable sources of variation in a manufacturing process may be divided into two categories. First,
there are those factors which introduce variation in a random way. Lack of control at some stage of
production very often acts in this manner, and the material itself usually exhibits an inherent random
variability. The other type of factor gives rise to systematic variation.

(Daniels, 1939, p. 187, The Estimation of Components of Variance)

The researcher of Chapter 3 who studied the effect of melatonin dosage on sleep onset is interested now
in learning whether these effects are consistent across ambient noise levels present during sleep. For
this experiment, the researcher again randomly assigns 25 individuals to a control group, 25 more to a
group receiving 1 mg of melatonin, and 25 more to a group receiving 3 mg of melatonin. In addition,
within each of these conditions, half of the participants receive either no ambient noise or a low amount
of ambient noise at the moment of melatonin ingestion and lasting throughout the night (for instance, a
slight buzzing sound). The researcher would like to test whether sleep onset is a function of dosage,
ambient noise, and a potential combination of the two factors. That is, the researcher is interested in
detecting a potential interaction between dose and noise level. He is only interested in generalizing his
findings to these particular doses of melatonin and to these particular noise levels. Such a research
design calls for a two-way fixed effects factorial analysis of variance.

4.1 WHAT IS FACTORIAL ANALYSIS OF VARIANCE?

In the one-way ANOVA of the previous chapter, we tested null hypotheses about equality of
population means of the kind:

Ho:py =py=p3 =py
Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists,
With Applications in SPSS and R, Second Edition. Daniel J. Denis.
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In the two-way and higher-order analysis of variance, we have more than a single factor in our
design. As we did for the one-way analysis, we will test similar main effect hypotheses for each
individual factor, but we will also test a new null hypothesis, one that is due to an interaction
between factors.

In the two-factor design on melatonin and ambient noise level, we are interested in the following
effects:

* Main effect due to drug dose in the form of mean sleep differences across dosage levels.

* Main effect due to ambient noise level in the form of mean sleep differences across noise
levels.

* Interaction between drug dose and noise level in the form of mean sleep differences on drug not
being consistent across noise levels (or vice versa).

It does not take long to realize that science is about the discovery not of main effects, but of inter-
actions. Yes, we are interested in whether melatonin has an effect, but we are even more interested in
whether melatonin has an effect differentially across noise levels. And beyond this, we may be inter-
ested in even higher-order effects, such as three-way interactions. Perhaps melatonin has an effect,
but mostly at lower noise levels, and mostly for those persons aged 40 and older. This motivates the
idea of a three-way interaction, drug dose by noise level by age. One will undoubtedly remark the tone
of conditional probability themes in the concept of an interaction.

As another example of an interaction, consider Table 4.1 and corresponding Figure 4.1. The plot
features the achievement data of the previous chapter, only that now, in addition to students being ran-
domly assigned to one of four teachers (f . teach), they were also randomly assigned to the study of
one of two mathematics textbooks (£ . text).

What we wish to know from Figure 4.1 is whether textbook differences (1 versus 2) are consistent
across levels of teacher. For instance, at teacher = 1, we ask whether the same textbook “story” is being
told as at teachers 2, 3, and 4. What this “story” is, are the distances between cell means, as emphasized
in part (b) of the plot. Is this distance from textbook 1 to textbook 2 consistent across teachers, or do
such differences depend in part on which teacher one has? These are the types of questions we need to
ask in order to ascertain the presence or absence of an interaction effect. And though it would appear
that mean differences are not equal across teacher, the question we really need to ask is whether these
sample differences across teacher are large enough to infer population mean differences. These ques-
tions will be addressed by the test for an interaction effect in the two-way fixed effects analysis of
variance model.

TABLE 4.1 Achievement as a Function of Teacher and Textbook

Teacher

Textbook 1 2 3 4

1 70 69 85 95
1 67 68 86 94
1 65 70 85 89
2 75 76 76 94
2 76 77 75 93
2 73 75 73 91




148 FACTORIAL ANALYSIS OF VARIANCE: MODELING INTERACTIONS
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FIGURE 4.1 (a)Cell means for teacherxtextbook on achievement. (b) Distances between cell means as depicted
by two-headed arrows. (where f.text is the factor name for textbook and f.teach is the factor name for
teacher).

4.2 THEORY OF FACTORIAL ANOVA: A DEEPER LOOK

As we did for the one-way analysis of variance, we develop the theory of factorial ANOVA from fun-
damental principles which will then lead us to the derivation of the sums of squares. The main differ-
ence between the simple one-way model and the two-way model is the consideration of cell effects as
opposed to simply sample effects. Consider, in Table 4.2, what the two-way layout might look like for
our melatonin example in the factorial design.

We are interested in both row mean differences, summing across melatonin dose, as well as column
mean differences, summing across noise level. We ask ourselves the same question we asked in the
previous chapter for the one-way model:

Why does any given score in our data deviate from the mean of all the data?
Our answer must now include four possibilities:

* An effect of being in one melatonin-dose group versus others.
* An effect of being in one noise level versus others.
e An effect due to the combination (interaction) of dose and noise.

TABLE 4.2 Cell Means of Sleep Onset as a Function of Melatonin Dose and
Noise Level (Hypothetical Data)

Melatonin Dose

Noise Level Omg 1 mg 3 mg Row Means
High 15 11 8 11.3
Low 12 10 4 8.7

Column means 13.5 10.5 6.0 10.0
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FIGURE 4.2 Generic two-way analysis of variance layout. The two-way factorial analysis of variance has
row effects, column effects, and interaction effects. Each value within each cell represents a data point. Row
and column means are represented by summing across values of the other factor. Source: Eisenhart (1947).
Reproduced with permission from John Wiley & Sons.

« Chance variation that occurs within each cell of the design. Notice that this 4™ possibility is now
the within-group variation of the previous one-way model of Chapter 3, only that now, the
“within group” is, in actuality, within cell. The error variation occurs within the cells of a factorial
design.

In the spirit of history, we show an earlier and more generic layout of the two-way model diagramed
by Eisenhart (1947) and reproduced in Figure 4.2, where entries in the cells depict data points for each
row and column combination. Note the representation of row means and column means. These will aid
in the computation of main effects for each factor.

4.2.1 Deriving the Model for Two-Way Factorial ANOVA

We now develop some of the theory behind the two-way factorial model. As always, it is first helpful to
recall the essentials of the one-way model, then extend these principles to the higher-order model.
Recall the one-way fixed effects model of the previous chapter:

Y=y taj+e;

where the sample effect a; was defined as a; = (y ; —y.). The sample effect a; denoted the effect of
being in one particular sample in the layout. Recall that in the one-way layout, > n;a; = 0, which
J

in words meant that the sum of weighted sample effects, where n; was the sample size per group,
summed to zero. For this reason, we squared these treatment effects, which provided us with a measure
of the sums of squares between groups:

SS between = Zn a
J
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TABLE 4.3 Cell Means Layout for 2 x 3 Factorial Analysis of Variance

Factor 2
Factor 1 Level 1 Level 2 Level 3
Level 1 Vi Vi Vik
Level 2 Vi Vi Vi

It turned out as well that the sample effect a; was an unbiased estimator of the corresponding pop-
ulation effect, a;. That is, the expectation of a; is equal to a;, or, more concisely, E(a;) = a;. Recall that
the sample effect represents the effect or influence of group membership in our design. For instance, for
an independent variable having three levels, we had three groups (J = 3) on which to calculate respec-
tive sample effects. In the factorial two-way analysis of variance, we will have more than J groups
because we are now crossing two variables with one another. For example, the layout for a 2 x 3
(i.e., 2 rows by 3 columns) design is given in Table 4.3.

Notice that now, we essentially have six “groups” in the 2 x 3 factorial model, where each combi-
nation of factor levels generates a mean y;, where j designates the row and k designates the column.
The “groups” that represent this combination of factor 1 and factor 2 we will refer to as cells. This is
why we have been putting “groups” in quotation marks, because what these things really are in the
factorial design are cells. The heart of partitioning variability in a factorial design happens
between cells. In addition to defining the sample effects associated with each factor (i.e., a; and
by), we will now also need to define what is known as a cell effect.

4.2.2 Cell Effects
A sample cell effect (Hays, 1994, p. 477) is defined as:

[ab]y = (3 =3--)

and represents a measure of variation for being in one cell and not others. Notice that to compute the
cell effect, we are taking each cell mean y;, and subtracting the grand mean, y.. (we carry two periods
as subscripts for the grand mean now to denote the summing across j rows and k columns). But why do
this? We are doing this similar to why we took the group mean and subtracted the grand mean in a
simple one-way analysis of variance. In that case, in which we computed a; = (y,- - y.), we were inter-
ested in the “effect” of being in one group versus other groups (which was represented by subtracting
the overall mean).

Likewise, in computing cell effects, we are interested in the effect of being in one cell versus other
cells, because now, in the two-way factorial model, in addition to both main effects for row and col-
umn, it is the cell effect that will represent our interests in there possibly existing an interaction between
the two factors. We will need to compute an interaction effect to do this, but getting the cell effect is the
first step toward doing so.

As it was true that the sum of sample effects in the one-way model was equal to 0, > "na; = 0, it will

J

also be true that the sum of cell effects is equal to O for any given sample. That is,

23 bl =373 (55) =0
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TABLE 4.4 Deviations Featured in One-way and Two-way Analysis of Variance

Solution is Squaring

Deviation In Words Deviations
i (y=.) =0 The sum of score deviations around a mean equals 0 i o, _y.)z 50

g: (?_/ 5 ) -0 Th:qiuarlr; (())f row sample mean deviations around a grand mean jg (yi _y“)z >0
ii (Fe=7.) =0 Th; :;rrlne:i zloshé)mn sample mean deviations around a grand izil Fe=7.)> >0
Z”: (yjk 5 ) -0 The sum of cell mean deviations around a grand mean equals 0 i (y]k _y“>2 50

In each case, the sum of deviations equals to 0.

where the double summation represents the summing across k columns first, then across j rows. We can
easily demonstrate this by computing the cell effects for Table 4.2 across each row of noise level. For
the first cell mean of 15 in row 1, column 1, the cell effect is computed as 15— 10 = 5. For row 1,
column 2, the cell effect is 11 — 10 = 1. The remaining cell effects are computed analogously (-2,
2, 0, —6). The sum of these cell effects is easily demonstrated to be zero (5+1+(-2)+2+0+
(—=6) =0). But why would this be true? It is true for the same reason why summing sample effects equals
0. We are taking deviations from the grand mean, and by definition, the grand mean is the “center of
gravity” of all means (in a balanced design). So, it is reasonable then that the sum of deviations around
that value should be equal to 0. To avoid this, just as we did for the ordinary variance and for the var-
iances derived in the one-way analysis of variance, we square deviations.

To better conceptualize deviations from means across the one-way and two-way factorial designs, it
is helpful to compare and contrast the four scenarios featured in Table 4.4.

We can see from Table 4.4 that the solution in each case is to square respective deviations. This is
precisely why in the case of cell effects, as we did for single deviations and mean deviations, we will
likewise square them. We will call this sum of squared cell effects by the name of SS AB cells:

SS AB cells = Z;n([ab]ﬂcy

where n is the number of observations per cell, which we assume to be equal for our purposes.

4.2.3 Interaction Effects

Having defined the meaning of a cell effect, we are now ready to define what is meant by an interaction
effect. These interaction effects are the reason why we computed the cell effects in the first place. The
sample interaction effect for each cell jk is given by

(ab); = interaction effect of cell jk
= cell effect for cell jk —effect for row j—effect for column k
= [ab]y —a;— by
= =5~ (5,=5.) = G4 =5-)
=V =Y. Vit
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A few things to remark about sample interaction effects:

* A sample interaction effect (ab);, exists for each cell in the design.

» The sample interaction effect is defined by the cell effect minus the row and column effects (i.e.,
[abljx — a;— by); this makes sense, since it is reasonable that we are interested in the effect of being
in a particular cell over and above the corresponding row and column effects.

» The sample interaction effect can also be defined as taking the mean of each cell, Viks and sub-
tracting out row means and column means (i.e., y ; and y ;, respectively), then adding on the grand
mean, y .

As we did for sample effects, we will square the interaction effects so that they do not always sum
to zero:

SS A x B interaction = X:Z:n(ab)jk2
7k

4.2.4 Cell Effects Versus Interaction Effects

It is useful at this point to emphasize an important distinction and to clarify something that may at first
be somewhat confusing. We have introduced the ideas of cell effects and interaction effects. It is impor-
tant to recognize that these are not the same things, as evidenced by their different computations. To
help clarify, let’s compare the two concepts:

Cell Effect [ab]; = (¥ —¥-.) versus Interaction Effect (ab) it lably —aj—by

Notice that the interaction effect (ab);, uses the cell effect in its computation. In our operationaliza-
tion of the two-way ANOVA, the cell effect is just the starting point to computing the interaction effect.
The cell effect simply measures the deviation of a cell mean from the grand mean. It is the interaction
effect that takes this deviation value and then subtracts further the row and column effects. Be sure not
to confuse cell effects and interaction effects as they are not one and the same.

4.2.5 A Model for the Two-Way Fixed Effects ANOVA

Having now defined the sample interaction effect, which again, is the distinguishing feature between a
one-way fixed effects model and a two-way fixed effects model, we can now state a general linear
model for the two-way, one that includes an interaction term:

Vi =Y+ aj+ b+ (ab)jk + ek

where q;is the sample effect of membership in row j, by is the sample effect of membership in column k,
(ab)j is the interaction effect associated with the cell jk, and e is the error associated with observation
iin cell jk. In words, what the model says is that any given randomly selected observation from the two-
way layout, represented by y;, individual 7 in cell jk, can be theorized to be a function of the grand
mean of all observations, y.., an effect of being in a particular row j, a;, an effect of being in a particular
column &, by, the effect of being in a particular cell combination, jk, which is expressed via the inter-
action effect (ab)y, and an effect unique to individuals within each cell jk, e;;, for which we either did
not account for in our design, or, we concede is due to random variation which we will call by the name
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of “chance.” Either way, e;; represents our inability to model y;; perfectly in a truly functional manner.
Just as was true for the one-way model, ey is the effect that makes our model truly probabilistic.

4.3 COMPARING ONE-WAY ANOVA TO TWO-WAY ANOVA: CELL EFFECTS IN
FACTORIAL ANOVA VERSUS SAMPLE EFFECTS IN ONE-WAY ANOVA

It is pedagogical at this point to compare, side by side, the one-way model of the previous chapter to the
two-way model of the current chapter. Recall the overall purpose of writing out a model equation. It is
an attempt to “explain,” in as functional a way as possible, the makeup of a given observation. In the
one-way model, we attempted to explain observations by theorizing a single grouping factor along with
within-group variability. Our sample model was

Y=Y +ta;+e;

Notice that for such a model, it was not appropriate to append the additional subscript & to y;; such as in
Yijt» because we did not have “cells” in the one-way ANOVA. Defining the idea of a “cell” did not make
a whole lot of sense, since we were simply dealing with a single grouping variable. Subscripting y;; to
represent individual 7 in group j was enough. Indeed, if we were to “pretend” for a moment that we were
dealing with cells, we could write the one-way model as

(3,-5.) +ej @
[ab] j + ¢€j
Nothing has changed in (4.1) except for equating “groups” with “cells.” Why do this? Simply to note
how the factorial model compares with that of the one-way model. Notice that the difference between
the one-way model and the two-way model in terms of cell effects is that instead of hypothesizing y;; to
be a function of a; =y; —y., we are now hypothesizing y;; to be a function of y; —y... In both cases,
whether a; =y;-y. for the one-way model or [ab] i =Yk —y.. for the two-way model, the total
systematic variation in the data is represented by either of these, depending on whether there
is one factor or two. Sample effects represent the systematic variation in a one-way model,
and cell effects represent the systematic variation in a two-way model. If you understand this con-
cept, then generalizing these ANOVA models to higher-order models (e.g., three-way, four-way, and
potentially higher) will not be intimidating, because you will realize at the outset that the systematic
variation in the entire model is “housed” in the cell effects, regardless of the complexity of the model.
To reiterate, we can say as a general principle of fixed effects analysis of variance models that

In the fixed effects analysis of variance model, the systematic variation is housed in the cell effects. In
the special case where we have only a single independent variable, the cell effects are equivalent to the
sample (group) effects.

4.4 PARTITIONING THE SUMS OF SQUARES FOR FACTORIAL ANOVA:
THE CASE OF TWO FACTORS

Just as we did for the one-way model, we will now work out the partition of the sums of squares for the
two-way factorial model. Remember, the reason why we are partitioning “sums of squares” and not
simply unsquared effects, is because if we attempted to partition unsquared effects (e.g.,
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aj=y;=y.or [ab] ik = Vjx —¥--), these effects would always sum to O (unless of course there is no var-
iation in the data, then whether squared or not, they will sum to 0 regardless).

When we partitioned the sums of squares for the one-way model, we started out by hypothesizing
what any single observation in our data, y;, could be a function of. After a process of deliberate rea-
soning, we concluded that y; was a function of between variation and within variation. Upon squaring
deviations, we arrived at the identity:

EJ: 2"3 (=3 = i:nj(?j—y.)z + EJ: E"I (=)’

j=1 i j=1 i

which we called the partition of sums of squares for the one-way fixed effects analysis of variance
model. We called it an “identity” simply because it holds true for virtually any given data set having
a continuously measured dependent variable and a categorically-defined independent variable.

Likewise, in the two-way factorial model, we again want to consider how the partition of the sums of
squares works out and can be derived. As we did for the one-way model, we follow a very logical
process in determining this partition.

4.4.1 SS Total: A Measure of Total Variation

Just as we did in deriving the total sums of squares for the one-way model, instead of simply consid-
ering the makeup of y;;, we will consider the makeup of deviations of the form y;; — .., which when
we incorporate into the model, we obtain, quite simply:

Vi = Y- + [ably + e

Vi =Y = [ab]jk + eijk

Notice that similar to how we did for the one-way model, in which (y,-j—y.) =a; + e;was true,
for the two-way model, we likewise claim that the makeup of any given observation is of two “things,”
systematic variation as represented by [ab]; (in the one-way model the systematic variation was
represented by a;), and random variation as represented by e;; (in the one-way model the random
variation was represented by e; — note the subscripts, we did not have cells in the one-way, so we
did not need to append the subscript k). Instead of squaring a; + e;; as is done in the one-way model,
we will square [ab]; + ;. When we take these squares and sum them, as given in Hays (1994, p. 481),
we get:

SStotal = (ab), + e,-jk)z
= Zj:;;([ab]fk + 2ab] e + €3,
S (e - T
S T
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Notice that the term 23 3 “[ab|; > ~e;i dropped out of the above summation (3" line of the equation).
7K i

‘What happened to this term? Since the cell effects [ab];, sum to zero and the errors within any given cell
2_¢;jx sum to 0, the term ZZZk:[ab] jk2_eijk drops out of the derivation, since 222};[@[7] je2_€iik = 0.
i J i J L

Hence, we are left simply with:
sl = 35 ok + 33
j ok Jok i

What we have just found is that the total variation in the two-factorial model is a function of the sum of
squared cell effects and random variation. Once we have accounted for the systematic variation in
[ab]jx, then whatever is leftover must be random error, or otherwise denoted, the variation within the
cells. Also, because the cell effects, [ab]j, contain all systematic variation, it makes sense that within
these cell effects will be “hidden” a main effect for A, main effect for B, and interaction effect, A x B.
That is, if you take the sums of squares for a cell effect which by itself contains all the systematic var-
iation, it seems reasonable that we could break this down further into the SS for factor A, SS for factor
B, and the SS for the A x B interaction, such that:

SS AB cells = SS factor A + SS factor B + SS A x B interaction
If we put these two partitions together, we end up with the following identities:

SS total = SS AB cells + SS within cells

SS total = SS factor A + SS factor B + SS A x B interaction + SS within

In considering now the main effects for the two-way factorial model, as in the one-way ANOVA, the
sample main effect of any level j of the row factor A is givenby a; =y ; —5.., where g, as before repre-
sents the effect for a particular row, and y ; —y.. represents the given row mean minus the grand mean
of all observations. As in the one-way, the sum of the fixed sample main effects for factor A will be 0,

>-a; =0. Notice again here we are specifying the word “fixed.” This is because for a fixed effects
J
model, the sum of effects for a main effect sum to 0. However, in the following chapter, when we

consider random and mixed models, we will see that this is not necessarily the case for certain factors.
This will have important implications in how we construct F-ratios.

The sums of squares for factor A is thus Y Kn (a j)z, where K is the number of columns, and # is the
J

number of observations per cell. For the column main effect (i.e., factor B), the sample main effect is
by =y, —Yy.., where y, is the sample mean corresponding to a particular column k. As with the sample

effects for a;, the sum of the column sample effects, by, will also be 0, > by = 0. The sums of squares for
k

factor B is thus 3 Jn(by)*, where J is the number of rows.
k

4.4.2 Model Assumptions: Two-Way Factorial Model

The assumptions for a two-way fixed effects analysis of variance are similar to those of the one-way
analysis of variance model, only now, because we have cells in our design, these are the “groups” about
which we have to make assumptions when involving the interaction term:
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* E(g;) =0, that is, the expectation of the error term is equal to 0. Note the extra subscript on e;; to
reflect not only the j” population but also the jk™ cell.

&y are NI (0, 62), that s, the errors are normally distributed and independent of one another. Just
as we did for the one-way, we are using &;; to denote the corresponding population parameter of
the sample quantity e;.

2

* 0, <o, that is, the variance of the errors is some finite number (which, as was true in the one-
”

way model, implies that it is less than infinity).
. 6]2,( -1 = ajzk = G}k - jx- that is, the variances across cell populations are equal (recall this is called
the homoscedasticity assumption).

* Measurements on the dependent variable are observed values of a random variable that are dis-
tributed about true mean values that are fixed constants. This is the same assumption made for the
one-way model in which we were interested in the fixed effects. This assumption will be relaxed
when we contemplate random effects models in chapters to come.

We could also add the assumption, as we did for the one-way model, that the model is correctly
specified, in that there are reasonably no other sources acting on the dependent variable to an appre-
ciable extent. If there were, and we did not include them in our model, we would be guilty of a spec-
ification error or of more generally misspecifying our model.

4.4.3 Expected Mean Squares for Factorial Design

In deriving F-ratio tests for the various effects in the two-way ANOVA, just as we did for the one-way
ANOVA, we need to derive the expectations for the various sums of squares, and then divide these by
the appropriate degrees of freedom to produce a mean square for the given factor or interaction. Hence
the phrase, “expected mean squares.” We adapt the following derivations from Hays (1994),
Kempthorne (1975), and Searle, Casella, and McCulloch (1992). We begin with the expected mean
squares for within cells (Hays, 1994, p. 485):

E(SS within cells) = E

D WHENY

= ZJEJ:E Z(yijk—ijk)zl 4.2)
=> > (n=1)s;

=JK(n—-1)o>

Why does > > E lz (yijk—yjk)zl equal >.>"(n—1)6>? To understand this, recall in the one-way
ko j k Jj

i

layout:

E (SS within) = E [ZZ(y, -y j)zl

j i
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However, for any given sample group j, we know that we have to divide SS by n — 1 in order to get an

. . . . N2 ,
unbiased estimate of the error variance. That is, we know that £ lzz (yij -y j) ] does not “converge’
7

to o2, but that E

l

—\2
Z(V”Z:—j{)] does. So, we can rearrange this slightly to get

ES(3) = (n-1)e?

Finally, how did we go from . (n—1)6? = JK(n—1)0? in the final term of (4.2)? By the rules of
k Jj

J K J

summation, Yy =Jy, and so Y >y = JKy, in which in our case (n—1)c? acts as “y.”
J L

Now that we have the expectation for SS error, that of JK (n - 1)o?2 of (4.2), let us consider what we

have to divide this sum of squares by to get MS error. That is, we need to determine the degrees of

freedom for error. Since there are J x K cells, we will lose 1 degree of freedom per cell, which gives

us degrees of freedom = JK(n —1). So, MS error is equal to:

SS
MS error = 5 eror.
JK(n-1)
_JK(n-1)o?
~ JK(n-1)
= o’
That is, as was the case in the one-way ANOV A, MS error is simply equal to the error variance alone in
a two-way fixed effects ANOVA.

What about the mean square for factor A? When determining an appropriate mean square for any
term, recall that it is essential to consider what goes into the numerator. For the error term, as we just
saw, all that goes into the calculation of error is simply ¢2. When considering the effect for factor A, we
need to recall that in any given row J, both the column effects b, and the interaction effects sum to 0.
That is, > by = 0 and > _(ab); = 0. Notice that we are summing over k columns to get the row effect.

k k ‘

Why is this important? It is important because it tells us what we can leave out of the mean square for
factor A. Because we know ) by = 0 and > _(ab); = 0, we become aware that these terms will not be
k k

part of the mean square for factor A. If you prefer, we might say they will still be part of the term, but
since they sum to 0, why include them in the mean square for factor A at all? Both ways of thinking
about it gets us to the same place in that we do not have to incorporate them when computing our mean
squares.

Recall that the sums of squares for factor A are given by

KnZai = an (y i —y..)z
J J

Given this, and the fact that > Jbx = Oand ) (ab),, = 0, the expectation for MS factor A in which factor
3 k

A is fixed, is:
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KnZazj
.

J-1

EMSA) =0’ +

In words, the expectation is equal to error variance, of, plus a term containing variability due to factor

KnZaé
A, ﬁ Given the expected mean square, we would like to produce an F-ratio to test the main effect
for factor A of Hy: a; = 0 versus H, : a; # 0 for at least some population as specified by the levels of

factor A. If there is absolutely no effect, we will have:

Kn>"0
EMSA) = 6> !
(MSA) =02 + ——
and hence
E(MSA) =02

And so it is easy to see that the following F-ratio will be a suitable one for testing the effect due to
factor A:

_ MSA
~ MS error

onJ—1and JK(n — 1) = N — JK degrees of freedom. That is, in the two-way fixed effects analysis of
variance, MS error is the correct error term for testing the effect of factor A.
A similar argument applies to the factor B mean square. Since  Sa; = 0 and }_(ab); = 0, we will
J J

only expect variability due to that in columns when considering factor B, since the effects for A and
interaction effects will both sum to O in the fixed effects model we are currently considering (they will
not necessarily in random and mixed models of the following chapter). Therefore, the relevant expec-
tation is:

In3 Py
k

E(MSB) =06 +
(MSB) =07 + -

where similar to the case for factor A, the term JnZﬂz simply comes from the derivation of the sums of
k

squares for factor B, that of:
SSB=JnY bi=Jny (3,-5.)
k J
Under the null hypothesis, it will be the case that ﬂ% =0, and so we are left with o>. Hence, the

appropriate F ratio is:

_ MSB
" MS error
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TABLE 4.5 ANOVA Summary Table for Two-Way Factorial Design

Source Sums of Squares df Mean Squares F

A (rows) SSA J-1 SS AlJ -1 MS A/MS error

B (columns) SSB K-1 SSB/K -1 MS B/MS error
AxB SS AB cells—-SSA-SSB J-1D(&K-1) SSAxB/(J-1)K-1) MS A xB/MS error
Error SS total-(SSA + SSB+SSAxB) N-JK SS error/(N — JK)

Total SS total N-1

on K — 1 and JK(n — 1) = N — JK degrees of freedom. That is, in the two-way fixed effects analysis of
variance, MS error is the correct error term for testing the effect of factor B.

Finally, what of the expected mean squares for interaction? In generating the mean square, we fol-
low a similar argument as when producing the terms for factor A and factor B. That is, we ask our-
selves, what went into the interaction term? Well, we know that for the sample cell effect,
[ab]j, we saw that it was composed of variability due to factor A, factor B, and the A x B interaction.
What goes into the interaction term (ab);; is simply variability due to an interaction between factor
A and factor B. Thus, for the interaction, we have:

nz;@’ﬁ)?k

E(MS interaction) = o> + m

If the interaction effects end up being 0, that is, if nZZ(aﬂ)fk =0, then we will wind up with simply 2.
7k

Hence, the appropriate F-ratio is MS interaction/MS error on (J — 1)(K — 1) and JK(n — 1) = N - JK
degrees of freedom. The summary table for the two-way factorial design is given in Table 4.5.

4.4.4 Recap of Expected Mean Squares

Recall that the practical purpose behind deriving expected mean squares, whether in the one-way
or higher-order ANOVA models, is to be able to generate meaningful F-ratios and test
null hypotheses of interest to us. In our discussion of mean squares, we have justified the use
of F-ratios for testing the main effect of A, main effect of B, and the interaction of A x B. Notice
that in each case, MS error is the appropriate denominator in the fixed effects model of analysis of
variance. When we consider random and mixed effects models in chapters to follow, we will see
that, and more importantly understand why, MS error is not always the appropriate denominator
for testing effects.

4.5 INTERPRETING MAIN EFFECTS IN THE PRESENCE OF INTERACTIONS

Typically, if one has found evidence for an interaction in an ANOVA, one can still interpret main
effects, so long as one realizes that the main effects no longer “tell the whole story.” As noted by
Kempthorne (1975, p. 483), however, “the testing of main effects in the presence of interaction, with-
out additional input, is an exercise in fatuity.”
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As an illustration, suppose the researcher investigating the effect of melatonin did find an effect, but
that the drug was only truly effective in conditions of very low noise. If ambient noise is elevated,
melatonin no longer reduces sleep onset time. In other words, an interaction is present. In light of this
interaction, if we interpreted by itself the effect of dosage without also including noise level in our
“story,” then we would be potentially misleading the reader who may mistakenly conclude taking mel-
atonin could help him get to sleep faster even if in a college dormitory (which is relatively noisy, even at
night). The take-home message is clear—if you have evidence for an interaction in your data, it is
the interaction that should be interpreted first. Interpreting main effects second is fine, so long as
you caution your reader that they do not tell the whole story. The more complete story is housed in the
interaction term.

4.6 EFFECT SIZE MEASURES

Recall that for the one-way fixed effects analysis of variance model, we computed

>ni(5;-5)
=

j
J n 2
> 2 (=7
=5

as a measure of effect size in the sample. It revealed the proportion of variance in the dependent variable
that was accounted for by knowledge of the independent variable.

In the factorial design, we can likewise compute 77, but this time for each factor and interaction. That
is, we will have, for respective main effects and interaction,

) SSA SSB ) SSAxB
My = N = MAB = QQimel
SS total SS total SS total

Each of these, as was true for the one-way model, will give us an estimate of the variance explained in
the dependent variable given the particular source of variation. As was true for the fixed effects model,
these measures of 7 are all descriptive measures of what is going on in the particular sample. Measures
of 5? are biased upward, and hence the true strength of association in the corresponding population
parameters is usually less than what values of 7> suggest.

In factorial designs, since we are modeling more than a single effect, one can also compute 172,
defined as:

SS effect
SS effect + SS error

2 —
Mpartial =

A look atn3,,., reveals that the denominator contains not the total variation as in n*, but rather SS for
the effect we are considering in addition to what is “left over” from the ANOVA in terms of error. For
the one-way ANOVA, 172 = ’ﬁ?am‘ar Some authors (e.g., see Tabachnick and Fidell, 2007) recommend
the reporting of 73, for the reason that the size of #> will depend on the complexity of the model.
That is, for a given effect, #” will typically be smaller in a model containing many effects than
in a simpler model as a result of the total variation being larger in the former case. In the case of
N3, WE are not allowing all of these effects to be a part of our denominator, and so 73,,;.» all else
equal, will be greater than 7°.

Analogous to the one-way model, w” can also be computed in factorial models such that it provides
a better approximation of the strength of association in the population and yields a more accurate
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estimate compared to 5. Estimates of w” can be obtained for both main effects and interactions, though
@’ is less common in most software than is 7> and #3,,,,;,,- For derivation and computation details, see
Vaughan and Corballis (1969).

4.7 THREE-WAY, FOUR-WAY, AND HIGHER MODELS

The cases of three or more independent variables are a natural extension of the case for two. The only
difference in terms of the partition is that in higher-order models, in addition to subtracting out
SS A and SS B, etc., (depending on how many factors we have) from the cells term, we also need
to subtract out all two-way interaction terms as well, since they are also naturally “part” of the cells
term. Hence, for a three-way model, we would have:

SSA x B x C = (SSABC cells) - (SSA) - (SSB)— (SSC) - (SSA x B) = (SSA x C) - (SSB x C)

This is nothing new. The principle is the same as for the two-way. Because cell terms contain all sys-
tematic effects in an experiment, we need to subtract all effects that may have “gone into” this term.
This includes main effects and two-way interactions, which is why we include them in the subtraction.

4.8 SIMPLE MAIN EFFECTS

Given the presence of an interaction, the examination of simple main effects allows us to study the
effect associated with some level of a given factor when the level of another factor is prespecified. We
will usually want to perform simple effects analysis for any statistically significant interaction, and the
precise number of simple effects we perform should align at least somewhat with our theoretical pre-
dictions as to not unduly inflate type I error rates (or at minimum, we could use a Bonferroni-type
correction on apy to attempt to keep the family-wise error rate at a nominal level).

To understand simple main effects, we begin first by reconsidering factor A with Jlevels. Recall that
the main effect associated with this factor in a two-way factorial model is a; =y ;. —y... That is, the
effect a; is defined as the difference between the mean for that particular row, y ;. and the grand mean
of y.. (Recall that the periods following the letters are simply used as “placeholders” for columns k
when considering y ;. and for rows j and columns k when considering the grand mean, y..). In the pres-
ence of a two-way interaction, if we chose only one level k of factor B, and examined only the effects of
factor A within a given level of factor B, each of these effects would be called simple main effects.
They are analogously derived for column effects. They are effects (usually main effects, but as we will
see, they can also be interaction effects in the case of a three-way or higher ANOVA) of a factor at one
level of another factor. They allow us to “tease apart” an interaction to learn more about what generated
the interaction in the first place.

As a visualization to better understand the concept of a simple main effect, consider once more
Figure 4.1 given at the outset of this chapter, only now, with a simple main effect indicated at the level
of the first teacher (Figure 4.3). It is the simple main effect of mean achievement differences on text-
book at the first teacher.

We can define the simple main effect in Figure 4.3 as:

V=V
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Mean of ac

FIGURE 4.3 A simple main effect: Mean difference of textbook at level 1 of teacher.

where y; is the mean for a given textbook cell and y ; is the mean for teacher 1, collapsing across text-
books. We can define a number of other simple main effects:

* textbook 1 versus textbook 2 @ teacher 2
e textbook 1 versus textbook 2 @ teacher 3
* textbook 1 versus textbook 2 @ teacher 4

We could also define simple main effects the other way (though not as easily visualized in
Figure 4.3):

« teacher 1 versus teacher 2 versus teacher 3 versus teacher 4 @ textbook 1
* teacher 1 versus teacher 2 versus teacher 3 versus teacher 4 @ textbook 2

We carry out analyses of simple main effects in software toward the conclusion of the chapter,
where much of this will likely make more sense in the context of a full analysis.

4.9 NESTED DESIGNS

Up to this point in the chapter, our idea of an interaction for the achievement data has implied that all
teachers were crossed with all textbooks. The layout of 2 x 4 (i.e., 2 textbooks by 4 teachers) of both
Table 4.1 and Figure 4.1 denotes the fact that all combinations of textbook and teacher are represented
and analyzed in the ANOVA.

Nesting in experimental design occurs when particular levels of one or more factors appear only
at particular levels of a second factor. For example, using the example of teachers and textbooks, if
only teachers 1 and 2 used the first textbook but teachers 3 and 4 used the second textbook, then we
would say the factor teacher is nested within the factor textbook (Table 4.6). These types of designs
are sometimes referred to as hierarchical designs (e.g., see Kirk, 1995, p. 476). Though we do not
consider nested designs in any detail in this book, it is important to understand how such designs
(should you be confronted with one) differ from the classical factorial design in which all levels
are crossed. For further details on nested designs, see Casella (2008), Kirk (1995), Mead (1988),
and Montgomery (2005).
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TABLE 4.6 Nested Design: Teacher is Nested Within Textbook

Textbook 1 Textbook 2

Teacher 1 Teacher 2 Teacher 3 Teacher 4

70 69 85 95

67 68 86 94

65 70 85 89

75 76 76 94

76 77 75 93

73 75 73 91
Mean = 71.0 Mean = 72.5 Mean = 80.0 Mean = 92.7

4.9.1 Varieties of Nesting: Nesting of Levels Versus Subjects

It is well worth making another point about nesting. Recall that in our brief discussion of Chapter 3,
nesting was defined as a similarity of objects or individuals within a given group, whether it be those
women receiving mammographies or those exhibiting smoking behavior, or those children within the
same classroom, classrooms within the same school, etc. It should be noted at this point that the nesting
featured in Table 4.6 in relation to factor levels, other than for a trivial similarity, is not of the same kind
of nesting as that of subjects within groups. The word “nesting” is used interchangeably in both cir-
cumstances, and much confusion can result from equating both designs.

To illustrate the important distinction, let us conceptualize a design in which the same subject is
measured successively over time. These are so-called repeated-measures designs, to be discussed
at some length in Chapter 6. Consider the data in Table 4.7 in which rats 1 through 6 were each meas-
ured a total of three times, once for each trial of a learning task. For this hypothetical data, rats were
tested to measure the elapsed time it took to press a lever in an operant conditioning chamber. The
response variable is the time (measured in minutes) it took for them to learn the lever-press response.
We would expect that if learning is taking place, the time it takes to press the lever should decrease
across trials.

In such a layout, it is often said that “trials are nested within subject” (in this case, the rats). That is,
measurements from trial 1 to 3 are more likely to be similar within a given rat than between rats.
If a rat performs poorly at trial 1, even if it improves by trials 2 and 3, we could probably still expect a
relatively lowered performance overall. On the other hand, if a rat performs very well at trial 1, this
information probably will tell us something about its performance at trials 2 and 3. That is, because
observations occur within rat, we expect trials to be correlated.

TABLE 4.7 Learning as a Function of Trial (Hypothetical Data)

Trial
Rat 1 2 3 Rat Means
1 10.0 8.2 53 7.83
2 12.1 11.2 9.1 10.80
3 9.2 8.1 4.6 7.30
4 11.6 10.5 8.1 10.07
5 8.3 7.6 5.5 7.13
6 10.5 9.5 8.1 9.37

Trial means M =10.28 M=9.18 M =06.78
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This is one crucial difference when we speak of nesting. On the one hand, we have nested designs in
which factor levels of one factor are nested within factor levels of a second factor. This is the nesting
featured in Table 4.6. On the other hand, we have nested measurements, in which factor levels usually
remain the same from subject to subject (or “block to block™ as we will see in Chapter 6), but that
several measurements are made on each subject. These two types of nesting are not quite the same.
The only way the two types of nesting do converge is if we consider subject to be simply another
factor. In hierarchical and multilevel models, for instance, we say that students are nested within class-
room. But what are students? In the sense of nesting, students are but another factor of which we sample
many different levels (i.e., many different subjects). Likewise, different classrooms have different stu-
dents, and if there is more similarity among students within the same classroom than between, then we
would like this similarity to be taken into account in the statistical analysis. Nesting of this sort is a
characteristic of randomized block designs and multilevel sampling. We discuss this topic further
when we survey random effects and mixed models in the next two chapters. For now, it is enough
to understand that when the word “nesting” is used, it is important to garner more details about the
design to learn exactly how it applies. Half of the battle in understanding statistical concepts is often
in appreciating just how the word is being used in the given context.

4.10 ACHIEVEMENT AS A FUNCTION OF TEACHER AND TEXTBOOK:
EXAMPLE OF FACTORIAL ANOVA IN R

Having surveyed the landscape of factorial analysis of variance, we now provide an example to help
motivate the principles aforementioned. We once more use the hypothetical achievement data for our
illustration. As discussed, instead of only randomly assigning students to one of four teachers, we also
randomly assign students to one of two textbooks. We are only interested in generalizing our findings
to these four teachers and these two textbooks, making the fixed effects model appropriate.

Our data of Table 4.1 appears below in R:

> achiev.2 <- read.table("achievement2.txt", header = T)
> achiev.2

> some (achiev.?2)

ac teach text

1 70 1 1
2 67 1 1
3 65 1 1

First, as usual, we identify teacher and text as factors:
> attach(achiev.2)
> f.teach <- factor(teach)
> f.text <- factor (text)

We proceed with the 2 x 2 factorial ANOVA:

> fit.factorial <- aov(ac ~ f.teach + f.text + f.teach:f.text,
data = achiev.2)
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> summary (fit.factorial)

Df Sum Sg Mean Sqg F wvalue Pr (>F)
f.teach 3 1764.1 588.0 180.936 1.49e-12 ***
f.text 1 5.0 5.0 1.551 0.231
f.teach:f.text 3 319.8 106.6 32.799 4.57e-07 **x*
Residuals 16 52.0 3.3

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

We note that the main effect for teacher is statistically significant, while the main effect for text is
not. The interaction between teacher and text is statistically significant (p =4.57e-07). The identical
model can be tested in SPSS (output not shown) using:

UNIANOVA ac BY teach text
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA (0.05)

/DESIGN= teach text teach*text.

To look at means more closely, we may use the package phia (Rosario-Martinez, 2013), and
request cell means for the model:

> library (phia)
> (fit.means <- interactionMeans (fit.factorial))

f.teach f.text adjusted mean

1 1 1 67.33333
2 2 1 69.00000
3 3 1 85.33333
4 4 1 92.66667
5 1 2 74.66667
6 2 2 76.00000
7 3 2 74.66667
8 4 2 92.66667

We reproduce the cell means in Table 4.8.
Remember, when trying to discern whether an interaction exists, we ask ourselves the following
question—At each level of one independent variable, is the same ““story” being told at each level

TABLE 4.8 Achievement Cell Means TeacherxTextbook

Teacher
Textbook 1 2 3 4 Row Means
1 V=Y =6733 Y3 =Y¥,=69.00 ¥ =y3=8533 y;=y,=9267 y;=y =7858
2 ik =Ya1 =T467 Yy =Y =76.00 Fy =¥3=T467 =y, =92.67 y,; =y, =79.50

Column Ye=y1=71.00 y,=y,=725 y;=y3;=800 y,=y4=9267 7y =79.04
Means
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of the other independent variable? What such a question begs us to do is look at means at the level of
one factor conditioned on levels of the other factor.

For example, examine the mean teacher differences at textbook 1 in Table 4.8. We note the means to
be 67.33, 69.00, 85.33, and 92.67 for the first, second, third, and fourth teachers, respectively. Notice
how these means represent a continuous increase from teachers one through four. This is what we mean
by the “story” being told at the level of textbook = 1. The actual “story” is not the actual values of the
means, but rather the differences between means. That is, the story is the magnitude and direction on
which these cell means differ. We can see the story for textbook = 2 is similar, yet not the same as for
textbook = 1 (for example, from teacher 2 to 3 denotes a mean decrease, not an increase).

Trying to discern all this in a table of cell means is quite difficult, and we are better off graphing
these cell means, which we can do via an interaction plot in R as we did in Figure 4.1 to open this
chapter. We reproduce the plot here:

> interaction.plot (f.teach, f.text, ac)
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©
2 80+
(0]
Q
= 75

70 |

1 2 3 4
f.teach

Be sure you are able to match up the interaction plot with the cell means in Table 4.8. The plot
provides a much better picture of what is really going on in the achievement data than a table of num-
bers only could ever reveal. Is the same mean difference story of textbook differences on achievement
being told at each level of teacher? The plot helps to answer such questions. It would appear from the
plot that for the first and second teachers, textbook 2 is more effective than textbook 1. But for teacher
3, textbook 1 is more effective than textbook 2. That is, there is a reversal of means from teacher 2 to
teacher 3. For teacher 4, it appears that achievement is equal regardless of which textbook is used.

Of course, visualizing mean differences in a plot is one thing and provides strong evidence for an
interaction in the sample data. However, simply because we are seeing that mean differences of
teacher across textbook are not equal is not reason in itself to reject the null hypothesis of no interaction
and infer the alternative hypothesis that there is one in the population from which these data were
drawn. We need to conduct the formal test of significance to know if rejecting the null of no interaction
is warranted.

Always remember that differences and effects in sample data may not generalize to actual differences
and effects in the populations from which the sample data were drawn. This is the precise point of the
inferential significance test and associated p-value, to make a decision as to whether observed differ-
ences or effects potentially seen in the sample can be inferred to the population.
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Recall also that as sample size n — oo, that is, as it grows without bound, even for miniscule
sample effects or sample interaction effects, statistical significance is assured. This may make
it sound like it is sample size that is dictating whether we “find something or not.” And this is precisely
true if we are foolish enough to consider the p-value as the “be all and end all” of things. As we pointed
out in Chapter 2, when interpreting statistical and scientific evidence, the p-value should be used as
only one indicator of the potential presence of a scientific finding. The other indicator is effect size.

To reiterate and emphasize, distinguishing between statistical significance and effect size is not
only a good idea, it is essential if you are to evaluate scientific evidence in an intelligent manner. If
you are of the mind that p-values, and p-values alone, should be used in the evaluation of scientific
evidence, then you should not be interpreting scientific evidence in the first place. Being able to dis-
tinguish between what a p-value tells you and what an effect size tells you is that mandatory. It is not
merely a preferred or “fashionable” custom, it is absolutely necessary for quality interpretation of sci-
entific findings.

Another way to visualize the interaction is through R’s plot.design, where we notice that
means across teacher are quite disperse and means across textbook are quite close to one another:

> plot.design(ac ~ f.teach + f.text + f.teach:f.text, data = achiev.2)
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The plot allows us to see the main effects for teacher and textbook. Recall, however, that in the
presence of an interaction effect, it is the interaction effect that should be emphasized in interpretation,
not the main effects, as these latter effects do not tell us the “whole story.”

4.10.1 Comparing Models Through AIC

A model is considered nested within another model if it estimates a subset of the parameters estimated
in the larger model. Akaike’s information criteria, introduced in Chapter 2, is a useful measure when
comparing the fit of nested models. It can also be used for comparing the fit of non-nested models as
well, however, it is commonly used for comparing nested models. Because the main-effects-only
model can be considered a model nested within the higher-order interaction model, computing AIC
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for each model can also give us a measure of improvement in terms of how much “better” the inter-
action model is relative to the main-effects-only model. We first compute AIC for the main-effects
model:

> fit.main <- aov(ac ~ f.teach + f.text, data = achiev.2)
> AIC (fit.main)
[1] 145.8758

We next compute AIC for the model containing the interaction term:

>fit.int <- aov(ac ~ f.teach+ f.text + £.teach:f.text, data = achiev.2)
> AIC (fit.int)
[1] 104.6656

Recall that a decrease in AIC values denotes an improvement in model fit. The AIC value for the
main-effects-only model is 145.88, while AIC for the model containing the interaction term is 104.67,
which helps statistically substantiate our obtained evidence for an interaction effect.

Collapsing across cells, the sample means for teacher are computed:

> library (phia)

> interactionMeans (fit.factorial, factors = "f.teach")
f.teach adjusted mean std. error

1 1 71.00000 0.7359801

2 2 72.50000 0.7359801

3 3 80.00000 0.7359801

4 4 92.66667 0.7359801

As before, these means for teacher are found by summing across the means for textbook. Are there
mean differences for teacher? Our sample definitely shows differences, and based on our obtained p-
value for teacher, we also have statistical evidence to infer this conclusion to the population from which
these data were drawn. Suppose we decided to not control for per comparison error rate and decided
to simply run independent samples #-tests. In R, we can use the pairwise. t . test function and for
p . adj, specify “none” to indicate that we are not interested in adjusting our per comparison error rate:

> pairwise.t.test (ac, f.teach, p.adj = "none")
Pairwise comparisons using t tests with pooled SD
data: ac and f.teach
1 2 3
2 0.5562

0.0018 0.0072
4 3.4e-08 1.1e-07 6.1e-05

w

P value adjustment method: none
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What is reported in the table are the p-values associated with the pairwise differences. We note the p-
value for comparing teacher 1 to teacher 2 is equal to 0.5562, which is not statistically significant at the
0.05 level. The p-value for comparing teacher 1 to teacher 4 is equal to 3.4e-08, and hence, is statis-
tically significant. The p-value for comparing teacher 2 to teacher 3 is equal to 0.0072 and is also sta-
tistically significant. The remaining p-values for comparing teacher 2 to 4 and 3 to 4 are likewise very
small and hence the differences are statistically significant.

We now perform the same comparisons, but this time using a Bonferroni correction to adjust the
per comparison error rate. We do this by requesting p.adj = “bonf”:

> pairwise.t.test(ac, f.teach, p.adj = "bonf")

Pairwise comparisons using t tests with pooled SD
data: ac and f.teach
.00000 - -

.01095 0.04316
.1le-07 6.4e-07 0.00036

o

w
N OB
[e))

I

P value adjustment method: bonferroni

Though we notice all pairwise differences that were statistically significant (at 0.05) without using a
correction are still significant after using a Bonferroni correction, we note the increase in p-values for
each comparison. Comparison 2 versus 3 now yields a p-value of 0.04316, which for instance, would
no longer be statistically significant if evaluated at the 0.01 level of significance. This is because the
Bonferroni, through its adjustment of the significance level for each comparison, is making it a bit
“harder” to reject null hypotheses in an effort to keep the overall type I error rate across comparisons
at a nominal level.

We can also obtain means for the textbook factor:

\

library (phia)

> interactionMeans (fit.factorial, factors = "f.text")
f.text adjusted mean std. error

1 1 78.58333 0.5204165

2 2 79.50000 0.5204165

Since there are only two levels to the textbook factor, conducting a post-hoc test on it makes no
sense. There is no type I error to adjust since there is only a single comparison. The problem of “mul-
tiple comparisons” does not exist.

4.10.2 Visualizing Main Effects and Interaction Effects Simultaneously

A very nice utility in the phia package is its ability to generate a graph for which one can visualize
both main effects and potential interaction effects simultaneously. We obtain this with plot
(fit .means):

> library (phia)
> plot (fit.means)
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In the quadrants running from top left to lower right are shown the main effects for teacher and
textbook, respectively. In the quadrants running from top right to lower left are shown the sample inter-
action effects for teacherxtextbook. Both of the interaction graphs are yielding the same essential infor-
mation but in the one case (lower left), teacher is plotted on the x-axis while in the other (upper right),
textbook is plotted on the x-axis. In both graphs, an interaction effect is evident.

4.10.3 Simple Main Effects for Achievement Data: Breaking Down Interaction Effects

Recall that the purpose of conducting simple main effects is to break an interaction effect down into
components to better understand it, to learn what is promoting there to be an interaction in the first
place. They are essentially reductions of the sample space in order to zero in on analyses that tease
apart the interaction effect.

Ideally, a researcher should usually only test the simple main effects of theoretical or substantive
interest. Otherwise, the exercise becomes not one of scientific hypothesis-testing but rather one of
data-mining and exploration (and potentially, “fishing”). Data mining and exploration are not “bad”
things by any means, only be aware that if you do “exploit” your data, you increase the risk of com-
mitting inferences that may turn out to be wrong if replication (or cross-validation) is not performed.
If you do decide to test numerous simple main effects, then using a correction on the type I error rate
(e.g., Bonferroni) is advised. At minimum, you owe it to your audience to tell them which findings
resulted from your predictions, and which were stumbled upon in exploratory searches. From a sci-
entific perspective, especially when working with messy high-variability data, the two are not one
and the same.
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We evaluate mean differences of textbook across teacher:

>library(phia)
> testInteractions (fit.factorial, fixed = "f.teach", across ="f.text")

F Test:
P-value adjustment method: holm
Value Df Sum of Sg F Pr (>F)
1 -7.3333 1 80.667 24.820 0.0004071 ***
2 -7.0000 1 73.500 22.615 0.0004299 ***
3 10.6667 1 170.667 52.513 7.809e-06 **x*
4 0.0000 1 0.000 0.000 1.0000000
Residuals 16 52.000
Signif. codes: 0 '***' Q0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R generates the Holm test, which is a multistage test, similar in spirit to the Bonferroni, but in split-
ting up o per comparisons ¢, adjusts ¢ depending on the number of null hypotheses remaining to be
tested (see Howell, 2002, pp. 386-387 for details). The Holm test is thus generally more powerful than
the Bonferroni. The value of the first contrast is the mean difference between textbook 1 versus text-
book 2 at teacher 1 (i.e., 67.33 — 74.67 =—7.33), and is statistically significant. The value of the second
contrast is the mean difference between textbook 1 versus textbook 2 at teacher 2 (i.e., 69.00 —
76.00 =-7.00), also statistically significant. The third contrast is the mean difference between textbook
1 versus textbook 2 at teacher 3 (i.e., 85.33 — 74.67 = 10.67), and the fourth contrast is the mean dif-
ference between textbook 1 versus textbook 2 at teacher 4 (i.e., 92.67 — 92.67 = 0.00). The last of these,
of course, is not statistically significant.

Simple main effects of text differences within each teacher can also be tested in SPSS using:

UNIANOVA

ac BY teach text

/METHOD = SSTYPE (3)

/INTERCEPT = INCLUDE

/EMMEANS = TABLES (teach*text) COMPARE (text) ADJ(BONFERRONI)
/CRITERIA = ALPHA(.05)

/DESIGN = teach text teach*text.

One could also test for corresponding teacher differences within each textbook by adjusting the
above code appropriately (i.e., COMPARE (teach)).
4.11 INTERACTION CONTRASTS
Whereas simple main effects analyze mean differences on one factor at a single level of another factor,
interaction contrasts constitute a comparison, not of means, but of mean differences (i.c., a contrast
of contrasts). That is, they compare a mean difference on one factor to a mean difference on a sec-

ond factor. We can obtain values for all interaction contrasts in one large set:

> testInteractions (fit.factorial)
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F Test:
P-value adjustment method: holm

Value Df Sum of Sg F Pr (>F)
1-2 1-2 -0.3333 1 0.083 0.0256 0.8747843
1-3 1-2 -18.0000 1 243.000 74.7692 1.196e-06 ***
1-4 1-2 -7.3333 1 40.333 12.4103 0.0084723 **
2-3 1-2 -17.6667 1 234.083 72.0256 1.278e-06 ***
2-4 1-2 -7.0000 1 36.750 11.3077 0.0084723 *x*
3-4 : 1-2 10.6667 1 85.333 26.2564 0.0004079 **x*
Residuals 16 52.000
Signif. codes: 0 '***' Q.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The value of the first contrast is the difference between mean differences teacher 1 and teacher 2 for
textbook 1 (67.33 — 69.00 = —1.67) and teacher 1 and teacher 2 for textbook 2 (74.67 — 76.00 = —1.33).
That s, it is the difference —1.67 — (—1.33) = —0.33. This comparison is not statistically significant (p =
0.87). The value of the second contrast is the difference between mean differences teacher 1 versus
teacher 3 for textbook 1 (67.33 —85.33 = —18.00) and teacher 1 versus teacher 3 for textbook 2
(74.67 - 74.67 = 0). That is, it is the difference —18.00 — 0 = —18.00. This comparison is statistically
significant (p = 1.196e-06). Remaining contrasts are interpreted in an analogous fashion.

4.12

CHAPTER SUMMARY AND HIGHLIGHTS

Factorial analysis of variance is a suitable statistical method to test both main effects and inter-
actions in a model where the dependent variable is continuous and the independent variables are
categorical.

The benefit of using factorial ANOVA over separate one-way ANOVAs is the ability to test for
interactions between factors.

Whereas sample effects constituted the basis of the one-way ANOV A model, sample cell effects
constitute the systematic variation in the factorial ANOVA model.

Interaction effects are computed by subtracting row and column effects from the cell effect.
It is important to understand that cell effects are not equal to interaction effects. Rather, cell
effects are used in the computation of interaction effects.

Just as was true in the one-way model, the error term ¢, accounts for variability not explained by
effects in the model. In the case of a two-way factorial, the error term corresponds to within-cell
unexplained variation.

A comparison of the one-way model to the two-way model is useful so that one can appreciate
the conceptual similarities between sample effects and cell effects.

In a two-way model, the sums of squares for cells partition into row, column, and interaction
effects.

The assumptions of the two-way factorial model parallel those of the one-way model, except that
now, errors & are distributed within cells, hence the requirement of the additional subscript .
Expected mean squares for factors A, B, and A x B reveal that MS error is a suitable denom-
inator for all F-ratios.

Interpreting main effects in the presence of interaction effects is permissible so long as one is
clear to the fact that an interaction was also detected. Ideally, interaction terms should be inter-
preted before any main effect findings are discussed.
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* A suitable effect size measure for terms in a factorial model is #7, though it suffers from similar
problems in the factorial model as it does in the one-way model. For a less biased estimate, ” is
usually recommended.

* A simple main effect is the effect of one factor at a particular level of another factor. Simple main
effects are useful in following up a statistically significant interaction effect.

* Interaction contrasts can also be tested in factorial designs. These are comparisons of mean dif-
ferences on one factor to mean differences on a second factor. They are “contrasts of contrasts.”

* Factorial analysis of variance can be very easily performed using R or SPSS. Using the phia
package in R, one can generate useful interaction graphs to aid in the interpretation of findings.

REVIEW EXERCISES
4.1. Define what is meant by a factorial analysis of variance, and discuss the purpose(s) of con-
ducting a factorial ANOVA.

4.2, Explain, in general, what are meant by main effects and interaction effects in facto-
rial ANOVA.

4.3. Invent a research scenario where a two-way factorial ANOVA would be a useful and appro-
priate model.

4.4. Inatwo-way factorial ANOVA, explain the four reasons why a given randomly sampled data
point might differ from the grand mean of all the data.

4.5. Define what is meant by a cell effect, and why summing cell effects will always result in a sum
of zero. What do we do to cell effects so that they do not sum to zero for every data set?

4.6. Define an interaction effect.
4.7. What is the difference between a cell effect and an interaction effect?

4.8. To help make the conceptual link between the one-way model and the two-way, why is it per-
missible (and perhaps helpful) to think of g, as cell effects in y; = . + a; + ¢;? Explain.

4.9. What is the expected mean squares for MS within in the two-factor model? Does this expec-
tation differ from the one-way model? Why or why not?

4.10. What are the expected mean squares for factor A and factor B in the two-way factorial
model? How do these compare to the expectations for the one-way model?

4.11. What is the expected mean squares for the interaction term in the two-way model? Under the
null hypothesis of no interaction effect, what do you expect MS interaction to be?

4.12. In constructing F-ratios, what are the correct error terms for factor A, B, and A x B in the two-
way model? What argument says that this is correct?

4.13. Given the presence of an interaction effect in a two-way model, argue for and against the inter-
pretation of main effects.

4.14. Define what is meant by a simple main effect.

4.15. Discuss how an interaction graph can display a sample interaction, but that evidence might
not exist to infer a population interaction effect.



174

4.16.

4.17.

4.18.

4.19.

FACTORIAL ANALYSIS OF VARIANCE: MODELING INTERACTIONS

Suppose a researcher wants to test all simple main effects in his or her data. Discuss potential

problems with such an approach, and how that researcher might go about protecting against
such difficulties.

In our computation of interaction contrasts, we interpreted two of them. Interpret the remain-
ing interaction contrasts for the achievement analysis:

1-4 1-2 -7.3333 1 40.333 12.4103 0.0084723 **
2-3 1-2 -17.6667 1 234.083 72.0256 1.278e-06 ***
2-4 : 1-2 -7.0000 1 36.750 11.3077 0.0084723 **
3-4 : 1-2 10.6667 1 85.333 26.2564 0.0004079 ***

In our analysis of the achiev.2 data, we computed the simple main effects of textbook across
teacher. Compute and interpret the simple main effects of teacher across textbook.

One way to conceptualize the testing of an interaction effect in ANOVA is to compare nested
models. Recall a model is considered nested within another if it estimates a subset of parameters
of the first model. For the achiev.2 data, though the significance test for interaction indicated the
presence of an interaction, compare the main-effects-only models to that of the model contain-
ing an interaction term through the following:

(a) Test the main-effects-only model for teacher. Name the object main.effects.
teacher in R.

(b) Test the main-effects-only model for teacher and textbook. Name the object main.
effects.textbook in R.

(c) Test the interaction model. Name the object interaction.effect in R.

(d) Compare the models in R using: anova(main.effects.teacher, main.

effects.textbook, interaction.effect). Was adding the textbook and
interaction effect worth it to the model?



INTRODUCTION TO RANDOM EFFECTS
AND MIXED MODELS

This class includes all problems of estimating, and testing to determine whether to infer the existence of,
components of variance ascribable to random deviation of the characteristics of individuals of a particular
generic type from the mean values of these characteristics in the “population” of all individuals of that
generic type, etc. In a sense, this is the true analysis of variance, and the estimation of the respective com-
ponents of the over-all [sic] variance of a single observation requires further steps beyond the evaluations of
the entries of the analysis-of-variance table itself.

(Eisenhart, 1947, p. 4)

The researcher of the previous two chapters, having discovered an effect of melatonin dosage on sleep
onset, now ponders the following question:

Is sleep onset a function not only specific doses, but of melatonin dosage in general? That is, if we
randomly sampled 3 dosages from a population of potential doses, would these differing doses
account for variation in sleep onset?

In this situation, the researcher is not interested specifically in any particular set of doses. Rather, the
researcher would like to draw the conclusion that differing dose level is associated with differing
sleep onset. The effect for dose in this case would be considered a random effect, since levels of dose
are randomly drawn from a wider population of possible doses. The subset of dosages randomly
sampled for the given experiment is used to make a generalization to the population of dosage levels.
This type of design calls for the random effects analysis of variance model.

Upon further thought, not only is the researcher interested in randomly sampling three dosage levels
for use in his experiment, but just as he did for the two-way model of the previous chapter, he also
wants to include ambient noise as a factor in his design. For this factor, he is only interested in
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comparing levels no noise to some noise and hence keeps the factor fixed. He is not interested in gen-
eralizing to the population of noise levels. Hence, the researcher will now have one random factor
(dose) and one fixed factor (noise) in his experiment. This type of design calls for a mixed effects
factorial analysis of variance model.

In this chapter, we survey the random effects and mixed effects analysis of variance models. As we
did for one-way and factorial fixed effects, we develop the conceptual basis and then move on to a
consideration and development of suitable F-ratios to test effects. As we saw in previous chapters,
in a fixed effects model, whether one-way, two-way, or higher-order, expected mean squares revealed
that MS error was the correct error term for testing main effects and interactions. As we will see in the
random effects and mixed models, MS error is not always the most suitable error term for testing
effects. We will survey some of the theories as to why other error terms are more suitable in these
situations. We also provide software examples of random effects and mixed effects models in
R. For fitting mixed models in R, readers should consult Gelman and Hill (2007). Pinheiro and Bates
(2000) provide an excellent treatment of the wider mixed effects model in S-Plus. Demidenko (2004)
provides a very technical treatment along with some applications.

5.1 WHAT IS RANDOM EFFECTS ANALYSIS OF VARIANCE?

Recall that in the fixed effects models studied in previous chapters, what made the effects in these mod-
els “fixed” was the fact that over theoretical repetitions of the experiment, levels of the independent
variable were to remain constant. For example, in the melatonin experiment, the fixed factor of dosage
was so named because the researcher had a specific interest in the dosages tested. The idea of a random
effects model is that over theoretical repetitions of the experiment, treatment effects are no longer
assumed to remain fixed. Rather, treatment effects are considered to be random, and hence over numer-
ous theoretical replications of the experiment (i.e., if we were to perform them), it is reasonable to
assume that we will obtain different treatment levels when sampling each time. In a random effects
model then, the levels of a random factor are randomly sampled from a population of possible
levels that could have been included in the given experiment. When a factor is a random factor,
it implies that there is a probability distribution of levels associated with that factor, and what you
are using in your experiment is but a sample of levels from a wider set of potential levels that could
have been used. In the language of sets, the levels randomly sampled are but a proper subset of the
wider set of population levels. As Casella (2008) noted:

... by the very nature of a random factor, we are not really interested in estimating the levels of the factor that
are in the experiment. Why? Because if the factor is truly random, the levels in the experiment are nuisance
parameters, and only the variance of the factor is meaningful for inference. (p. 101)

Historically, nobody better described the concept of a random effects model than Eisenhart (1947):

... when an experimenter selects two or more treatments, or two or more varieties, for testing, he rarely, if
ever, draws them at random from a population of possible treatments or varieties; he selects those that he
believes are most promising. Accordingly Model I [fixed effects] is generally appropriate where treatment,
or variety comparisons are involved. On the other hand, when an experimenter selects a sample of animals
from a herd or a species, for a study of the effects of various treatments, he can insure that they are a random
sample from the herd, by introducing randomization into the sampling procedure, for example, by using a
table of random numbers. But he may consider such a sample to be a random sample from the species, only
by making the assumption that the herd itself is a random sample from the species. In such a case, if several
herds (from the same species) are involved, Model II [random effects] would clearly be appropriate with
respect to the variation among the animals from each of the respective herds, and might be appropriate with
respect to the variation of the herds from one another. (p. 19)
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The random effects model has sometimes historically been called a components of variance model
(Searle, Casella, and McCulloch, 1992) because unlike the fixed effects model in which the primary
interest is in testing null hypotheses about specific differences between population means, the primary
interest in a random effects model is in estimating variance in the dependent variable that can be attrib-
uted to main effects or interactions. This estimate of variance accounted for will apply not only to the
levels actually sampled but to the larger set of possible levels (i.e., population) from which our sample
was drawn. Hence, in random effects models, our primary goal is to estimate components of variance
rather than test null hypotheses about equalities among population means as was the case in the fixed
effects model.

5.2 THEORY OF RANDOM EFFECTS MODELS

Insight into the random effects model can be gleamed from a brief discussion of its assumptions, and
then by comparing these assumptions to those made in the previously studied fixed effects model.
Recall the one-way analysis of variance model of Chapter 3:

Yy=pta;te;

where y is the grand mean, q; is a population effect estimated by the sample effect y; —y., and ¢;; is the
error associated with observation i in group j. We first list the assumptions for the one-way random
effects model that parallel those of the fixed effects model:

* For any treatment j, the errors g; are normally distributed, with a mean of 0 (i.e., E(e;;) = 0) and
variance ag, which is identical for each possible treatment j. That is, N (0, o’?) Notice that this
assumption parallels the assumption of normality in the fixed effects model.

* The values of the random variable e;; are all independent (as was also assumed in the fixed effects
model). In cases of naturally-occurring, or imposed hierarchical nesting structures, errors within
groups may be related (see Section 5.17 and Chapter 6 for details on blocking and nesting).

. 03% < o0, that is, the variance of the errors is some finite number (which, as was true in the one-
Ui

way and two-way models, implies that it is less than infinity).
. Gfk -1 = ajzk = o-fk - jx- thatis, the variances across cell populations are equal (recall this is called

the homoscedasticity assumption and is essentially the same as in the fixed effects models studied
previously).

Where the random effects model differs from the fixed effects model is in the following
assumptions:

* a; is a random variable having a distribution with mean 0 and variance af\. That is, unlike the
fixed effects model, the sample treatment effects a; are no longer considered to be constant across
replications. Analogous to how we can reach into a bag and take a sample of 10 objects and cal-
culate a sample mean on them, the sample mean can be considered to be a random variable that
can vary from experiment to experiment. We now need to treat a; as possibly fluctuating from
sample to sample or from experiment to experiment. They are no longer fixed as they were in
the fixed effects model.

* The values of the random variable a; occurring in the experiment are all independent of each other
(Hays, 1994).
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¢ Each pair of random variables g; and e;; are independent. That is, the sample effects are independ-
ent of error (or if you wish, the error effects).

Note that the assumptions for a random effects model are for two different distributions, one for the
distribution of the random variable a;, and the other for ¢;;. In the fixed effects model, we only made a
probability assumption about e;;, since we assumed a; to be fixed across theoretical replications. Since
the sample effects were assumed to be fixed, it made no sense to associate them with a probability
distribution.

5.3 ESTIMATION IN RANDOM EFFECTS MODELS

There have been, historically, several different methods of estimating parameters in random effects and
mixed models. The classic method in which one computes expected values of mean squares is his-
torically known as ANOVA estimation (Wu, Yu, and Liu, 2009). This methodology has some flaws
and drawbacks, and in part because of the advances in computing power, other methods of estimation
have come into vogue, which include maximum-likelihood (ML), restricted maximum-likelihood
(REML), and minimum norm quadratic unbiased estimation. Of these, ML. and REML are dom-
inant today in the estimation of variance components in both random effects and mixed models. These
methods of estimation, however, are quite complex and require iteration for their solution.

As we did in prior chapters, we focus on the method of taking expectations (ANOV A estimation),
largely because under certain conditions, results of ANOVA estimation match those of the iterative
methods. Also, a brief study of expectations in ANOVA models, I believe, goes a long way to demys-
tifying the theory behind estimation in general, and opens the door for the reader to understand more
complex methods for estimating parameters.

In what follows then, we begin with the principles developed in previously studied fixed effects
models and derive expected mean squares for random effects models. Our discussion and derivation
is based largely on the work of Hays (1994), Kempthorne (1975), Searle, Casella, and McCulloch
(1992), and Scheffé (1999), who all present thorough accounts of random effects ANOVA.

5.3.1 Transitioning from Fixed Effects to Random Effects

Recall the quantities of MS Between and MS Within as first derived in the fixed effects model of
Chapter 3:

2
>on;(V;-5.)
; N,
MS between = SS between =
J-1 J-1
_\2
. ZZ(yij_yj)
MS within = SS within _ i
N-J N-J

Should we expect derived EMS on these values to be the same in a random effects model? Not nec-
essarily. The reason is that now we are randomly selecting the J different factor levels. They are no
longer fixed. Because of this, as we will see, our expected mean squares will change. They will change
because we are no longer interested in population mean differences. We are interested, rather, in esti-
mating variances.

Because we are randomly sampling the levels of our factor in a random effects model, we can write
the mean of the sample random effects as
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>a;

i

a=

J

where a; is, as before, the sample effect (y i y.) for a given group J =j. This is the mean of the sample
effects for the given experiment we are conducting. Theoretically, if we were to conduct the experiment
again, and obtain new levels, we would obtain another a for that particular experiment, and so on for
additional repetitions of the experiment. What is key to understand here is that this mean will surely
vary from sample to sample due to sampling error (i.c., the error generated simply by the process of
sampling) inherent in the random effect. This is why a; has now become a random variable. We can
have some certainty, however, that the mean effect over all infinite samples that could be drawn
from the population will equal to zero. More formally, we say that the expected value of @ will
be 0, E(a) = 0. However, the value of @ in any given sample need not be equal to the long-run expec-
tation. That is, as noted by Hays (1994, p. 530), “... although the mean of the effects over all the pos-
sible treatments [emphasis added] must be 0, the mean @ of the sample effects present in a given set of
data need not be 0.”

Theoretically then, in any particular experiment, the value of @is not constrained to equal O as it was
in the fixed effects model. The major point is that in any given model with a random effects term (other
than the obvious e;; effect, which is indeed also a random effect), we must somehow deal with the fact
that these treatment effects a; are now random. Being random, their values will undoubtedly
change from experiment to experiment. This change in assumption figures prominently in the der-
ivation of the expected mean squares. We will see that because of this random quality of the sample
effects, the expected mean squares in the random effects model are quite different than in the fixed.
Likewise, null hypotheses will be defined differently as well.

5.3.2 Expected Mean Squares for MS Between and MS Within

Recall once more the reason for taking expectations of mean squares. It is to learn what parameter
our given mean squares is estimating. By calculating EMS, we can then use these to generate suitable
F-ratios to test various effects of interest, whether they be main effects or interactions.

As Hays (1994) does, we begin our derivation by conceptualizing the mean of the errors for any
group j in a one-way random effects ANOVA as

2 ei
—_ 1

Ej—

n

where € is the mean error for a given group, ) ¢;; is the sum of errors across all groups j, and n is the
i

sample size per group (as before, we are assuming a balanced design). If we take this for the entire
sample across J groups, we will have

2.2 e

_ e
TN T

which means that the average overall error is equal to the mean error, €, per group. Given this, and just
as we did in previous chapters where we wrote out model equations, we can write the deviation of any
group mean y; from the grand sample mean y. as

(5,-3.) = (a;-a) + (¢;-¢) (5.1)
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Why does it make sense to write the deviation of a group mean from the grand mean as in (5.1)? This
makes sense, because we just mentioned that we can calculate a “mean of errors” term over all groups.
If this is the case, then it stands to reason that for a given group j, the mean error for that particular group
minus the overall mean error for the entire data will give us the “effect” of error for that particular
group, just as (y j —y.) gives us the sample “effect” of being in a particular group j. Notice that the
sum of effects for (a j —5) will sum to 0, and the sum of effects for (E j —E) will also sum to 0; so,
as usual, we take the squared deviations, otherwise the entire right-hand side of (5.1) will always
sum to zero (this idea of the sum of unsquared effects always equaling zero should be becoming famil-
iar territory by now). Squaring (5.1), summing, and taking expectations, we get (Hays, 1994, p. 531):

E

Z(i;—y.)Z] - E[Z(a_,—E)Z] + ElZ(zj_z)Z] 5.2)

J J J

From (5.2), we have the expected mean squares for SS between:

E[Z(y,-—y-)zl =E [Z(“f—“)zl tE [2(61‘6)2] (5.3)

j j j
E(MS between) = no3 + 6~

where n is the number of subjects (or objects) per group, o7 is the variance attributable to varying levels
of factor A, and 03 is the variance of the error. That is, the sum of squares for between is equal to a
source of variability for factor A, no3, and a source of variability represented by the error term, ¢2.

The expectation for error, as was true for the fixed effects model, is the average error per group:
o2
E(MS within) = 27@ = o’

That is, MS within, just as was the case for the fixed effects ANOVA, is an unbiased estimate of error
variance, and only error variance.

5.4 DEFINING NULL HYPOTHESES IN RANDOM EFFECTS MODELS

In the random effects model, null hypotheses are stated differently than in a fixed effects model. A null
hypothesis in a random effects model is not really about means. It is more about variances. Or to be
even more precise, variance components. The null hypothesis for the one-way random effects model
is given by

H0:6i=0

where 67 is the variance attributable to differing levels of factor A. If changing levels of the factor is not
associated with any change in the dependent variable in our sample, then it stands that the variance
explained, sampling error aside, should equal to 0. And since the purpose of conducting the investi-
gation is usually to show that varying levels of the factor is associated with variance explained in the
dependent variable, our alternative hypothesis is given by:

H|26i>0
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Notice that the alternative hypothesis is specified in terms of a positive value. The greater than sign
denotes that o-i cannot be zero or negative given a rejection of the null hypothesis. This is reasonable,
since we know variance, by definition, is a positive quantity. If there are treatment effects, either for
those treatments sampled or across all treatment levels in the population, we would expect the variance
attributable to our factor to be greater than 0. For the one-way random effects model then, there are two
“components of variance” that need to be obtained. One is af‘, the other is ag. Both of these compo-
nents add up to the total variance o} in the dependent variable. That is, o} = o3 + 0. We will discuss
shortly why this is the case.

5.4.1 F-Ratio for Testing H,

How do we come up with a suitable ratio for testing Hy : 65 = 0? We do so by considering the derived
expected mean squares. As was the case for the fixed effects model, we want to isolate that part of the
expected mean squares that represents the “effect” we are interested in. In no% + o2, that part is no?.
That is, if our experimental treatment “worked,” (in some sense) we would expect no? to be large rel-
ative to ag. Notice that once we have isolated the part we are interested in, as was true for the fixed
effects models of the previous chapters, the correct error term quite naturally reveals itself. Since we do
not want our effects to be “polluted” by 62, we will divide no3 + o2 by ¢2. But what is 62? This is the
expectation of MS within. Hence, the F-ratio we want to produce is one which takes no3 + o2 in the
numerator and divides it by 2. That is, our F-ratio for the one-way random effects model is:

2 2
_ I’lGA+O'e

2
o,

At first glance, it may appear that we can simply cross out 62 in the numerator and 2 in the denom-
inator. However, recall from the rules of algebra that we cannot do this since the numerator is a sum and
not a product. Had the numerator been (no? ) (62), where the parentheses denote multiplication, then
crossing out 62 would have worked. But since we are dealing with addition, we cannot eliminate 67 in
this way.

Returning to our F-ratio, we can appreciate why it makes good sense to construct it as we did. If
there are no treatment effects for our factor, then naf, will be 0, since aﬁ would equal 0, and any n (i.e.,
sample size per group in a balanced design) multiplied by O will equal 0. Under this condition, we are

simply left with 62 in the numerator, and our F-ratio would be equal to approximately

2, 2 2 2
oAt o, =n(0)+ae _%

2 2 2

Ge o-e Ge

That is, we can state more formally that under H,
2 2
noi + o
El=A "¢l
( o;

If, on the other hand, H, is false, then this implies the alternative hypothesis, af\ > 0, and so no-i will
be some quantity larger than 0. Our expectation then for our ensuing F-ratio would be

2 2
noy + o
E % >1
O-e
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under a false null hypothesis. As was the case for the fixed effects model, we evaluate F on J — 1 and
N — J degrees of freedom. A statistically significant F-statistic suggests that the variance attributable
(or “accounted for”) by our factor (i.e., either the levels represented in the sample or by the population
of levels) is not equal to 0 in the population from which these data were drawn. That is, a rejection of
the null hypothesis implies that the variance in our dependent variable that is accounted for by our
factor is greater than 0.

5.5 COMPARING NULL HYPOTHESES IN FIXED VERSUS RANDOM EFFECTS
MODELS: THE IMPORTANCE OF ASSUMPTIONS

It would do well at this point to emphasize and reiterate the fact that a rejection of the null hypothesis in
arandom effects analysis of variance tells us something different than a rejection of a null hypothesis in
the fixed effects models of the previous chapters. In the fixed effects model, we tested hypotheses about
means. In the random effects model, we are testing hypotheses about variances. A rejection of the null
hypothesis in a fixed effects model hints to us that somewhere among the population means, it looks
like there is a mean difference. A rejection of the null hypothesis in the random effects model tells us
that changing levels of the independent variable has the effect of explaining or accounting for variance
in the dependent variable. These two null hypotheses are not the same.

What we have noticed, however, is that the error terms used for testing both hypotheses in the one-
way fixed effects and one-way random effects model are the same. In both cases, MS error is the
correct error term. Why are they the same? They are the same (so far) because in both cases, the
one-way fixed and one-way random effects, MS error “gets the job done” in terms of isolating the term
in the numerator that we are interested in. Recall that in the one-way fixed effects model, the
expectation for MS between was equal to

J
J-1

E(MS between) = 6> +

The expectation for MS within was equal to 2, and so because we were interested in isolating

>
J
J-1

since it contained any treatment effects present, it made sense to use ag as the error term. I want to
emphasize that this is why we used MS within as the error term, because it made sense to do so in
terms of what we wished to isolate in the numerator. This is the general logic of choosing error terms
in ANOVA, whether in simple designs or more complex. Deciding on a correct error term is not a
“mysterious” process once you have the expected mean squares at your disposal (on the other hand,
deriving EMS can be somewhat difficult).

The expectation for MS within is again equal to 6> in our current random effects model, and so
because we are interested in isolating naﬁ, it again makes sense to use MS error as the error term. Also,
be sure to note that the phrase error term and MS error are not synonymous with one another. Under
our current discussion, MS error is the appropriate error term. As we will see for the two-factor random
effects model, the correct error term will be other than MS error. It is extremely important to not get
into the habit of automatically associating “error term” with “MS error.” MS error is, under
many circumstances and models, the appropriate error term, but under other models, it no
longer is. In those cases, we will seek an error term other than MS error.
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5.6 ESTIMATING VARIANCE COMPONENTS IN RANDOM EFFECTS MODELS:
ANOVA, ML, REML ESTIMATORS

Once we have computed the analysis of variance, whether in the one-way or two-way (to be discussed
shortly) or higher-order analyses, our next job is to estimate variance components for such models.
Note that in our computations of analysis of variance so far, we have not yet addressed just how quan-
tities such as o3 and o2 are estimated. All we have considered thus far is how to use these quantities to
help us derive suitable F-ratios. We first consider ANOVA estimators, and then move on to a brief
consideration of maximum likelihood and restricted maximum likelihood.

5.6.1 ANOYVA Estimators of Variance Components

ANOVA estimators are easily computed, and in some cases can be used as starting values to other
forms of estimation. They are also the most historically relevant in the evolution of variance component
estimation. Recall once more the expectation for MS between found in (5.3). We can solve for 0/21 and
get an unbiased estimate of ¢5:

E(MS between) = no + o>
no; + o2 = E(MS between)
nos = E(MS between) — 67

We can then obtain our estimate of the variance component 63 quite simply:

MS between-MS within
n

2
Oy

where MS between and MS within are obtained from the ANOVA, and r is the sample size per group in
a balanced design. The next question is how to use this component. By itself, it simply represents a
quantity of variance. What we would like to obtain is a proportion of variance attributable to our
factor relative to the total variance in our dependent variable. To obtain this estimate, we need to know
that the variance of our dependent variable y can be written as a function of two components in the one-
way random effects model. The first component is 63, while the second component is 2. That is,

2 _
o, =

2 2
o, + o0,

This tells us that the total variance in a population for a one-factor experiment is composed of varia-
bility due to our factor, 0'/21, and variability not due to our factor, which is relegated to the error com-
ponent, 62.

The question now becomes how to estimate the total variance df in the random effects model.
We do so by (Hays, (1994, p. 534)):

2
e

_ MS between + (n—1)MS within
n

) N
y—O'A+G




184 INTRODUCTION TO RANDOM EFFECTS AND MIXED MODELS

where &5, 6%, and &5 are respective estimates of variances a%, ai, and ag. Having estimated the respective

components of variance, we can now assess the proportion of variance due to, or accounted for, by our
factor. We take the following ratio, called the intraclass correlation coefficient:

5 _ o4
P=Z">7=3 G4
Gy + 0, Y

The intraclass correlation coefficient measures the proportion of variance due to the grouping factor,
and like all proportions, ranges from O to 1. As noted by Kirk (1995), itis generally considered to be the
most popular measure of effect size for random effects.

A second, related interpretation of the intraclass correlation, is that it is the bivariate correlation
coefficient between any two randomly selected observations within a given level of the independ-
ent variable (Fox, 2016). That is, we can define p as

p = cor(yy, yy)

where y;; and y;;» are two distinct observations in a given group j. Intraclass correlations are useful in
measuring proportions of variance explained in applications of random effects and mixed models of the
current chapter as well as blocking and repeated measures models of the following chapter.

5.6.2 Maximum Likelihood and Restricted Maximum Likelihood

As discussed by Searle, Casella, and McCulloch (1992), ANOVA estimation has some weaknesses,
including the fact that negative variance estimates are possible. According to Casella (2008, p. 143),
negative variance estimates are often the fault of the estimation procedure rather than the model. Fur-
ther, Casella notes that a negative variance component should not in itself imply a conclusion that
af\ =0, and that when negative estimates occur, one should try a better estimation procedure, such
as restricted maximum likelihood (REML), which is a variation of maximum likelihood (ML).

Maximum likelihood estimation has its recent history beginning with a paper by Hartley and Rao
(1967) in which ML equations were derived, but required iterative calculations to estimate variance
components. At first, these computations were quite laborious, but with the advent of high-speed com-
puting, iterations are now performed with relative ease and speed. Closed-form solutions for ML esti-
mation are usually heavily dependent on normality assumptions.

Restricted maximum likelihood estimation focuses on maximizing the likelihood which is invar-
iant (i.e., does not change) to the fixed effects of the model (called the location parameters of the
model). REML estimates variance components as a function of residuals that are left over after
estimating the fixed effects by least-squares (Searle, Casella, and McCulloch, 1992). For balanced data,
REML solutions are identical to ANOVA estimators. For unbalanced data, ML and REML are
generally preferable over ANOVA estimators (Searle, Casella, and McCulloch, 1992). Choosing
between ML and REML is not straightforward, and our best advice is to follow the recommendation
of Searle, Casella, and McCulloch (1992):

As to the question “ML or REML?” there is probably no hard and fast answer. Both have the same merits of
being based on the maximum likelihood principle — and they have the same demerit of computability
requirements. ML provides estimators of fixed effects, whereas REML, of itself, does not. But with bal-
anced data REML solutions are identical to ANOVA estimators which have optimal minimum variance
properties — and to many users this is a sufficiently comforting feature of REML that they prefer it over
ML. (p. 255)
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5.7 IS ACHIEVEMENT A FUNCTION OF TEACHER? ONE-WAY RANDOM
EFFECTS MODEL IN R

Recall once more the achiev data of Chapters 3 and 4 (reproduced in Table 5.1). In those chapters, we
designated teacher as a fixed effect. In the current analysis, we will consider it to be a random effect.

Imagine the following scenario—You are the parent of Taylor, an 11-year old child in sixth grade
elementary education. Taylor is not performing as well as you would like in school, and based on a few
verbal reports from your daughter and parents of other children, you suspect it may have something to
do with Taylor’s teacher. The principal of the school, however, comes to the teacher’s defense and
makes the following claim to you: “Student achievement is not associated with teacher. Whether a
student has one teacher or another makes no difference in how the child performs.”

In advancing your argument, you would like to accumulate some evidence to help substantiate that
teacher does play a “role” in academic achievement. You randomly sample four teachers from your
city and obtain mathematics achievement scores from the children in those classes, scored from 0 to
100, where higher scores are indicative of greater achievement. Ideally, children would also be ran-
domly assigned to teacher, but for now, our focus is simply on understanding how teacher can be con-
sidered a random effect. Even if not by experimental design, it is most likely that children were
randomly assigned to teacher from the outset (i.e., unless of course a school designates particular stu-
dents for particular teachers, in which case, random assignment is not taking place). For our purposes
here, again, we focus simply on teachers being randomly selected from a wider set of teachers.

Notice that your hypothesis calls for a one-way random effects model, since levels of teacher were
randomly sampled. Surely, you are not interested in showing differences (i.e., mean differences)
between these particular teachers you have sampled. Rather, you would like to draw the conclusion
that variance in achievement is a function of different teachers, of which these four in your design con-
stitute a random sample of teachers for the given study. We thus have the perfect setup for a one-way
random effects model. Should your study be “successful” in that you obtain evidence that variance in
achievement accounted for by teacher is greater than 0, you would be in a position to respond to the
principal of the school arguing that varying teachers is associated with variance explained in
achievement, which would stand contrary to the principal’s initial claim that regardless of teacher,
students achieve to the same degree.

We run the model using the function 1mer (linear mixed effects models) in the package 1me4
(Bates et al., 2014) specifying teacher as a random effect. To request maximum likelihood estimation,
we include the statement REML = FALSE (i.e., by default, 1mexr will run REML):

TABLE 5.1 Achievement as a Function of Teacher

Teacher
1 2 3 4
70 69 85 95
67 68 86 94
65 70 85 89
75 76 76 94
76 77 75 93
73 75 73 91

M=71.00 M=1725 M =80.0 M =92.67
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> library(lme4)
> fit.random <- lmer(ac ~ 1 + (1|f.teach) , achiev, REML = FALSE)

About the above model specification:

* ~ 1 fits an intercept to the model.

* (1| £f.teach) specifies £.teach as a random factor.

e achiev is the name of the dataframe in which the data are contained (i.e., the .txt file we loaded

into R).

* REML = FALSE tells R to bypass the default estimation method (REML) and to fit the model by

maximum likelihood.

> fit.random
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: ac ~ 1 + (1 | f.teach)

Data: achiev

AIC BIC logLik deviance df.resid
157.1869 160.7211 -75.5935 151.1869 21
Random effects:

Groups Name Std.Dev.
f.teach (Intercept) 8.388
Residual 4.341

Number of obs: 24, groups: f.teach, 4
Fixed Effects:
(Intercept)

79.04

Features of the output include the following:

* AICisequal to 157.19, and recall is useful for comparing models. Lower values of AIC indicate a

better-fitting model than do larger values. Recall that AIC jointly considers both the goodness-of-
fit as well as the number of parameters required to obtain the given fit, essentially “penalizing” for
increasing the number of parameters unless they contribute to model fit. If we were to build on the
current model by potentially adding terms, then we could observe the extent to which AIC
changes and use this in our global assessment of model fit.

BIC yields a value of 160.72, which is also useful for comparing models. Lower values of BIC are
also generally indicative of a better-fitting model than are larger values. As was true for AIC, if we
were to fit additional parameters to the model, we would want to see a drop in BIC values to jus-
tify, on a statistical basis, the addition of the new parameters.

Deviance of 151.19, defined as —2[10g.Lysoger — 108 Lsarurazeals Where Lygoqe; i the likelihood
of the current model and Lg,,,4.q 1S the likelihood of the saturated model. Here we assume
log.Lsaurarea 18 €qual to 0, hence we can also write the deviance as —2[log.Ly,q.;]- Smaller values
than not are indicative of better fit.

* The variance component for f . teach is equal to the square of the standard deviation. That is,

(8.388)% =70.36.
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* The variance component for residual is equal to the square of the standard deviation. That is,
(4.341)* = 18.84.

* The only fixed effect for this model is the intercept term, and is equal to 79.04. This is the grand
mean of achievement for all observations and is not of immediate interest to us.

We could also request a summary of the fitted model (summary (fit.random) ), which will
provide us with similar output as above, with the exception that variance components are included
(so we do not have to square the standard deviations ourselves).

5.7.1 Proportion of Variance Accounted for by Teacher

Having fit the model, we can now compute the proportion of variance accounted for by f . teach.
Recall that the variance component for £ . teach was equal to 70.36, while the variance component
for residual was equal to 18.84. It is important to emphasize that these are variance components, they
are not proportions of variance (that they are not proportions should be evident in itself since propor-
tions range from O to 1).

Since 03 = 6} + 02, we can compute the estimated proportion of variance accounted for by our inde-

pendent variable, the intraclass correlation, as:

>

6n 63 7036  70.36

= = = =0.79
2 & +62 7036+1884  89.20

>

That is, approximately 79% (we rounded up) of the variance in achievement is accounted for by
teacher.

Of course, this is an extremely large measure of association for data of this kind. If you actually did
find such an effect for teacher, what would it suggest? Consistent with our interpretation of the random
effects model, it would imply that 79% of students’ achievement variance in school is associated with
varying teachers, either those teachers selected in the sample or those in the population from which the
sampled levels were drawn. Does this mean that one’s teacher is somehow responsible for one’s
achievement? Surely not, at least not so based on our statistical analysis.

Still, the finding of 79%, if it were actually true, could serve as a strong counter-argument against
that of the principal’s who claimed that teacher had no “impact” on students’ achievement. Again, we
must be cautious with our interpretation, because we certainly have no evidence for anything remotely
close to causal. The word “impact” is used purposely in quotes here. Concluding that teachers
“impact” student achievement implies a directional causal-like claim, and hence must be used with
great care, if used at all.

However, such data are still rather strong evidence that changing teachers might be a good idea for
Taylor given that she is struggling in school. And the benefit of conducting a random effects model
instead of a fixed effects one is that our inferences are not restricted to generalizing to only the levels
sampled for the given analysis. We can generalize to the population of levels of which the ones fea-
tured in the given analysis were merely a random sample. Because you conducted a random effects
model, the principal cannot rebuke your evidence by accusing you of “handpicking” certain teachers
over others. Your finding of 79% is generalizable to the population of teachers of which the ones you
tested were but a random sample. This is what gives random effects their power to draw rather far-
reaching generalizations, not unlike when we randomly sample subjects, of which the particular sub-
jects you obtained in your experiment are but a sample of a larger population. Because of the way
subject “levels” were sampled, we feel more confident about generalizing to a wider population of
subjects.
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5.8 R ANALYSIS USING REML

We now fit the one-way random effects model using REML estimation, and briefly compare the output
to the previous analysis using ML. To fit by REML, simply exclude the statement REML = FALSE from
our previous model statement (fit.random <- lmer(ac ~ 1 + (1|£f.teach), achiev,

REML = FALSE)):

> fit.random.reml <- lmer(ac ~ 1 + (1|f.teach), achiev)
> summary (fit.random.reml)

REML criterion at convergence: 146.3
Scaled residuals:
Min 10 Median 30 Max

-1.6056 -0.8696 0.2894 0.7841 1.3893

Random effects:

Groups Name Variance Std.Dev.
f.teach (Intercept) 94.87 9.740
Resgidual 18.84 4.341

Number of obs: 24, groups: f.teach, 4

Fixed effects:
Estimate Std. Error t value
(Intercept) 79.04 4.95 15.97

We see that the output using REML is very similar to that using ML. The variance components for
teacher and residual are 94.87 and 18.84 respectively, for a proportion of variance due to teacher equal to
0.83 (i.e., 94.87/(94.87 + 18.84) =94.87/113.71 = 0.83), a figure slightly higher than that using maximum
likelihood. We could have also obtained the standard deviations by VarCorr (fit.random.reml).

5.9 ANALYSIS IN SPSS: OBTAINING VARIANCE COMPONENTS

We now conduct the identical analysis using SPSS’s VARCOMP function. We will demonstrate using
both maximum likelihood (ML) and restricted maximum likelihood (REML), and briefly compare our
results to those obtained using R.

To run the one-way random effects model using ML, we request in SPSS:

VARCOMP ac BY teach
/RANDOM=teach
/METHOD=ML

The remainder of the syntax should include a limit on the number of times you wish the algorithm to
iterate (for our example, we have chosen 50), the criteria for convergence (choosing a relatively small
number is recommended, or just use the default in SPSS as we have done), and the history of the
iteration:

/CRITERIA ITERATE (50)
/CRITERIA = CONVERGE (1.0E-8)
/PRINT = HISTORY (1)
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Select output from the VARCOMP procedure follows. As we can see, much of it is essentially
analogous to that obtained using R (ML).

Iteration History

Iteration Log-Likelihood Var(teach) Var(Error)

0 -83.415 98.007 89.207
1 -76.353 31.190 18.842
2 -75.593 70.365 18.842
3 —75.593¢ 70.365 18.842

Dependent variable: ac.
Method: maximum-likelihood estimation.
“Convergence achieved.

First, we see the iteration history, showing the number of times the algorithm took to converge on a
log-likelihood statistic having requested convergence criteria (recall our criteria was 1.0E-8). Though
the numbers are rounded, we can see that from iteration 2 to iteration 3 the difference between log-
likelihood statistics is extremely small (too small to be noticeable in SPSS’s report due to rounding,
both values are equal to —75.593 in the output). We can also see that SPSS settled on variance com-
ponents of 70.365 for teach and 18.842 for error. These are the same as those estimated in R.

Next, SPSS reports the variance component estimates that appeared at the last stage of the iteration
(i.e., under iteration 3 above):

Variance Estimates

Component Estimate
Var(teach) 70.365
Var(Error) 18.842

Dependent variable: ac.
Method: maximum-likelihood estimation.

As we did in the analysis via R, we can compute the proportion of variance explained by teacher
by 70.365/(70.365 + 18.842) =70.365/89.207 = 0.79, which is the same figure we obtained in our anal-
ysis using R.

We next briefly demonstrate the syntax and output for the same model fit in SPSS, this time fit by
REML. To conserve space, only the final variance component estimates are given:

VARCOMP ac BY teach
/RANDOM=teach
/METHOD=REML [note the change from ML to REML]
/CRITERIA = ITERATE(50)
/CRITERIA = CONVERGE (1.0E-8)
/PRINT = HISTORY (1)
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Variance Estimates

Component Estimate
Var(teach) 94.867
Var(Error) 18.842

Dependent variable: ac.
Method: restricted maximum-likelihood estimation.

Using REML as our method of estimation, we see that teacher accounts for approximately 83% of
the variance in achievement (i.e., 94.867/(94.867 + 18.842) = 94.867/113.709). These results parallel
those found in R using REML.

5.10 FACTORIAL RANDOM EFFECTS: A TWO-WAY MODEL

Having discussed the one-way random effects model and having come to the conclusion through
expected mean squares that the correct error term was indeed MS error, we now turn to consideration
of the two-way random effects model. In this case, both factors are random, which again implies that
the levels for a given experiment are sampled levels from a wider population of levels. As was true for
the one-way model, we are not interested specifically in mean differences. Rather, we are interested in
variance in the dependent variable attributable to each factor, and potentially also to their interaction.

For example, suppose that instead of merely hypothesizing an association between teacher and
achievement, we hypothesize that hours of homework is also related to achievement. However, as
was the case for teacher, we are not interested in only particular hours of homework (levels), but rather
would like to randomly sample a few hours (levels) in an effort to generalize our findings to a pop-
ulation of homework hours. Such would designate hours of homework to be a random effect. In this
model then, both teacher and homework would be random effects, giving us the two-way random
effects model:

Vik =H+aj+ B+ (af)y + i

where 4 is the population grand mean, q; (i.e., a;, its estimate) is the random variable for row sample
effects, p (i.e., by) is the random variable for column sample effects, (o) (i.e., (ab); ) is the random
interaction effect for a given cell jk, and € (i.e., e;;), as before, is the error component, this time for a
given individual i in a given cell jk. Notice that the only part of the model that is not random in the two-
way random effects model is the grand mean (Hays, 1994). The rest of the model consists of random
variables, including the error component &.

The assumptions for the two-way random effects model parallel those of the one-way random
model, though we now have to generally assume interaction effects, (af});, to be normally distributed
with mean 0 and variance o7, as well as assuming Qj, Pr» (aff)jr, and g5 are all pairwise independent
(Hays, 1994).

In terms of partitioning variability, the arithmetical computations for the two-way analysis of var-
iance under the random effects model are exactly the same as those for the two-way analysis of variance
under the fixed effects model. However, as was true for the one-way model, the mean squares will be
different. Consequently, this will imply that we construct our F-ratios differently than in the fixed
effects model. As we will see, and for very good theoretical reasons, the error term for each factor
in the two-way random effects model will be MS interaction, and no longer MS error. This may
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seem counterintuitive at first consideration, but our derivation of the EMS will prove our intui-
tion wrong.

We begin by considering the expected mean squares. As was true for the one-way random effects
model mean squares, our starting point for considering these for the two-way model begins with recal-
ling features of the fixed effects model. Recall that in the two-way fixed effects model, the row and
column effects each summed to 0, that is, Y "a; = 0 and ) b, = 0. The interaction effects, (ab)j, also

j k
summed to zero across rows, columns, and cells. What this meant is that in the fixed effects models,
when considering relevant row and column effects, we did not need to concern ourselves with inter-
action effects being “picked up” along the way in our computation of row or column effects, since they
summed to 0 in each case. The only thing that was being accumulated in our summation was the usual
error term, €;. For instance, a given row effect a; could be written as follows:

(Vj—y-)z = (aj+ 51—5)2 (5.5)

The major point of (5.5) is to emphasize that when taking squared deviations from the grand mean in
the fixed effects model, the deviation reflects only the fixed effect a; and mean error (i.e., € ; — e). Notice
that the interaction effect does not contribute to the sums of squares for rows, because the sum of
the interaction effects equals 0 in the fixed effects model as we sum across columns. Or, again, if
you prefer, one could say that the interaction effect is included in the sum of squares for the fixed effect
a;, but that since it equals 0, it drops out of the fixed effect term. A similar situation applies to columns.
There is simply no interaction effect (i.e., the interaction effect will equal to 0) included in the column
effect. This is an extremely important point to grasp in order to understand the random effects model
under discussion, and the mixed model to be surveyed later. When generating F-ratios for fixed effects,
we were not “picking up” interaction variance, and hence had no need to consider interaction in gen-
erating suitable F-ratios to test main effects. That is, they did not figure in the expected mean squares.

5.11 FIXED EFFECTS VERSUS RANDOM EFFECTS: A WAY
OF CONCEPTUALIZING THEIR DIFFERENCES

As an aside and prior to our development of the two-way model, there is a way to understand the dif-
ference between a fixed effect and a random one, and that is in drawing on our knowledge of an “effect”
we are already very much familiar, that of e;;.

Recall that the effects a;in any given sample will not necessarily equal their long-run expectation in
a random effects model. Yes, while it is true that £ (5 j) = 0, when we simply take a random sample
from the set of all possible levels, there is no guarantee, theoretically, that a given sample will match
that long-run expectation. A similar situation applies for the b, column effects. Likewise, the sample
values for interaction effects (ab);, because they are now too random, do not have to match their
expected values in the sample of levels selected for the given experiment.

If you compare this with the behavior of the error term, e;;, you will notice that the error term
behaves in a similar fashion. Yes, the long-run expectation of the error is equal to O, that is, the mean
of the error over an infinite number of repeated samples is expected to be 0. However, in any given
experiment, in any given sampling of e;;, there is no reason to suspect that e;j; will equal that long-run
expectation. This is why e;j is quite naturally regarded as a random effect (even before we knew what
random effects were!). Its “levels” (i.e., the values of e;; occurring in a given experiment) are randomly
sampled from a larger population of potential “levels” (i.e., from a larger population of potential
errors).
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As we will see, it is this element of randomness of both a; and by that will have influential conse-
quences on ensuing expected mean squares and generation of suitable F-ratios to test effects of interest.

5.12 CONCEPTUALIZING THE TWO-WAY RANDOM EFFECTS MODEL:
THE MAKE-UP OF A RANDOMLY CHOSEN OBSERVATION

To explain how things work in a two-way random effects model, we begin with the idea that we have
been tracing since our first look at the one-way fixed effects ANOVA in Chapter 3, that of the “make-
up” of a given observation for the model under consideration. We again borrow quite heavily from the
work of Hays (1994), Kempthorne (1975), Kirk (1995), Searle, Casella, and McCulloch (1992), and
Scheffé (1999) in what follows.

For the two-way model, we begin by conceiving that the grand sample mean y.. will consist of aver-
age row effects, column effects, interaction effects, and mean error:

y.=a.+b.+(ab)..+e.

The meany ; of any row will consist of the effect of that row, the mean of the column effects (because
we are summing across columns), the mean of the interaction effects within that row, and the mean

error in that row:

yj=aj+b.+(ab) ; +2;

That is, notice that to calculate the mean of any row, y i aside from a row effect, a; (which is what we
actually want to obtain), we are also “picking up” mean column effects, mean interaction effects, and
mean error. As Hays (1994, p. 542) notes, the difference between the row mean and the grand mean
(which we want to calculate as usual to get a row effect, y ; —..), will not include any column effects
(we will see that it drops out of the equation), but it does include average interaction effects as well as
row effects and error:

(5.6)

Notice that when we take deviations from the grand mean, of the form y jm e which by the above

iR

is the quantity “a; + b.. + (%) it ¢;” minus “G.. + b.. + (%) +e..,” this difference does not
include any column effects, because in (5.6), b.. dropped out of the final solution. It canceled out, since
b..—b..=0. The final solution does, however, contain row effects and interaction effects. That is, to get
arow effecty ; —5.., we also get the “unwanted” interaction effects. We will need a way of dealing with
these unwanted effects when we build our F-ratio. In the fixed effects models, we did not have to worry
about picking up “nuisance effects” (other than error) when computing row or column effects. Why
not? Because these nuisance factors did not exist in fixed effects models (or equivalently, they did
exist, but were equal to 0).

Similarly, for the deviation of any column mean from the grand mean, we can define a column effect
as containing an effect for that particular column, b, the mean of the row effects, a..(because we
are summing this time across rows), a mean interaction effect, (%) I and the mean error in that
column, e:

Yi=bi+a.+ (ab) +e;
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Therefore, when we take y , deviations about the grand mean, y, —y.., we end up with

= (bx=b.) + |(@) , - (@b)..] + (ex—e.) (5.7)

That is, a column deviation from the grand mean contains a column effect, average interaction effects,
and average error, but no row effect, because similar to (5.6) when the column effect dropped out of
the equation for the row effect, here, the row effect @.. drops out of the equation. Notice thata.. —a.. = 0
in (5.7).

In summary then, we need to find a way to produce our F-ratios such that the interaction in the row
and column effects is accounted for. As we will see, for the two-way random effects model, this will
call for a test of main effects MS against the interaction term instead of the MS error term as in
the fixed effects ANOVA. To understand why this is so, however, we need to once more consider the
expected mean squares.

5.13 SUMS OF SQUARES AND EXPECTED MEAN SQUARES FOR RANDOM
EFFECTS: THE CONTAMINATING INFLUENCE OF INTERACTION EFFECTS

Let us see how the interaction involvement of (5.6) and (5.7) will influence the sums of squares for

rows in the two-way random effects factorial model. Recall we derived, for the two-way fixed effects
model, the effect for row to be

SS A = SS between rows = ZKn(yj. —y..)2
J

Now, when we substitute (y It —y..) with

(aj-a.) + [(ab) ; - (ab).] + (¢, -2.)

of (5.6), we obtain

$5 4 = S8 between rows = Y Kn{ (a;-a.) + (@) , - @).] + @, -2.) ) 6®)

which we can now reduce to, in terms of expected mean squares:
E (MS A) = E(MS between rows) = Kno’, + no’, + o> (5.9)

We notice (5.9) contains the interaction term, nc4 . What this means is that when we consider the con-
struction of a suitable F-ratio to isolate o3, we are going to need a denominator that includes no?, so
that we can account for it being a part of the numerator of our F-test. Likewise, for factor B (columns),
in terms of EMS, we have:

E(MS between columns) = Jno}, + nos, + o2 (5.10)
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Again, the term no4, appears in (5.10), whereas in the fixed effects model, this term did not appear
(or, again, if you like, it did appear, but was equal to 0). Analogous to our test of the row effect, this
will call for a different F-ratio for testing the column effect than what we had in the fixed effects model.
In the fixed effects model of the previous chapter, we simply did not have to deal with the “contam-
ination” of no?,.

Finally, the expectation mean squares for the interaction term ends up being no%, + 62, and as usual,
the expectation for MS error is 62. See Searle, Casella, and McCulloch (1992) for how this expectation
is obtained.

5.13.1 Testing Null Hypotheses

As was true for the one-way random effects model, the null for factor A is given by Hy : 63 = 0. This
null hypothesis, if “true,” would imply that Kno3 = 0, and so all that is left from the expected mean
squares is

2 2 2
Knoy + noyp + o,

2 2
0 +noyp + o,

What if we naively decided to use good ‘ol MS error as our error term for testing this effect? Under the
null hypothesis that 65 = 0, we would have:

2 2
nosp + 0,
2
66

Notice that had we used MS error, we would still have an interaction term unaccounted for in the
numerator, which would mean that even if there are no effects for factor A, we might still obtain
an F appreciably greater than 1. This would be because interaction variance, no3, is making its
way into the numerator and we are not effectively isolating Knaﬁ. Therefore, this calls for us to use
a new error term to test the main effect for such a random effect. Which error term shall we choose
to “get rid of” no3; + 627 We notice that this term is actually the mean square for interaction, since
recall that this is what we found the expectation for interaction to be.

Now, everything should be beginning to fall into place. The test for factor A must be against MS
interaction as it allows us to isolate the effect of interest in the numerator:

2 2 2
MS A _ Knoy +noyp + o,

" MS A x B interaction noi, + o2

We lose a degree of freedom for row and one for column, so the degrees of freedom on which the
above F will be tested are equal to (J—1) and (J— 1)(K-1).

Likewise, for factor B, to evaluate the null hypothesis Hy : a% = (, since there is interaction variance
again “contaminating” the effect, E(MS between columns) = Jnos + nosp + o2, the appropriate

denominator for testing this effect (on (K—1) and (J— 1)(K — 1) degrees of freedom) is once more
2 2.
naAB + Ue .

2 2 2
MS B _ Jnoy +noyp + o,

F= - - =
MS A x B interaction noiy + o2
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If H : 6 > 0, then the term Jnop, will reflect this effect, and the F-statistic will be appreciably greater
than 1.0. Otherwise, we will be left with simply

2 2 2
Fe Jnog + nosp + o

neig + o2

2 2
_ O+noy, +o,
= 2 2
noig + 02
2 2
_ noyp + o,

2 2
I’lGAB+6€

and our expectation for F would be approximately 1.0 under the null hypothesis 6% = 0.

What is the appropriate denominator for testing Hy : 65 = 0? This one is easy. Since we found the
expected mean squares to be no%, + 62, it is quite evident that the correct denominator in this case
actually is MS error, evaluated on (/- 1)(K— 1) and JK(n — 1) degrees of freedom. That is,

. . 2 2
_ MS interaction  noyg + o,

MS error o2

In summary then, we have found that in the two-way random effects model, both random effects are to
be tested against MS interaction, while the interaction term is to be tested against MS error.

5.14 YOU GET WHAT YOU GO IN WITH: THE IMPORTANCE OF MODEL
ASSUMPTIONS AND MODEL SELECTION

Even if you should never venture into models with random effects (other than, of course, the error
term in a fixed effects model, which is virtually always present), a survey of random effects is ped-
agogically instructive because it serves to illustrate that the conclusions one draws from an analysis of
data are very much contingent on the assumptions and sampling one enters with into the model-
building process. The actual arithmetic of the ANOVA may very well be the same in many cases,
but the construction of F-ratios will differ based on the assumptions you make at the very begin-
ning of your experiment. We summarize this idea with the following:

If you use a fixed effects model, when really, you are interested in interpreting a random effects
model, you will be restricted to making inferences only about the levels of the independent variable
that are present in your experiment. Your substantive conclusions are intimately tied to the model
you have tested.

There are many research papers across the sciences where researchers, after conducting a fixed
effects analysis of variance, regularly, and perhaps inadvertently, generalize their findings to levels
of the independent variable(s) not tested in the model. As emphasized by Searle, Casella, and McCul-
loch (1992, p. 22), “Users of computer packages that have F-values among their output must be
totally certain that they know precisely what the hypothesis is that can be tested by each such
F-value.”

Let us shed a bit more perspective on Searle et al.’s warning. Consider the following scenario: As a
researcher in sensation and perception, suppose you are interested in the variability explained in pupil
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size (i.e., dependent variable) when looking at various playing cards. If you select two playing cards,
say a king of spades and a jack of hearts, measure pupil size, and find there is a statistically significant
difference between pupil size for king of spades versus pupil size for jack of hearts, under the fixed
effects ANOVA, you will only be able to conclude mean differences for these two card-types only,
since you are assuming that in replications of the experiment, only these two cards would be used again
and again. Now, had you used a random effects model, and randomly sampled these two cards from
the deck, you could have concluded that differences in cards, either those selected randomly for the
given experiment or those in the population of potential cards that could have been selected, accounts
for a given amount of variance in pupil size. That is, you would be able to make a more general state-
ment in the random effects model. You would be able to say something about playing cards in general,
rather than just the two kinds you selected.

As a general guideline, when you interpret an ANOVA, always ask yourself whether the investi-
gator is assuming a fixed or random effects model, and then critically evaluate whether the data were
analyzed and interpreted in correspondence with these assumptions. Be sure to verify whether conclu-
sions outlined in results and discussion sections agree with the model actually analyzed. If they line up,
then great. If they do not, then at least you will have a sense of the limitations imposed by the analysis in
relation to the potentially much more broad conclusions drawn in the discussion of the paper.
Researchers often like to overstate conclusions in discussion sections despite the fact that their
statistical analyses do not support such conclusions.

5.15 MIXED MODEL ANALYSIS OF VARIANCE: INCORPORATING FIXED
AND RANDOM EFFECTS

Suppose that instead of merely wanting to demonstrate that teacher is associated with variance in
achievement, you also wanted to show that the lesson plan used by the teacher is also associated with
achievement. Suppose you were interested in specifically comparing five different lesson plans. Hence,
teacher remains random, but lesson is now fixed. When we have a mix of fixed and random factors, we
have the mixed model analysis of variance. Pinheiro and Bates (2000) do a nice job of summarizing
the applied rationale of a mixed model:

Mixed-effects models are primarily used to describe relationships between a response variable and some
covariates in data that are grouped according to one or more classification factors. Examples of such
grouped data include longitudinal data, repeated measures data, multilevel data, and block designs.
By associating common random effects to observations sharing the same level of a classification factor,
mixed-effects models flexibly represent the covariance structure induced by the grouping of the data. (p. 3)

Purely random effects models are relatively rare. Fixed effects models are much more common
across the social, economic, and medical sciences. However, a study of random effects such as we have
undergone is quite useful, not only because it provides an understanding of the random effects model
itself, but also because it serves as a “bridge” to the mixed model, which is quite popular.

As we did for both the fixed effects and random effects models, we consider the expected mean
squares for the mixed model. When we obtain effects for the fixed factor, we will need to sum across
arandom factor. Just as we summed across random factors in the two-way random effects model, we
will once again conclude that this factor (i.e., the fixed one, not the random one) be tested against MS
interaction and not MS error.

To help better understand the denominators we will use for testing fixed and random effects, con-
sider the layout in Table 5.2. In this layout, the fixed factor, represented by rows, has six levels, and the
random factor, represented by columns, has three levels.



MIXED MODEL ANALYSIS OF VARIANCE: INCORPORATING FIXED AND RANDOM EFFECTS 197

TABLE 5.2 Cell Layout for 6 x 3 Mixed Model Analysis of Variance

Random Factor (B)

| II 11 Row Means

Fixed Factor (A) 1 Vijk Vijk Vijk v
I Vijk Vijk Vijk v

I Vijk Vijk Vijk Vi

v Yijk Vijk Vijk Vi

v Vijk Yijk Vijk Vi

VI Vijk Vijk Vijk Vi

Column means Vi Vi Vi y.

In the layout of Table 5.2, we will have the following effects for the fixed factor and random factor:

* Row effects, denoted by y ; —y.., represent the effect of being in one row versus being in other
rows on levels of the fixed factor.

* Column effects, denoted by y, —¥.., represent the effect of being in one column versus being in
other columns on levels of the random factor.

The questions we need to ask ourselves about Table 5.2 are the following:

* What kind of information went into producing the row effects, y ; —y..? Notice that to get these
row effects, we need to sum across a random factor. How will this summing across a random
factor impact the makeup of the given row effect?

* What kind of information went into producing the column effects, y ;, —y..? Notice that to get these
column effects, we need to sum across a fixed factor. How will this summing across a fixed factor
impact the makeup of the given column effect?

To get a given row effect, y ; —.., because we are needing to sum across a random effect, we have
every reason to believe that the sum of interaction effects, (ab);, will not equal to 0 (Hays, 1994).
Hence, we will need to account for this source of variation when constructing our F-ratio. That is,
within any row of the fixed effect, we can expect there to be an average interaction effect, unequal
to zero (and possibly different from row to row), that we are “picking up” as we sum across the given
row. These row totals then, and their corresponding effects, will not only reflect row effects, but rather
will also be reflective of average interaction effects. To the contrary, to get a given column effect,
Y—Y.., because we are summing across a fixed effect, we have good reason to believe that the
sum of interaction effects, (ab);, will equal to 0. Hence, we do not need to account for this source
of variation when constructing our F-ratio (or equivalently, we can account for it, but it will be equal
to zero each time).

How are the expected mean squares impacted by all this? For the fixed effect, factor A, EMS is
equal to

Kn{ > %,
i

EMMSA) = 6> + nos g + i
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Notice that included in this EMS is interaction variance, naﬁB, which is unwanted. For the random
effect, EMS is equal to

E(MSB) = 6> + Jnop,

Notice that the only unwanted variation in this EMS is that of 62. The EMS for the interaction term
ends up being, quite simply

E(MS AB) = 6> + no’y

We now have all the information necessary to build our F-ratios. For the fixed effect, under the null
hypothesis of no effect, we get

Kn (Zazj)
EMSA) =0 + oy 4 — N1/

J-1
Kn( S0
2 J

J

_ 2
=o,
_ 2 2
=0, tNoyp

which suggests that the correct denominator for testing the fixed effect must be MS interaction:

Kn (Z(0>2j.>
MSA o?+nody+ —1 2

7
MS AB o2 + noiy

Notice that it is the fixed factor (not the random factor) that is tested against the interaction term
in the mixed model.

Under the hypothesis of no column effect (random factor), o3 = 0, since E(MS B) = Jno + o2 we
end up with simply o-?. Thus, the F-ratio for the random factor is given by

2 2

Fe Jnog + o7
- 2
66‘

Notice that it is the random factor (not the fixed factor) that is tested against MS error in the
mixed model.

As arecap of what we have done, we have seen that in a two-way mixed model, to produce the F-test
for the random effect, we divide by MS error. The reason for this is that to produce the column means,
we have to sum across the fixed factor. Those respective sums are not expected to contain anything but
variability due to levels of the random factor along with error.

For the fixed effect, however, what went into the sums for rows? That is, when we produce the sum
(or the mean) for each row (fixed effect, in our layout), what kind of variability went into each of these
row sums? There is surely (hopefully) variability due to the effect of being in that particular row and not
other rows, and there is variability due to error, as usual. But, there is another source of variability, and
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that is interaction variance. Why? Because when we tally up the cell totals for a level of the fixed factor,
we are summing across only a sample of possible levels of the random factor. Hence, if we were to do
the experiment over, and presumably sampled different levels of the random factor, the effect we would
obtain for the given level of the fixed effect might change by the very nature of summing across the
random factor in question. Hence, we have “unwanted” interaction variance in the rows and have to
account for this when generating the corresponding F-ratio. If we produced our F-ratio by dividing by
MS error, we would still have an interaction effect left over in the numerator, and thus we would have
failed to isolate the effect of interest (i.e., row effect). We would have failed to test our null hypothesis
of interest.

5.15.1 Mixed Model in R

Having laid out some of the theory for mixed models, we now estimate a mixed model on the achieve-
ment data, this time specifying textbook as a fixed factor and teacher as a random effect (Table 4.1). Of
course, there is much more to the fitting of a mixed model than shown here (e.g., plots, diagnostics to
verify assumptions, etc.). Our purpose here is only to briefly demonstrate how such a model can be fit
in R.

We use the package nlme (Pinheiro et al., 2014), and fit our model using REML (partial output
shown below):

> library (nlme)
> mixed <- 1lme(ac ~ f.text, data = achiev, random = ~1 | f.teach)
> summary (mixed)

Random effects:

Formula: ~1 | f.teach
(Intercept) Residual

StdDev: 9.733736 4.423571

Fixed effects: ac ~ f.text

Value Std.Error DF t-value p-value
(Intercept) 78.58333 5.031607 19 15.617940 0.0000
f.text2 0.91667 1.805915 19 0.507591 0.6176

In the code, random = ~1 | £.teach) designates the random effect. The coefficient for £ .
text2 is a mean contrast between the first and second textbooks (i.e., 79.50 — 78.58 = 0.92). The
effect for textbook is not statistically significant (p =0.6176). The variance component for f . teach
is equal to the square of 9.73, which is 94.67. Since the square of the residual is equal to 19.57, the
proportion of variance accounted for by f .teach is 94.67/(94.67 +19.57) = 94.67/114.24 = 0.83
(rounded up from 0.829). Confidence intervals for effects can also be obtained via inter-
vals (mixed).

5.16 MIXED MODELS IN MATRICES

Having briefly introduced the mixed model for the simplest case, we now briefly consider the mixed
model in its most general matrix form:

Y=XB+ZU+E 5.11)
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where, Y is a response matrix, X is a model matrix associated with the fixed effects in B, B is a vector of
parameters corresponding to the fixed effects, Z is the model matrix associated with the random effects
in U, and E is a vector of errors, what is left over from the model after prediction of Y. We assume that
U~N(0, X.) and E~N(0, X,), where X, is the covariance matrix for the random effects and X, is the
covariance matrix for the errors contained in E. This formulation of the model often goes by the name
of the Laird-Ware form, after the seminal paper “Random-Effects Models for Longitudinal Data”
(Laird and Ware, 1982) that provided the very general form of the mixed model. Because of Y, the
model in (5.11) can also accommodate more than a single response variable, giving us the multivariate
mixed model (Timm, 2002), of which all other univariate mixed models can be considered spe-
cial cases.

5.17 MULTILEVEL MODELING AS A SPECIAL CASE OF THE MIXED MODEL:
INCORPORATING NESTING AND CLUSTERING

Our study of the mixed model lends itself well to introducing a class of modeling methodologies that is
increasing in popularity in the social and natural sciences, that of multilevel or hierarchical modeling.
As we discuss in the chapter to follow, mixed models are also useful for addressing problems of
repeated measurements, which usually can also be conceptualized as having a “multilevel” or “hier-
archical” structure.

The topic of multilevel modeling is beyond the scope of this book. Our goal here is to simply
conclude this chapter with a foot-in-the-door commentary as to how these models can be conceptua-
lized as a special case of the more general mixed model. Indeed, as Pinheiro and Bates (2000) note:

This model with two sources of variation, b; and &, is sometimes called a hierarchical model ... or a mul-
tilevel model. The b, are called random effects because they are associated with the particular experimental
units [...] that are selected at random from the population of interest. They are effects because they represent
a deviation from an overall mean. ...Because observations made on the same [level of the independent var-
iable] share the same random effect b;, they are correlated. The covariance between observations on the
same [level] is (7% corresponding to the correlation of 0'12, / (ai + 02). (p- 8)

To properly discuss the multilevel model, it helps first to recall where we have been. Recall the
one-way fixed effects analysis of variance model of Chapter 3:

yi=y+tajte;

In this model, we assumed the treatment effects g; to be fixed and ¢;; to be random and normally dis-
tributed. In specifying g; as fixed, it implied that we were only interested in mean differences as repre-
sented by the factor levels actually included in the given experiment. If we were interested in the
population of levels of which the ones showing up in our experiment constituted a random sample,
then we specified a; as random, and had the one-way random effects model, which is the same as
the fixed effects model, only that now, sample effects are considered randomly sampled from a larger
population.

This type of model in which we allow g; to be random instead of fixed can, in many cases, actually
be conceived as a very simple version of what is known as the multilevel or hierarchical model. What
are the levels of the “hierarchy?” The observations y;; constitute level 1, and the “grouping” random
treatment effect a; constitutes level 2. We say that observations y;; are nested within level 2.

For instance, suppose that in our achievement example, instead of randomly assigning students to
teacher, we simply sampled students as they were, and as already associated with a given teacher. In
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such a case, school children y; would be considered nested within teacher. If we then randomly
sampled a number of teachers (say, four, as in our previous example), but wished to generalize to a
wider population of teachers, then teacher becomes a random effect. But how is this also a multilevel
or hierarchical model? Such models emphasize the fact that observations often occur in a natural hier-
archy or as a result of one being imposed through a sampling plan (such as blocking). For our student
observations, there is expected to be a likeness about students who share the same teacher. Observa-
tions “within teacher” are more likely to be similar than observations between teachers, not nec-
essarily because of any external treatment condition imposed, but simply because these students
share the same teacher. And having the same teacher means they share the same teaching style, etc.,
and all of the other infinite innumerable (and potentially even immeasurable) elements that may be
related to sharing the same teacher. And though there is nothing technically inherent in the definition of
“multilevel modeling” that prevents us from designating all effects as fixed effects (e.g., studying and
generalizing to mean differences between teachers), when we speak of multilevel or hierarchical mod-
els, we are usually implicitly invoking the idea that we have one or more random effects. For our
example, we are usually interested in generalizing to more teachers than we have sampled for our study,
making it, as we have seen, a random effect.

Our point is that multilevel structures are often analyzed via mixed models. There is nothing inher-
ent in such a hierarchical structure that “demands” such data be analyzed as such, but for reasons of
both wanting to account for likeness of observations within levels of the hierarchy as well as general-
izing to levels of the treatment effect, these typically necessitate the use of such models. For a classic
introduction to multilevel and hierarchical data, see Raudenbush and Bryk (2002). Snijders and Bosker
(1999) also provide a very readable treatment.

5.18 CHAPTER SUMMARY AND HIGHLIGHTS

* In the traditional fixed effects model, the specific levels of the independent variable(s) chosen by
the experimenter are of interest, and population inferences are made about those, and only those,
levels used in the experiment. Null hypotheses are tested of the sort Hy: uq = pp = puz- - - = yy.

* In the random effects model, the experimenter is not interested specifically in the levels chosen
for the particular experiment. Instead, the levels chosen are merely regarded as a random sample
of potential levels that could have been chosen. The experimenter is interested in testing a null
hypothesis that the variance in the dependent variable accounted for by the given factor is equal to
0, that is, Hy : ai =0.

* The conceiving of sample effects as random rather than fixed has important implications for the
construction of F-ratios.

* In the one-way random effects model, MS error is a suitable error term for constructing the
F-ratio for a test of the random effect. Variance components may be estimated using ANOVA
estimation, ML, or REML. REML is often the estimator of choice in random effects and mixed
models.

* In the two-way random effects model, because each effect is computed by summing across a ran-
dom effect, the expected mean squares dictate MS interaction to be the correct error term for each
effect in the generation of F-ratios.

* When a model has a mixture of fixed and random effects (in addition, naturally, to the error term),
the model is a mixed model. EMS for a two-way mixed model reveals that it is the fixed effect
that is tested against MS interaction. The random effect is tested against MS error.
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* Understanding that &;; is always a random effect, whether in fixed effects, random effects, or
mixed models, helps one to better appreciate the nature of random effects in general, realizing
that their behavior will be governed by similar random processes as is true of &;;.

* An understanding of basic mixed model theory coupled with the idea of nesting structures lends
itself to conceiving the multilevel or hierarchical linear model.

* Random effects and mixed models can be fit in R using 1me4 or nlme. SPSS’s VARCOMP can
also be used to estimate variance components.

REVIEW EXERCISES
5.1. Discuss why a researcher may wish to conduct a random effects analysis of variance instead
of a fixed effects ANOVA.

5.2. Elaborate on the statement “Random effects ANOVA is not about means, it is about
variances.”

5.3. Distinguish between a random effects model and a mixed effects model.

5.4. Give an example of three research scenarios that would necessitate the fitting of a random
effects model.

5.5. Give an example of three research scenarios that would necessitate the fitting of a mixed
effects model.

5.6. Distinguish the assumptions for a one-way fixed effects model from those of a one-way ran-
dom effects model. How are they similar? Different?

5.7. How are g; and e; similar in a random effects model but different in a fixed effects model?

5.8. How can it be said that, technically, virtually all ANOVA models are either random effects
or mixed models, and that purely fixed effects models rarely exist?

5.9. What are three common ways of estimating parameters in a random effects model?

5.10. What is the expected mean squares for the random factor in a one-way random effects
model? What implication does this EMS have on the construction of the corresponding F-ratio?

5.11. How does the null hypothesis for a one-way random effects model differ from that of a one-
way fixed effects model?

5.12. Given the F-ratio for a one-way random effects model, what is the expectation for ' under the
null hypothesis, and why?

5.13. Define the intraclass correlation coefficient, its meaning, and its purpose.

5.14. Inthe chapter example of achievement as a function of teacher, explain how the interpretation
of findings would have changed had teacher been regarded as a fixed effect rather than a ran-
dom one. Would this have helped or hindered the cause of the parent in responding to the prin-
cipal’s claim? How so?

5.15. Consider the following hypothetical data in Table 5.3 on factor A (three levels) and factor B
(six levels). Factor A is a fixed factor while factor B is a random factor. Within each cell is a
single observation.
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TABLE 5.3 Cell Layout of Data on Factors A and B

Factor A (F)
Factor B (R) 1 2 3 Means
1 11 27 57 31.67
2 12 29 45 28.67
3 14 31 65 36.67
4 16 26 95 45.67
5 51 36 54 47.00
6 24 35 46 35.00
Means 21.33 30.67 60.33 37.44

Estimate a two-way mixed model in R using REML. How much variance is accounted for by the
random effect?



RANDOMIZED BLOCKS AND REPEATED
MEASURES

The analysis of variance is not a mathematical theorem, but rather a convenient method of arranging the
arithmetic.
(Fisher, in Wishart (1934))

In the typical between-subjects experimental design, the purpose of randomly assigning subjects to
treatment conditions is so that all of the “nuisance” factors associated with subjects that we are not
interested in studying hopefully “balance out” across treatment groups. For instance, again referring
to our melatonin example, if we were to test the effectiveness of differing doses of melatonin on sleep,
we might generate treatment groups of control, 1 mg and 3 mg. When randomly selecting a subject
from the population then randomly assigning that subject to, say, the 1 mg group, that subject carries
with him or her all characteristics unique to that individual that could, theoretically, be related to, or
have an influence on the dependent variable we are studying (in this case, sleep onset latency). Perhaps
it is true that someone with a very healthy immune system will naturally respond better to low mel-
atonin doses than someone who is not quite as healthy. What if, just by chance, the healthy individual
winds up in the 1 mg group while the weaker individual winds up in the 3 mg group? Of course, ideally,
one would hope none of these nuisance effects would “pile up” in one group or the other. But if they
did, it could have serious consequences on the interpretation of findings. One way to overcome this
potential confound is to implement what is known as a randomized block design.

In this chapter, we survey the randomized block design and repeated measures model. When we
generate blocks, we produce homogeneous subsets of subjects before administering levels of the inde-
pendent variable within each block. The goal of both the randomized block design and that of
repeated measures is to account for the source of variability that is housed within blocks. We
study these two statistical techniques in the same chapter because they are very much intimately
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related. As we will see, the subject factor in a repeated measures is, in actuality, the blocking factor in a
randomized block design. We also briefly survey how the repeated measures model can be interpreted
as the multilevel or hierarchical model discussed in the conclusion of the previous chapter. These
models take into consideration the nesting structure implicit in the data, which, in the case of repeated
measures, are the repeated measurements nested within individual.

There are a number of excellent sources on block designs, repeated measures, and longitudinal mod-
els. See Kirk (1995, Chapter 7) for a good introduction to randomized block designs. Casella (2008),
Dean and Voss (1999) give good overviews of a variety of designs, which includes advanced features
such as confounding in blocks and fractional factorial designs. Winer, Brown, and Michels (1991) is
perhaps still, the “bible” of experimental design and should also be consulted. Singer and Willett
(2003) provide extensive coverage of longitudinal models, including time-varying covariates, and
applications to nonlinear and multilevel structures. Mead (1988) provides extensive coverage of block-
ing and repeated measures designs.

6.1 WHAT IS A RANDOMIZED BLOCK DESIGN?

The primary purpose of a randomized block design is to reduce the error term estimated in an analysis
of variance through an attempt to account for one or more nuisance factors. The logic of a blocking
design is produce groups of participants who are alike (or “homogeneous’) on one or more nuisance
variables, and then carry out the random assignment of subjects to conditions within each of these
blocks. If blocking is successful, the resulting MS error term from the analysis of variance will typically
be smaller than it otherwise would have been without blocking. Such is the logic of blocking, to
account for additional sources of variation by including a source of variation called “blocks” into
the ANOVA that would otherwise be relegated to the error term. When the error term is reduced in
this fashion, we hopefully allow for a more sensitive (i.e., powerful) test of the null hypothesis we
are interested in. Why “hopefully?” Because when we block, we typically lose degrees of freedom
for generating the error term for the F-ratio (more on this shortly). Hence, it is possible that blocking
simply is not “worth it” in terms of trading off degrees of freedom for a reduction in MS error. As
summarized by Larsen and Marx (2001, p. 675), “If the block sums of squares is significantly large, as
determined by the F test...the loss of degrees of freedom to blocks was a good investment.” However,
if SS due to blocks is not that large, then losing degrees of freedom may result in a less powerful test of
the primary hypotheses in the ANOVA. The moral of the story is clear: if you are going to block,
block on one or more nuissance factors that you know will “steal” a great deal from the error term.
Otherwise, it may simply not be worth it (including the trouble and expense of initiating a blocking
protocol in your experiment). Experienced researchers usually know what to block on, because they
are intimately familiar with the literature in their area of investigation.

6.2 RANDOMIZED BLOCK DESIGNS: SUBJECTS NESTED WITHIN BLOCKS

Recall our brief discussion of the previous chapter regarding the concept of “nesting” as naturally occur-
ring in multilevel structures and often analyzed through mixed models. In randomized block designs
(and repeated measures designs, as we will see), a nesting effect is also present. However, in the typical
block or repeated measures design, we impose the nesting structure by generating blocks. If we
planned our blocks successfully, it stands that individuals within blocks will be more alike compared
to individuals between blocks. It is in this sense then that subjects are nested within blocks. As we will
see, we may treat block as either a fixed effect or a random effect. Blocks are usually decided upon and
generated beforehand to increase the homogeneity within blocks in a deliberate fashion. For example,
if we thought that IQ level might be related to our dependent variable of interest, but we had no interest
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in studying IQ specifically through a factorial design, we could block on low, medium, and high IQ. In
this case, we, as investigators, are generating the blocks by pretesting individuals and classifying them
into one of three blocking groups. In other instances, blocks will be more naturally occurring, such as
classrooms nested within school. The distinction between whether we “choose” the blocking factor or
whether it is inherent in the data is nicely summarized by Casella (2008):

Thus, if we are in a situation where blocks can be chosen, it makes sense to choose them as disparate as
possible. This also makes good common sense, in that we want to verify our treatment comparisons on as
wide a variety of situations as possible ... If the variation in blocks is not controllable ... where we block on
subjects, but their use is dictated by the inherent design, then we just hope that the variation removed due to
blocking is a large piece (and it typically is). (p. 108)

In this chapter, we present only minimal theory regarding the randomized block design. The reason
for not elaborating too much on the model is because our primary reason for discussing it at all is to use
it as a precursor and introduction to the repeated measures ANOVA model, which can be conceptua-
lized as blocking taken to the extreme. In a repeated measures model, we again have a blocking effect,
though as mentioned, the blocks will actually be subjects. In such models, where subjects are tested
more than a single time, we will say that measurements are nested within subject. Repeated mea-
sures models and longitudinal models are omnipresent in social research, so our primary focus of this
chapter is to provide a reasonable, if not still quite brief, introduction to such models, and how they
deal, on a statistical level, with these nested structures.

We summarize our main points so far:

* In the one-way randomized block design, subjects are nested within blocks, meaning that subjects
within one level of the blocking factor will be more alike or similar than subjects between blocks.
Statistically, the blocking factor could be regarded as fixed or random, for the same reasons why
experimental factors were considered fixed or random in fixed, random, or mixed models of the
previous chapters.

* In the one-way repeated measures design, measurements are nested within subject, meaning
that measurements within each subject are more likely to be alike than measurements across sub-
jects. Though subject can be regarded as a fixed effect, it makes much more sense to designate it as
a random effect, since we are usually not specifically interested in the given subjects sampled.

The idea of blocking, though formally introduced in this chapter, is not new to us. In the paired
samples #-test in which subjects served under a pretest then posttest condition, we essentially had a
one-way repeated measures design where measurements were nested within subjects. The matched-
pairs design is, in fact, a basic block design. If one truly understands the differences between independ-
ent and paired samples #-tests, one can quite easily grasp the idea of blocking and nesting, which opens the
door to even more advanced modeling, including hierarchical and multilevel, as well as many other
ANOVA and regression models. As always, most so-called “advanced” concepts are usually rooted
in essential introductory concepts. That does not make the introductory concepts “easy” by any means,
it simply means that “advanced statistics” usually features difficult introductory concepts that take a long
time to truly master and understand. For instance, there is nothing “introductory” about understanding z-
scores, their “whys” and their “hows,” regardless of how they may first appear to an undergraduate in a
first course. Statistical concepts are deceptively very slippery.

Recall Table 2.8 from Chapter 2 (reproduced here as Table 6.1). The “matching” is meant to gen-
erate subjects within each block sharing more similarity with one another than subjects between blocks.

The problem with these types of designs is that they violate the assumption of independence that is
required for “ordinary” between-subjects analysis of variance. As a result of the nesting structure,
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TABLE 6.1 Matched-Pairs Design

Treatment 1 Treatment 2
Block 1 10 8
Block 2 15 12
Block 3 20 14
Block 4 22 15
Block 5 25 24

either naturally occurring or imposed by the design, participants within groups (i.e., blocks) usually
cannot be considered independent of one another. Special considerations have to be taken into account
when analyzing data that have such a nesting or correlational structure.

6.3 THEORY OF RANDOMIZED BLOCK DESIGNS

We now briefly discuss the theory behind randomized block designs. As we will see, having already
studied the random effects and mixed models of the previous chapter, proposing a statistical model for
the randomized block design is somewhat of a review of concepts already learned, since these models
are ideally suited to handle the analysis of block designs.

It is first, as always, helpful to start with earlier, simpler models, then build our way up to the model
under consideration. Recall once more the one-way fixed effects model:

Vi=H+a;+eE;

where y;; is the score of individual i in group j, 4 is the grand mean of all observations (or of all group
means, in the case of a balanced design), a; is the population treatment effect associated with group j
representing the mean difference between that particular group and the grand mean (i.e., the sample
effectis y;—.), and ¢; is the error associated with individual i in group j and represents within-group
variation. Also recall that in the fixed effects model, since the investigator is only interested in making
conclusions about the specific populations operationalized by the independent variable (rather than the
population of potential levels that could have been included in the given experiment), we assumed that
the sum of treatment effects equaled O (i.e., > _a; = 0).

As we learned in the previous chapter, the one-way random effects model is similar to the fixed, only
that in the random model, q; (a; being its sample estimate) is regarded as a random effect, and thus a
rejection of the null hypothesis now implied that varying levels of our independent variable is asso-
ciated with variance in the dependent variable. This idea of explaining variance was reflected in our
null and alternative hypotheses for the random effects model, which recall were Hy : 65 =0 and
H,: oi > 0, respectively. Analogous null hypotheses were proposed for the two-way random effects
model as well.

We then studied the mixed model, in which for the two-way case, we designated one factor as fixed
and one factor as random. That model was given by:

Yig =p+aj+ B+ (af)y + € (6.1)
where, as for the two-way random effects model, we had to expand our subscript on y;; to reflect obser-

vation i in cell jk. As before in the completely fixed effects model, y was still the grand mean of all
observations and a; was the treatment effect associated with the fixed factor. Our additional term, f,
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was arandom effect, which also implied that the interaction (af3); was also a random effect. As usual,
the model also contained an error component &5, representing within-cell variation that is unexplained
by the systematic portion of the model.

What, of the above models, is suitable for a blocking design? The blocking factor will usually (but
not always) be regarded as a random effect, since when we block on a nuisance variable, we are usually
not interested only in the particular blocks we have included in the experiment. We are usually inter-
ested in generalizing to the population of blocks of which our chosen blocks are but a mere sample.
Hence, assuming our treatment factor is fixed, this implies that our randomized block model will
be a mixed model. Thus, in general, we can say:

In models for randomized block designs, the blocking factor is usually regarded as random. Assuming the
other factor is fixed, this combination of a random factor and a fixed factor gives rise to the mixed model
analysis of variance as a suitable model for analyzing randomized block designs.

In what follows, we consider two specific models. The first is the nonadditive randomized block
design, which is another way of saying that the model contains the factor x block interaction term. The
second is the additive model, which means that the model does not contain the factor x block
interaction.

6.3.1 Nonadditive Randomized Block Design

The nonadditive randomized block design is usually best suited for the two-way mixed model in which
there is a main effect for both factor A and factor B, as well as an interaction. The model for the non-
additive randomized block design can be given by (6.1):

Vi =M+ aj+ B+ (af)y + i

where now f, is the effect associated with the blocking factor, usually considered to be random,
(ap)x is the interaction effect for treatment by block, and & is, as before, the error i associated with
cell jk. Again, the inclusion of the interaction term is what makes the model nonadditive. One point
worth noting is that through our use of subscripts, we are implying that within each treatment-block
combination, we are able to derive an MS error term, which implies that we have a design of n > 1 per
cell, the so-called replicated design. In situations in which we have only a single observation per
treatment-block combination, our model can be written as:

Yk =p+aj+ B+ (af), + e (6.2)

Notice that in (6.2), we have dropped the subscript i in yj, (ab);, and ej to indicate that within each cell,
there is only a single observation (i.e., n = 1 per cell). That is, with the notation yj,, we are not having to
specify any given subject i, since it is understood that there is only a single subject per cell. This nota-
tion is not necessarily standard across authors, but rather is simply how we choose to designate the
difference between the replicated and nonreplicated designs.

As we will see, models such as this in which there is but a single observation per cell, referred to as
nonreplicated designs, present some interesting challenges in terms of analysis. Because there is
only a single observation per cell, it becomes impossible to derive g, the error term, because there
is no within-cell variation to speak of. Hence, in these n = 1 per cell designs, the error term and the
interaction term are confounded, which, as we will see, has implications for how F-ratios are
constructed.
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6.3.2 Additive Randomized Block Design

If we either assume or otherwise conclude (e.g., through Tukey’s test for nonadditivity, as we will
discuss later) there to be no factor x block interaction, then we can simplify and rewrite the model of
(6.1) as

Yijk=ﬂ+05j+ﬂk+8ijk

Notice that now we are no longer modeling an (af); interaction. What are the consequences of
either including or not including a factor x block interaction in the model? This depends primarily
on two things: whether treatment and block are considered fixed or random, and the extent of repli-
cation within cells. Consider the data in Table 6.2 and the accompanying cell layout of Table 6.3.

At first glance, we note differences among sample means for factor A (21.33 versus 30.67 versus
60.33). We note as well the differences among sample means between blocks in the right-hand margin
of the layout. Even if we regard block as fixed, we are usually not interested in mean differences. We

TABLE 6.2 Fictional Data on Y, A, and Block
Y A Block

11
12
14
16
51
24
27
29
31
26
36
35
57
45
65
95
54
46

LW LW LW NN N = = =
DN R W, AANR WD~ WUNRWN—

TABLE 6.3 Cell Layout of Data on Y, A, and Block

Factor A
Block 1 2 3 Means
1 11 27 57 31.67
2 12 29 45 28.67
3 14 31 65 36.67
4 16 26 95 45.67
5 51 36 54 47.00
6 24 35 46 35.00

Means 21.33 30.67 60.33 37.44
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are most interested in simply removing block from the error term of the overall ANOVA. And cer-
tainly, when block is random, as we have already argued that it should be designated as such in most
contexts, mean differences are definitely not of interest. Likewise, we are usually more interested in
simply extracting it from the error term of the model as to provide a more sensitive test for factor A.

For pedagogical purposes, we run the ANOVA model specifying both factor and block as fixed
effects (where £ .block in what follows designates block as a factor in R):

> block.data <- read.table("blocking.txt", header = T)
> attach(block.data)

> f.a <- factor(a)

> f.block <- factor (block)

> fit.block <- aov (y ~ f.a*f.block)

> anova (fit.block)

Analysis of Variance Table

Response: y
Df Sum Sg Mean Sg F value Pr(>F)

f.a 2 4976.4 2488.22
f.block 5 827.8 165.56
f.a:f.block 10 2136.2 213.62
Residuals 0 0.0

Notice that R was unable to generate F-ratios for any of the effects (i.e., blank spaces under F value).
Also note that it was unable to compute a sum of squares for error. Why did this occur? It occurred
because our design is one without replication per cell. Recall that within each factor x block cell com-
bination, there exists only a single observation. Because of the fact that each cell has n =1, we are
unable to generate an error term separate from the interaction term, and according to fixed effects the-
ory of previous chapters, both fixed effects in the model should be tested against MS error. Since we
cannot generate an MS error term, we cannot test either effect, the effect due to factor A or that due
to block.

Suppose now we decided not to test the factor A by block interaction, but still kept factor and
block fixed:

> fit.additive <- aov (y ~ f.a + f.block)
> anova (fit.additive)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sg F wvalue Pr (>F)
f.a 2 4976.4 2488.22 11.648 0.002444 **
f.block 5 827.8 165.56 0.775 0.589224
Residuals 10 2136.2 213.62

We note that when we do not test the interaction, R is able to generate F-tests for both factor and
block. Why is this so? Because without a specified interaction term, this source of variance is rele-
gated to MS residual. Notice that the mean squares of 213.62 of the previous interaction term in the
full factorial model is now the mean squares for “error” (residual) in the model without interaction.
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As the interaction term, its expected mean squares in the nonadditive case was that of interaction
variance and error. However, that term has now become simply residual. And in line with expected
mean squares for the fixed effects model, both fixed effects factor and block are tested against MS
residual. It should no longer be called MS error since variability within cell is impossible in this case.
As Casella (2008, p. 45) notes, “Within error, sometimes called ‘pure’ error, is very different from a
‘residual.” As the name implies, a residual is something that is left over. In statistics, the residual is
left over from the model fit.” We will revisit this distinction in our study of structural equation
models later in the book.

What was the point of these two analyses? On a purely statistical level, it was a simple demonstra-
tion that single cell designs do best (at an arithmetical level, not necessarily theoretical, see Casella
(2008)) without the testing of an interaction term. On a more substantive and scientific level, however,
it served as a demonstration that the decisions you make in how you set about testing your model will
have a serious impact on the outcome of the model, even to the point of whether terms in the model are
even testable. We summarize with the following:

In an unreplicated randomized block design which includes an interaction term, if both factor and block
are specified as fixed effects, it is impossible to test either effect since we are unable to generate an error term
distinct from the interaction term. If the design did contain more than a single observation per cell, we would
be able to test each fixed effect against MS error because we would be able to distinguish an error term over
and above the interaction term (Hays, 1994). Hence, from a scientific perspective, if you are wanting to test
effects of interest, you must ensure your data meet specifications required of the model.

The above principle generalizes to virtually any model you choose to test and is not a sole property
of the randomized block design. A model can only test effects if you have supplied it with enough
information to do so. If you do not have enough information to fit your model, it does not necessarily
mean the untested effects would not have existed had you supplied the requisite data to test them. Good
models are correctly specified and are based on enough data to test effects of theoretical interest.
Plan and design your experiments carefully.

6.4 TUKEY TEST FOR NONADDITIVITY

We noted that in the nonreplicated situation, it was impossible to test for the presence of an interaction
effect, and if block were designated as fixed, we used MS residual to test our effects. It may seem
impossible then to be able to tell if an interaction exists in data for which there is only a single obser-
vation per cell. Now, had we been able to replicate per cell in the block design, then we could obtain a
true error term estimate due to having more than a single observation per cell, and be able to provide a
test for the interaction effect. But it would seem at first glance in the nonreplicated situation, testing for
an interaction effect would be impossible. However, not all hope is lost. There does exist a method for
testing the presence of nonadditivity (i.e., the presence of a factor by block interaction, in this case).
This test is known as the Tukey test for nonadditivity (1949). We do not demonstrate the test here,
though the interested reader is encouraged to consult the R package additivityTests
(Simeckova, Rusch, and Simecek, 2014) for details on how to run the Tukey test and other similar
tests. If such a test does not indicate the presence of an interaction effect, then one may assume it safe
to pool interaction variance into MS residual. If such a test does not rule out the possibility of an inter-
action, then pooling, in general, would be ill-advised, unless of course on a theoretical level you did not
hypothesize an interaction effect to begin with. As always, theory should be guiding your work, and if
not, then you should be noting that you’re engaging in exploratory pursuits rather than claiming each
“finding” as a theoretically driven result.
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6.5 ASSUMPTIONS FOR THE COVARIANCE MATRIX

Recall that in a between-subjects design, it was assumed that the covariance between treatment con-
ditions was equal to zero and that errors ¢; had a covariance equal to zero:

cov (eij, si'f) =0

In between-subjects designs, we had no good reason to suspect that treatment conditions would be
correlated. For instance, in our melatonin example, we had no cause to suspect that subjects in the
1 mg group would be correlated to subjects in the 3 mg group. They were independently sampled sub-
jects, randomly assigned to conditions, and hence assuming a covariance of zero between independent
groups seemed reasonable. Even if you post-hoc correlated the groups and found a small correlation
(incidentally, all data are correlated to some degree in the sample, you will likely find one), it would still
not imply that the prior expectation of zero correlation between groups was violated. The key point is
that in a classic between-subjects design, a data point in one group has no reason for being “related” to a
data point in another group, assuming the experiment was conducted properly and subjects randomly
assigned to conditions.

In the randomized block design (and as we will see later, repeated measures design as well), as a
result of subjects being matched across treatments, there is now a reasonable expectation that meas-
urement occasions will have a covariance between them unequal to zero. The fact that we expect this
covariance to be unequal to zero requires us to consider the randomized block model in a dif-
ferent light than the classic between-subjects analysis of variance model. Instead of simply spe-
cifying an assumption about variances, we now need to also incorporate an assumption about
covariances between treatment levels (or measurement occasions, in the case of repeated measures).
That is, we need to also model the covariance structure that may be inherent in our data instead of
simply assuming it to be zero between treatments. As Hays (1994) put it:

The key point is that the identity or the matching of subjects not only introduces a dependency among the
resulting scores under different treatmen